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Fully coupled quantum mechanical scattering calculations and adiabatic uncoupled bound-state calculations
are used to identify Feshbach funnel resonances that correspond to long-lived exciplexes istalkes o

NaH,, and the scattering calculations are used to determine their partial and total widths. The total widths
determine the lifetimes, and the partial widths determine the branching probabilities for competing decay
mechanisms. We compare the quantum mechanical calculations of the resonance lifetimes and the average
final vibrational and rotational quantum numbers of the decay prodyt;, k), to trajectory surface hopping
calculations carried out by various prescriptions for the hopping event. Tully’s fewest switches algorithm is
used for the trajectory surface hopping calculations, and we present a new strategy for adaptive stepsize
control that dramatically improves the convergence of the numerical propagation of the solution of the coupled
classical and quantum mechanical differential equations. We performed the trajectory surface hopping
calculations with four prescriptions for the hopping vector that is used for adjusting the momentum at hopping

events. These include changing the momentum along the nonadiabatic coupling #g&mg the gradient
of the difference in the adiabatic energies of the two stajgsafid along two new vectors that we describe
as the rotatedtand the rotatedrvectors. We show that the dynamics obtained fromdth@dg prescriptions
are significantly different from each other, and we show thatitpeescription agrees better with the quantum

results. The results of the rotated methods show systematic deviations from the nonrotated results, and in

general, the error of the nonrotated methods is smaller. The nonrotated ME8od is thus the most accurate

method for this system, which was selected for detailed study precisely because it is more sensitive to the

choice of hopping vector than previously studied systems.

1. Introduction method used to adjust the individual components of the kinetic

. 4020 energy. Two common prescriptions are to adjust the component
Trajectory surface hopping™ (TSH) has become clearly ot the' momentum that lies along the nonadiabatic coupling
established as a practical method for studying electronically \,ot0p.2

nonadiabatic dynamics in molecular systems. One attractive
aspect of the method is that it is applicable even to complicated dj(R) = I}jbf‘(x;R)WR(pja(x;R)[l (1)
polyatomic systems. Until recently, however, it was not possible

to evaluate the accuracy of the method because accurate?Nd to adjust the component of the momentum that lies along
quantum mechanical dynamics calculations on electronically the vector of the gradient of the differences in potential erigrgy

nonadiabatic processes were intractable. Recently the situation g;(R) = V(E(R) — E(R)) 2)

has changed, and we have begun to test TSH methods against

accurate quantal calculatiohd?12.1720 One goal of this work ~ where#%(x;R) and ¢ja(x;R) are the adiabatic electronic states

is to delineate the reliability of TSH methods for various classes between which the system switches during the Hops the

of systems (strongly coupled, weakly coupled, bimolecular, vector of nuclear coordinates, is the vector of electronic

unimolecular, etc.), and another is to use what we learn to designcoordinatesVr is the gradient with respect to nuclear coordi-

improved methods. In the present paper, we focus on electroni-nates, ands(R) and Ej(R) are the adiabatic energies of states

cally nonadiabatic unimolecular decay of long-lived excited- ¢7(x;R) and ¢ja(x;R) as functions ofR. The g prescription

state complexes (exciplexes) and we focus on the prescription(throughout this paper, we drop the subscripts and arguments

for the change in momentum during the hopping event. of d and g where it will not cause confusion; i.eg, denotes
One problematic aspect of TSH methods is that the potential 912(R) andd denotesd;»(R)) is computationally more conve-

energy governing the internuclear motion changes discontinu- nient, but thed prescription has been recommended by Tully

ously during a hop, and a corresponding discontinuous changeand Stine and Muckermargnd it has been justified theoretically

in kinetic energy is required to conserve the total energy. This on the basis of semiclassical thed§However, recent work

is problematic because there is no formal prescription for the comparing thed andg hopping prescriptions for a variety of

system&10 showed no notable difference in results between

t University of Minnesota. using the two methods. This was also reported earlier by Baker.
*NASA Ames Research Center. We can explain this in part by the fact that it has been shown
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that thed andg vectors are parallel in systems with constant 25
diabatic coupling? Therefore, thel andg vectors are expected [
to give similar results in any system in which the diabatic 20 [
coupling is approximately constant in the regions where most
nonadiabatic transitions occur. This does not explain all the < 4 [
observed results, though, since it was also fdithdt the final [
state distributions are almost independent of the choicé of
versusg in a system where thd and g vectors are nearly
perpendicular to each other. Thie and g vectors are also
expected to give similar results in any system with a small
average potential energy gap at hopping events, since in this
case the change in the kinetic energy is relatively small. A 00
systematic study of the differences in the dynamics observed

when using thel or g vector to adjust the momentum has never
been reported. Figure 1. Schematic diagram of cuts through the potential energy

In this work, we present calculations on the unimolecular surfaces of the first two diabatic states of the Malistem as a function

. S . . of S(distance from Na to k). For this figure s (distance from H to H)
decay of exciplexes. We use a realistic diabatic potential energy, .« optimized for each value & The geometries shown haw,

matrix (NaH: potential energy matrix 6) for which the diabatic symmetry, for which the diabatic and adiabatic representations are
coupling is not constant at most geometries. @aadg vectors identical and for which the diabatic coupling is zero. The electronic
generally point in different directions in this system, including symmetry of the ground diabatic staf&, is A;, and the electronic
the range of geometries where most surface hops occur. WeSymmetry of the first excited diabatic staf,is B,. The long-dashed
present converged quantum dynamics calculations and TSH!INe at2.373 eV represents the zero-point energy 0#+Na(3p). The
. . g . 16 short-dashed line represents the classical asymptotic Naf3pi,
calculations carried out b_y_'l_'ully s fewest swﬁcﬁ_é% (TFS) energy without zero-point energy. The short solid lines represent the
method over a range of initial states and energies. energies of funnel resonances.
A problem that occurs in both momentum-adjusting prescrip-
tions described above is the possibility that there may be of Hp. We consider values af, in the range 6-6. Note that
insufficient momentum along the vector to allow a hop. This the A state corresponds formally to Na(3p) complexed to H
occurs only in transitions from a lower energy surface to a higher whereas the repulsive Xtate corresponds to Na(3s)H.. In
energy surface. Suggested remedies for this problem includethis work, we neglect spiforbit coupling and electronic angular
simply ignoring the surface charider reversing the component  momentum. We consider only states with zero total angular
of the momentum along the hopping vectdrdr g),° as if a momentum. We use a two-state diabatic potential energy matrix
step function in the potential surface had been encountered. In(NaH, potential energy matrix 8) for all of the calculations.
both cases, the trajectory remains on the same surface. In theAnalytical derivatives for this potential matrix were calculated
TFS method, the undesirable consequence of either of theseusing theAabiFOR??2 PROGRAM
procedures is that the correct ensemble-averaged electronic A schematic diagram of the diagonal matrix elementSzat
populations are not maintained. This is because surface hopsgeometries is shown in Figure 1. In this figure and elsewhere,
and associated electronic state switches are enforced to maintaitve use the following three Jacobi coordinat&gdistance from
the correct populations in an ensemble-averaged sense. The hop¥a to H), s (distance from H to H), ang (the angle between
must occur where there is a local change in the probability of the Na-to-H center and K axis). Throughout this paper, the
being on the current potential energy surface. Once the correctzero of energy corresponds to Na(3s) infinitely far from the
hopping position has been passed, there is no mechanism td1, diatom. The well in the excited state surface in Figure 1 is
allow a correction for inadequate tracking. Thus, in the TFS the exciplex, also called a funn®?#In Figure 1, it can be
method, it is important that the correct populations always be seen that the crossing of the diabats occurs at energies slightly
maintained. In this paper, we examine the dynamical conse- higher than the asymptotic Na(3) H. energy. Note that five
guences of allowing the or g vector to rotate in order to allow  of the energies occur above the asymptotic Na(Bb), energy
surface transitions to occur and to reduce the number of and are not classically bound.
momentum-prohibited hops. The TFS calculations were per- The vibrational quantum numbers of each of the three
formed with thed prescription (TFSd) and theg prescription exciplex modes, listed together, are used as a shorthand notation
(TFS{) and with two new prescriptions called rotatdcand throughout this paper. For example, 000 refers to the lowest
rotatedg. energy exciplex state and 100 refers to the state which has one
guanta of energy in the Hvibrational mode.

Energy (e
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2. System

. . . . . . 3. Quantum Mechanical Theory
The process we consider is electronic predissociation, i.e.,

the unimolecular decay of an electronically excited-state ~ We used accurate quantum mechanical scattering calculations
complex to ground-electronic-state fragments, in particular, ~ to locate and characterize the predissociating states. These states
show up in scattering calculations as electronic Feshbach
NaH,(k = 2,v, = 0,v,, v; = 0)— Na(3s)+ Hy(', ") (3) resonance® We will call them Feshbach funnel resonané‘és.
The methods we used to locate and characterize these kinds of
states were described in earlier wéfk’ We summarize the
process here.
The eigenphase sum\(E), is defined by

where the left-hand side represents an exciples, the initial
electronic statex(= 1 is the electronic ground stat¥, andx
= 2 is the first excited state, Ay (I = 1, 2, or 3) are the
quantum numbers for the JHstretch, the symmetric NeH» exp(4A(E)) = detS(E) 4)
stretch, and the asymmetric N&l, bend, respectively, and

andj' are the final vibrational and rotational quantum numbers whereS(E) is the scattering matrix anf is the total energy at
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where

Fa

7, =B~ i3 ©)

and Syn(Ey) is an approximation t&y, (an element ofS(E)),
S)(Ex) is the background scattering contribution $gn(Ex),
andyqn, andyqy are partial widths describing decay from the
resonance into then andn’ channels, respectivelyﬁ.n(Ek) is
expanded in a polynomial as a function of energy:

P
’n(E = 'n’nEj (10)
S(ED ;’A k

Figure 2. Smoothed eigenphase sums as functions of energy in the whereP' is the order of the polynomial. Multiplying b — z,
region of a resonance. The solid diamonds represent quantum mechangives

ical eigenphase sums, smoothed by addition of multiples.cfhe

solid line represents the fit to these points. The dotted line represents
the background contribution to the eigenphase sum, and the short dashed
line represents the resonance contribution to the eigenphase sum.

which S(E) and A(E) are calculated. This formula only
determinesA(E) to within a multiple ofz. In order to obtain
A(E) as a smooth function of energy, multiplesmoivere added
where necessary for continuity. We use the notatidk) to

indicate eigenphase sums calculated from eq 4 and smoothed

by addition of multiples ofz.
According to the multichannel analogy of the BreWigner

formula, in the region of an isolated narrow resonance, the

eigenphase sum is given approximatelyy

— A T
AE) =A"(E) + arctar( 2E, - E)) (5)

P+1 _
(B~ 2)Snm= ZO B (11)
&
where
Bers 100 = Aprin (12)
Bin=An-vin ~ ZAen 1=1.2,P 0 (13)
Bown = ~ZPorn — IComn (14)
and
Cann = YonVan (15)

Note that all of the polynomial coefficients given above are

whereAP(E) is the background contribution to the eigenphase complex.

sum, I’y is the total width of the resonandg, is the resonance

The quantityC,nn is determined by fitting eq 8 to an entire

energy, and the arctan is always chosen to be the branch betweedolumn of theS matrix by minimizing the following quantity:

0 andx (not —/2 tor/2). Our goal is to fit eq 5 to the quantum
mechanicalA(E) values to determin&, and E,. We expand
AP(E) in a polynomial of the energy

P

A°(E) = Z} aE (6)

whereP is the order of the polynomial. We fit eq 5 with the
substitution (6) to the accurate daf8°qEy) at Ng pointsEy by
minimizing the following quantity?’

Ne
6*= N Z [A"™(E) — A™(E) (1)
c £

Our general procedure was to select a valuePoand to
minimize eq 7 with respect tb,, E,, anda.. We then increased
P and repeated the process. We typically found thaandE,
were stable with respect to the variation®in the region of
the optimal value ofP. Figure 2 shows a plot ofAft(Ey),

A2qEy), and the background and resonance components of

Aft(E,) versusE.
Once we had determindd, andE,, we calculated the partial
widths according to the formtAgrs2

. Van’yom
Sﬁ’n(Ek) = Si’n(Ek) - Ek —-z,

C)

N, Z|Snn' - Snrf(Ek)|2 1/2

2_
en—z

n=1

16
Ng — P (16)

where the summation is over all of the open channd/sDnce
Cann is determinedyqy andyqn are calculated from

(17)

In practice, we fit alln columns of theS(E) matrix, and we
report data from the column that had the largest partial width.
A more detailed description of the procedure for fitting partial
widths is given in earlier work8:27

We define the probability of decay of resonaneeinto
channeln as

1Y ol
Pu= (18)
on Ga
where
Ne¢
Go="Y Wl (19)

n=
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G, equalsT,, for an isolated narrow resonance, but for the TABLE 1: Basis Set Parameters for OWVP Calculations

resonances, we consider ti@f tends be slightly smaller than basis set
To.
The final average vibrational and rotational quantum numbers parameter ! .
for the decay products of each exciplex are given in terms of }maz((z = iZf ‘B 5‘2‘ %S
the decay probabilities as follows: j::x(/c —1v=2) 20 2o
jmak =1,v =3 17 19
W'=Y Pen?'y (20) }m:ic =1v= 43 15 17
n jma{k = 1,v =b5) 12 14
jmaik = 1,v = 6) 8 10
'] = i jmalc =1, v=7 2 4
Ei q_ Zpanj n (21) }$:§K:l,v=8g 4
jmad{k = 2,v=10) 18 20
where the summation is over all open channels @p@ndj', J”;a*(" __21’)’/ =1 176
are the vibrational and rotational quantum numbers of channel _Uvimba*('(__ 21
n, respectively. The subscript on 'Cand on[j'Olabels the Jygmazk_zlg) 10 11
resonance. o i (= 2) 29 o4
The mean lifetime for a resonance is givertby* Amg%((,( = 018
A @:il:((’( = ]2-)) 0.16 832}6
— K= .
Ta r, (22) Wib(ic = 2) 0.3 0.33
Ak =1, allv) 0.120 0.120
where the subscript again labels the resonance. g((i - g Z::% 8%25 8%3%
4. Computational Methods ﬁ(i(';_llaﬁlﬂ;/) 0.48 %3&17
4.1. Quantum Mechanical ScatteringThe accurate quantum EE’; - %) allv?) 0.74 %'9760131
mechanical calculations were carried out by the hybrid basis DG = 1) ' 2 46
set outgoing wave variational principle (OW\#§¢ using Svib B 354
version 18.5 of thevr computer codé’ Table 1 lists the basis Suvib(K =1 '
set parameters for two different basis sets. These parameters 3 (k=2) 1.040 0.960
are described in full detail in an earlier pageéand we give a S =2) 2.480 2.560
brief summary of these parameters in Table 2. Basis set | was ~ S°(x =1, allv) 2.816 2.756
used for all of our OWVP calculations. Basis set Il is a larger Sk=1,allv) 8.936 8.996
basis set, and it was used to check the level of convergence of S =1, allvd) 2.888
basis set I. We performed calculations at a range of energies S =1, allv?) 5.709
with both basis sets, and we compared the state-to-state transition Le =2, allv) 2312 2246
probabilities at each energy. A summary of the convergence is S = 2’ I 944 9506
shown in Figure 3. Shown are the number of transition (c=2,allv) ' '
probabilities in each range of magnitude and the relative §c =2, allv?) 2312 2.246
convergence for that group. At 2.030 eV, the transition  Si(k=2 all? 10.76 10.826
probabilities larger than & 1076 are all converged to within my, mi; (all v) 52 53
1-2%. At 2.232 eV, the basis set is slightly less well-converged.  mi(all v?) 14
Most of the transition probabilities larger thanxl 105 are m, m; (all v) 55 56
converged to within 25%, and about half of them are my(j < 9,79 65 (1-7) 66 (1-8)
converged to within 1%. Note that the energies shown in Figure ~ mi(j < 9,) 55 (8-10) 56 (9-11)
3 correspond to the locations of resonances. It is difficult to ma( > 9,9 55 (1-10) 56 (:-11)
converge the quantum calculations with respect to the basis set 12 14
size and with respect to numerical parameters at these energies €t 100 100
because of the notorious sensitivity of scattering calculations  €rad i‘z" ig
to all parameters near a resonance. Calculations at energies that €8 12 14
do not correspond to the location of resonances are converged N\A('Ho) 80 90
to an even higher degree. NQGLY 80 80
We checked the convergence@flJand [j'Oby performing Nev 720 800
a series of calculations in the neighborhood of the resonance at ’\('??,A 158 208
2.232 eV with basis set Il and comparing these results to SQV =0 55
calculations obtained with basis set I. Table 3 illustrates the NFD 15 15
differences between these calculations, and it illustrates the effect
. . '. ) . N(F) 1825 2140
of using different parameters for the fit of the partial widths 1.0 0.8
described in section 3. It can be seen that the average final KV 40.0 45.0
vibrational and rotational quantum numbers are stable with NQ‘QL* ! . ;
respect to a change in these parameters and that they are pes 255 300
converged with respect to the basis set. NSP 40 40
We need eigenphase sums over a range of energies in order fSP 0.9 0.9
to locate resonances by the method described in section 3. The S 1.0 0.8
spacing of the energies needs to be about a half of the width of ~ §® 30.0 35.0
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TABLE 2: Description of Scattering Basis Set Parameters Used in Table 1

parameter description
Jmax(ic, V) max rotational quantum number for thisy
V2 {K) max number of vibrational distributed Gaussians for this
j‘rf]n%l {K) max rotational level associated with each vibrational distributed Gaussian far this
AVB(ic) spacing of the vibrational distributed Gaussians in unscaled coordinates for this
WY(k) width parameter for the vibrational distributed Gaussians forsthis
Ak, v) spacing of the translational distributed Gaussians forthis(or v3)
C(k, v overlap parameter for the translational distributed Gaussians fo,thir v

( I for th lational distributed Gaussians faor, thigr 12
51"“’(,() center of the first vibrational distributed Gaussian, for this

Vb (k) center of the last vibrational distributed Gaussian, for this

(x, v) center of the first translational distributed Gaussian, forthis(or v?)
S, v) center of the last translational distributed Gaussian, forthig(or v?)
v, ] otal number of translational distributed Gaussiansipgfor v, j) channel assigned to surfacgbasis function type x

m, j) total ber of translational distributed G i ¢ 3, j) ch | assigned t facebasis function t

(x = g (half-integrated Green’s function), e (asymptotic eigenstate function), or a (vibrationally distributed
Gaussian functions)

€k vibrational screening parameter
€t translational screening parameter
€rad radial screening parameter
€ screening parameter involving tBematrix
ew screening parameter involving thé matrix
N(HO) number of harmonic oscillator basis functions used to expand the diatomic adiabatic vibrational eigenfunctions
NQGLV number of quadrature points per repetition used in the GaLsgendre quadrature over the vibrational coordinate
NQV total number of quadrature points used in the Galilegiendre quadrature over the vibrational coordinate
NQA number of points in the Gaus$egendre quadrature used for angular integrals
ng lower limit on the vibrational quadrature grid
v upper limit on the vibrational quadrature grid
NFP number of points used in the finite difference representation of the second-derivative operator
N(F) number of finite difference grid points

small-Sfinite difference boundary condition point

\I/:+1 large-Sfinite difference boundary condition point
Né‘ﬁL number of radial quadrature points per repetition of Gallsgendre quadrature
NOS number of repetitions of Gaussegendre quadrature over the radial coordinate
NSP number of additional points at the end of the finite difference grid where step size decrease occurs
fSP step size decrease factor
R lower limit on the quadratures over the radial variaBle
R upper limit on the quadratures over the radial varigble

the resonance (or smaller) in order for the resonance to appeabetween the nuclear coordinates, they used the Jacobi coordi-
on a plot of the eigenphase sums. The region over which nates for Nat+ H,, and they used the exact kinetic energy
resonances might be expected to occur can be calculated fronoperator. The program used is described elsewtfeiithe
the difference in energy between the Na(3pH,(0,0) channel calculations are straightforward, except that difficulties were
and the NaKH 000 state. Since the zero-point energy of the NaH encountered when evaluating the radial integrals over the
exciplex is roughly equal to the zero-point energy of khe potential because the potential is not sufficiently smooth. Thus,
energy range over which we need calculations is approximately rather than using a single Gaussian-like quadrature to evaluate
equal to the depth of the exciplex well relative to the Na(@Bp) the radial integrals, the integration region was divided into 10
H, asymptote, which is about 0.4 eV. It would therefore require intervals, each having its own quadratétén order to improve
calculations at about 800 energies to search this entire rangethe convergence of the energy levels with high MaH,
for resonances whose widths are about 1 meV. stretching quantum numbers, we enclosed the potential in a soft
In order to reduce the number of calculations required for box by adding a steep repulsive potential starting a.8° a
the search, we tried two different methods to predict the location Figures 4-6 show plots of the wave-function density for the
of resonances before carrying out the scattering calculations.000, the 010, and the 020 states of the single-surface calcula-
First, we attempted to estimate the location of the resonancestions. Note the trend of the density extends to lagéistances
by making the separable-mode approximation and solving threewith higher vibrational excitation.
independent one-dimensional problems. We calculated one- We found a resonance with the OWVP calculations to
dimensional slices of the potential energy surface at the bottomcorrespond to each resonance predicted by the bound-state
of the exciplex along the three Jacobi coordinates. We then fit calculations. A comparison of the OWVP-calculated energies
these slices to one-dimensional Morse curves, and we solvedof each resonance with the bound-state predictions is given in
for the quantum energy levels. Table 4. We made the state assignments as follows. The 000
Unfortunately, the uncoupled procedure was not accurate state must correspond to the resonance in the even-symmetry
enough to predict the resonance energies. As can be seen byalculations at the lowest energy, which was 2.030 eV. The
examining Figure 2, resonances are essentially invisible atresonance at 2.184 eV was the lowest energy resonance in the
energies that differ by as little as 10 meV from the center of odd-symmetry calculations. Therefore, this resonance corre-
the resonance, and the predictions given by the separablesponds to the 001 state. The resonance at 2.093 eV could
approximation are larger than this. correspond to the excitation of either the $iretch or the Na
The second procedure we used proved to be much moreH; stretch. Since the #6tretch has a higher frequency, we assign
effective. This procedure consisted of performing variational the 010 state to the resonance at 2.093 eV. The resonances at
bound-state calculations on the uncoupled upper adiabatic energy.147, 2.193, 2.232, 2.267, and 2.296 eV show energy spacings
surface. These calculations included all potential energy couplingconsistent with progressiven0 excitation. We also note a
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150 TABLE 3: Convergence of the Decay Probabilities and
Final Average Rotational and Vibrational Quantum
E =2030eV Numbers for the Resonance at 2.232 eV
row v standard O(P)=5 column9  basis set |l
_ 100r 1 0 0 6.39x10“ 6.34x 10 6.39x 104 6.40x 104
_8 2 0 2 3.12x 103 3.09x 10°® 3.12x 10°% 3.12x 103
£ 3 0 4 6.31x 103 6.35x 10° 6.31x 10% 6.32x 103
g 4 0 6 2.17x 1072 2.17x 102 2.17x 102 2.17x 102
50L 5 0 8 7.21x 102 7.19%x 102 7.21x 102 7.22x 102
6 1 0 4.75x 107* 4.84x 10% 4.75x 104 4.70x 104
7 1 2 2.85x 1072 2.85x 102 2.85x 102 2.85x 102
8 1 4 1.59x 102 1.61x 102 1.59x 102 1.59x 1072
Zg;_ 9 0 10 1.49x 10! 1.47x 10! 1.49x 10! 1.49x 10°?
0 10 1 6 2.43x 102 2.43x 102 2.43x 102 2.44x 1072
11 1 8 2.20x 103 2.24x 103 2.20x 103 2.23x 1073
150 12 2 0 3.80x 10! 3.83x 10! 3.80x 10! 3.80x 101
_ 13 0 12 6.12x10° 6.28x 102 6.12x 102 6.13x 1073
E=2232eV 14 2 2 122x 10" 1.20x 10! 1.22x 10! 1.22x 10!
15 2 4 1.29x 102 1.33x 102 1.29x 102 1.29x 10!
16 1 10 7.44<10% 7.42x10* 7.44x10* 7.25x 104
_100F — 17 2 6 6.72<10* 6.60x 10* 6.71x 104 6.57x 10
9 18 0 14 3.13x 102 3.07x 102 3.13x 102 3.12x 102
c 19 2 8 1.47x 103 1.47x 103 1.47x 10°% 1.48x 103
2 20 3 0 1.62x 102 1.67x 102 1.62x 102 1.56x 102
50F 21 1 12 9.53x10° 9.62x 10°% 9.53x 103 9.54x 1073
22 3 2 3.96x 103 4.07x 103 3.96x 103 3.84x 1073
23 3 4 1.11x 10* 1.10x 10* 1.11x 104 1.07x 10
= 24 0 16 7.33x 102 7.48x 102 7.33x 102 7.36x 1072
25 2 10 179 10% 1.83x 10°% 1.79x 10% 1.79x 103
0 L 26 3 6 3.63x 10* 3.64x 10* 3.63x 104 3.62x 10*
-+ -2 3 4 -5 6 -7 -8 -9 -10 27 1 14 1.36x102 1.34x 102 1.36x 102 1.37x 102
28 3 8 1.54x 104 1.56x 10* 1.54x 104 1.54x 104
log(P+) 29 4 0 15310 157x10° 153x10° 154x 10°
Figure 3. Number of transition probabilities that fell into each range 30 2 12 22Ix 10_6 2.23x 10_6 2.21x 10_6 2.20x 10_6
of magnitude. The shading indicates the degree of convergence: white 3= 4 2 2.67x 107 2.75x 107 2.67x 10 2.63x 10°
indicates convergence to 1%, black dots indicate convergence to 2%, b'0 1.202 1.205 1.202 1.200
gray indicates convergence to 5%, and solid black indicates convergence o 4.849 4.840 4.849 4.857

worse than 5%. N o
° a A fourth-order polynomial fit to the column of th® matrix with

. . o . the largest partial width (column 12). Basis set | was used inShe
progressive change in the lifetimes and final average quantummatrix calculation. Each of the other columns deviate from the standard

numbers for these resonances. We therefore assigned the 020 method in the order of the polynomiaD(P)), the column used in the
060 states to them. fit, or the basis set used in the calculation of Benatrix.
The resonance at 2.273 eV could correspond to either the
100 state or the 002 state. The largest coefficient of the bound- '
state basis functions at this energy is only 0.532, and therefore, 35}

making an assignment based on the character of the bound- <

state wave function is difficult. The dynamical information from

the OWVP calculations is more suggestive. The total width for I

this state is small, and it is similar in size to the width of the

the C,, geometries where the conical intersection occurs and, |

therefore, prolonging its life. Quantum mechanically, we expect 3

the wave function to have a significant part of its density at -

non-C,, geometries. We assigned the 002 state to the resonance °%; 3 y; 5 6 7 8

at 2.273 eV for this reason. We expect the resonance corre- S (bohr)

sponding to the 100 state to have a much shorter lifetime, sincerigure 4. Plot of the wave-function density of the 000 bound state on
motion along the Kvibrational coordinate would tend to bring  the excited adiabatic potential surface. The potential energy contours
the system across the conical intersection. The resonance afsolid lines) are shown for 2.0, 2.5, ..., 5.0 eV. The dashed contours
2.302 eV is a good candidate by this criteria. Also, the final represent the wave-function density.

resonances’ decay products. This is consistent with the idea thatbut in the adiabatic representation.

the wave function describing a semibound state with H 451 Selection of the Initial Conditions. The initial
v|brat|onall excitation will have a Iarge ovgrlap. with ground-  congitions for the trajectory calculations were chosen to
state basis functions that have high vibrational quantum qqresnond to particular resonance states located by our OWVP
”“”.‘bers- On the basis of these dynamical considerations, Wecalculations. We assigned quasiclassical energies to each mode
assigned the 100 sta_tte to the resonance at 2.302 eV. _ according to the following scheme:

We note that the difference between the OWVP calculations
of E, and the bound-state calculations&f is the “shift” of E —fE 23)
Feshbach theorsf. v 1-ZPE

25

s (bohr)

resonance corresponding to the 001 state. Classically, we might -
vibrational moment of the decay products of the resonance at

think of the bending motion as moving the system away from
2.302 eV is larger than the vibrational moments of the other  4.2. Trajectory Surface Hopping.All trajectories are carried
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EV2 = f,E,pe + E(0,v,,0) — E(0,0,0) (24)
35
E,, = fsEzpe (25) I
f _ E(llovo)_ E(O!O!O) (26) % 2.5;
1 E(1,0,0)+ E(0,1,0)+ E(0,0,1)— 3E(0,0,0) 0
E(0,1,0)— E(0,0,0 I
- (0.1.0)~ E0.00) eyl
E(1,0,0)+ E(0,1,0)+ E(0,0,1)— 3E(0,0,0) -
E(0,0,3)— E(0,0,0
f3: ( )( ) (28) opb—en 1 1 1 P I NN DR
E(1,0,0)+ E(0,1,0)+ E(0,0,1)— 3E(0,0,0) 2 3 4 5 6 7 8
S (bohr)
fitf,+f,=1 (29) Figure 5. Plot of the wave-function density of the 010 bound state on
the excited adiabatic potential surface. Contours are the same as for
whereEzpe is the quantal zero-point enerdi(v1,v2,v3) is the Figure 4.

quantal energy of the;v,v3 state, andg, is the quasiclassical
energy in modd. Note that the quantal energies are already
calculated from OWVP calculations by the method of section 35
3. The quantitiediEzpe (I = 1, 2, or 3) are a partition of the
zero-point energy into each mode according to the size of the
first excitation energy of that mode. Note that this partitioning
is somewhat arbitrary and other partitioning methods could be
considered; however, we chose this method because it does no
depend on any assumptions about the potential (e.g., that it is
well approximated by a Morse curve), but it is still formally 15
correct in the ideal case of three totally independent harmonic |
oscillators. A
Once we had partitioned the total energy into each of the 0.5 ;————1
three vibrational modes, we partitioned each modal energy into
potential energy and kinetic energy components by randomly
s_elect_lng the vibrational phase of each mode. S_unce the_ th.reethe excited adiabatic potential surface. Contours are the same as for
vibrational modes are not exactly separable, this prescription gigre 4.
resulted in trajectories with a distribution of total energies. In

order to make the energy of each trajectory equé(iq,v,,v3), my is the mass of atom X, and the momeptaare conjugate

we scaled the momentum along each mode by a factor iy ihe coordinatey. Note that the vectorg, Q, s, S, Pg, Po.
[E(rav2,va) — VII(E, — V)] whereV is the potential energy.  _ andps are all in three-dimensional space.

In cases where/ was greater tharE(viva,vs), we set the For some purposes, it is useful to combine the three-vectors
momentum to zero and we adjusted the coordinates along theinto six-vectors. For example, we define
negative gradient of by the smallest amount necessary to make ' '

bohr)

g
o

—~ 5 (

| I T ]

S (bohr)
Figure 6. Plot of the wave-function density of the 020 bound state on

the energy of the trajectory equal Efvi,v2,v3).
4.2.2. TFS Methods.lt is convenient to label the Na atom R= (q ) (36)
as A and the H atoms as B and C. Integration is carried out in Q

a six-dimensional coordinate space consisting of the three-vector

S from A to the center of mass of BC and the three-vestor — (pq) 37)
from B to C. It is convenient to carry out part of the calculations Pr Po

in mass-weighted coordinates defined by

Note that we have defined the nonadiabatic coupling vector

Q = \/UppcS (30) di(R) in eq 1 and the gradient in eq 2 as six vectors in the
same mass-scaled coordinate spacR.as
Q= y/UgcS (31) We define a general unit vectbr which is a six-vector, along
which the momentumpg) of the trajectory is adjusted when
Po= pS/A/uA‘BC (32) hopping to conserve the total energy. We performed TFS
calculations with four prescriptions for choosing this direction.
Py=Ps /@ (33) Each prescription corresponds to a different version of the TFS

method. Two of the vectors we used to adjust the momentum
are the previously discussedandg vectors. The calculation
of d andg is summarized in Appendix A. The two new vectors
m, (Mg + mo) are the rotatedt (rot-d) and rotatedy (rot-g) vectors, which
(34) we describe next.
In the remainder of this discussion, we examine methods for
M employing rotated vectors for surface hops from a lower energy
Upe = _MeMe (35) surface to a higher energy surface (i.e., up hops), which are the
mg + Me only kinds of hops that can suffer from insufficient total energy

where

/’tA,BCZmA+n1B+rr]C
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TABLE 4: Comparison of Bound-State Calculations and OWVP Calculations

OWVP adiabatic bound state
o2 E.beV Ty, meV v1© v° v3° E, — EoeVv o'o yo Eq, eV E, — Eo, €V
0 2.030 1.442 0 0 0 0.000 0.82 8.34 2.030 0.000
1 2.093 1.279 0 1 0 0.063 0.74 7.69 2.094 0.064
2 2.147 1.385 0 2 0 0.117 0.84 7.25 2.148 0.118
3 2.184 0.608 0 0 1 0.154 1.85 5.67 2.184 0.154
4 2.193 1.222 0 3 0 0.163 1.09 5.67 2.194 0.164
5 2.232 1.116 0 4 0 0.202 1.20 4.85 2.233 0.203
6 2.267 1.020 0 5 0 0.237 1.30 4.32 2.268 0.238
7 2.273 0.522 0 0 2 0.243 1.35 8.82 2.273 0.243
8 2.296 0.848 0 6 0 0.266 1.34 3.73 2.297 0.267
9 2.302 2.871 1 0 0 0.272 2.41 2.98 2.304 0.274

aResonance’ Energy of resonancé Exciplex vibrational modes.

or insufficient momentum along the hopping vector. In|t|aIIy, |: Ega;(R) < Tﬁop (45)

h points along eithed or g, and we label this initial vectdfo.
The amount of kinetic energy associated with the momentum . T <E_(R)< 46
alonghy is given by rop = EgafR) = Thop (46)
I X< E dR) =T 47

1 0 hop ga

Thop= 5 (Pe-o)” (38)

IV: T < EgfR) (48)

We note that mass does not appear in eq 38 since we are USIn%Zase | corresponds to an allowed hop, case Il to a momentum
mass-weighted momenta and mass-weighted coordinates. Ap- , }
pendix B shows how to decompopg into a componenpuip forbidden hop, case Ill to an angular-momentum-forbidden hop,
associated with the internal vibrational momentum and a @nd case IV to an energy-forbidden hop. The rotated-vector
componenpy associated with the external rotational momen- method is concerned only with case Il. In the rotated-vector

tum. By using that decomposition, we rewrite eq 38 as method, we generalize eq 41 by allowing the hopping vector to
be perturbed by an angtg,; so that the available kinetic energy

1 A A is equal to the energy gap
Tﬁop = E(pvib'ho + prot'ho)2 (39)
1 o>

AE .= = Py’ CoS(6, — 0 49

which reduces to gap ™~ 3 Puiv (O = 6ra) (49)
o 1 Ao It can be shown that this perturbed (rotated) vector is given in
S(Puib*ho) (40) terms ofho and puip by

sinceh, depends only on the internal coordinates of the system. f= sin@ — 6,4y ot SinB; 50
We definefy as the angle betwedn andp,i, and substitute it - sin6, 0" sin 0, i (50)

into eq 40, giving
A value of 0, equal to zero describes a vector identicahgp
Tﬁop: 1 pvin cog 0, (41) while a value off: equal tof, describes a vector parallel to
2 pvib- Note thatf,,: can be negative; a value 6fy equal tob,
. . . o . — mdescribes a vector that points in the directionqi,. We
quatlon 41 is an expression for th? kinetic energy that is choose the smallest absolute valuedgf that satisfies eq 49.
ava!la}ple for a surface hop as a funct|on. of the angle between Note that changing the momentum along the vedioconserves
the |n|'g|al hop_pm_g vector and the internal vibrational momentum. o angular momentum, sinog and the momentum along
Equ_atlon 41 indicates that the largest amount of kinetic energy ho have no angular momentum components. If, however, eqs
available for a surface hop is 49 and 50 were derived witpr instead of withpyi,, then the
resulting rotated hopping vector would have a component along
hop > p\,Ib (42) Prot, and changing the momentum along this rotated hopping
vector would not conserve the total angular momentum.
4.2.3. Integration SchemeEach integration step requires

and that this maximum energy will only be available when the ; : ) ;
the integration of 21 coupled equations. These include the set

vibrational momentum is parallel to the hopping vector.

We define the adiabatic energy gafyd) by of 12 Hamilton equations of motion for a 3-body system in
Jacobi coordinates, the real and imaginary parts of the prob-
E F(R) =E,(R) — E,(R) (43) ability amplitudes for both potential energy surfaces, the action
gal 2 1 . . .
integral of each surface, and 3 more equations that required our
and we note that the total kinetic energy is given by implementation of the TFS method; these last 3 equations are

discussed below.
The probability of a surface hop was calculated after each
T= 2 Pr (44) integration step. The calculation of the hopping probabilities
will be discussed later in this section. If this probability was
We can then distinguish four possible situations in which up greater than a random number chosen in the interval [0,1], we
hops may be attempted: checked to see whether we were in case |, II, I, or IV of the
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Figure 7. Final average vibrational quantum number versus the
integrator tolerancegs. The squares linked by solid lines represent
calculations with the standard integration method, called method I. The
diamonds linked by dashed lines represent calculations with a modified
integration scheme called method Il. Both methods are discussed in

section 4.2.3. The error bars indicate 1 standard deviation.

previous section. If we were in case I, then a hop occurred and
the kinetic energy was adjusted along the hopping vdgioif

we were in case Il and the rat-or the rotg prescription was
being used, then a hop occurred and the kinetic energy was
adjusted alondh. If we were in case Il and thed or the g
prescription was being used, then no hop occurred and the
component of momentum alomg was reversed. If we were in
case Il or in case IV, a hop did not occur. In case lll, the
momentum alondno was reversed, while in case IV no change
to the momentum was made. Our motivation for treating
trajectories that attempt linear and angular momentum prohibited
hops differently from trajectories that attempt energy-prohibited
hops is that the former may be thought of as reflecting off a
step in the potential surface that they encounter as they hop
up29while the latter lack the energy to make a transition. After
a successful hop, we took an additional integration step before
again checking for a hop.

In our calculations, we used a BulirseBtoer (BS) integra-
tor*l with polynomial extrapolation, as in earlier wotkin order
to make the following discussion clearer, we briefly describe
this integrator. The BS integrator takes a large step of dize
that is composed of many smaller modified midp#irsteps.
The BS integrator first steps through the intertalwith the
modified midpoint integrator using a fixed step size HP.
We label the result of this calculatidpn The BS integrator then
steps through the intervdd again using a fixed step size of
H/4; we label the result of this calculatidn The quantities,
andf, are fit to a polynomial as a function of step size, and the
value of the polynomial at zero step size is labededThis is
the BS integrator’s first estimate of the integrated equation. To
calculate the error igy, the intervaH is divided into six steps;
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Figure 8. Final rotational moment versus the integrator tolerange
The symbols are the same as for Figure 7.
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Figure 9. Time of the first surface hop versus the integrator tolerance
egs. The symbols are the same as for Figure 7.

the difference between subsequent valueg ahdg;, differing

by less tharegs for all of the equations being integrated. Thus,
if a particular equation is difficult to integrate, all of the
remaining equations will be integrated with smaller step sizes.

The Bulirsch-Stoer integrator proved to be very accurate.
We generally obtained energy conservation to within®1év,
and we obtained angular momentum conservation to withid 10
h at a tolerance of 5¢< 10713, Note thateps is given in the
same units as the quantity being integrated, &gs,has units
of ap for the integration of coordinates, and it has unitdutt,
for the integration of momenta. At a larger tolerance of°10
we obtained energy and angular momentum conservation to
within 1076 eV and 107 A, respectively. Despite this, we had
difficulty converging the final average vibrational and rotational
guantum numbers with respect ¢gs. Figures 7 and 8 show
these values for calculations at 2.030 eV using the @FS-
method as a function egs. Notice that the average vibrational
guantum number as calculated by method | steadily increases

the result of this calculation is labeldgl The quantities,, f, with decreasing tolerance, while the average rotational quantum
andfs are again fit to a polynomial as a function of step size, number as calculated by method | decreases with decreasing
and the value of this new polynomial at zero step size is labeled tolerance (method Il is a more accurate integration method
0. If the difference betweem, and g; is smaller than the ~ Which will be discussed below). A clue to this behavior was
tolerance parametegs, then the integrator takep as its final ~ found in a plot of the average time of the first hop, which is
value and it proceeds to the next step. Otherwise, the integratorShown in Figure 9. Note that trajectories hop earlier as the
continues dividingH into smaller and smaller segments, fitting ~ tolerance is decreased. The energy and angular momentum are
these results to polynomials and extrapolating to zero step size Still converged to a small degree in these calculations. This
Should the difference between estimagesand gs be greater ~ Suggests that the lack of stability é#'Uand [flJis not an
thanegs, the integrator decides thitis too large and it starts ~ integrator error but that it is an error in the method used to

again with a smaller intervak/2. Should a value ofi/2 ever
become smaller than an input paramelgg,, then the interval
is simply taken with the modified midpoint integrator in two

calculate surface hopping probabilities.

The method we first attempted to use to calculate surface
hopping probabilities is the implementation of the TFS method

steps. Note that the criteria for accepting a step depends uporrecommended for large time stefss:
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1.000 prgr

tt+Atd'[b. (t)
9= fakT)Jk (51)

wheregj; is the probability of a surface transition from stéte
to statej, At is an interval of timeak(t) is the probability of
being in statek at timet, and ©

0.999

2(t)

0.998 |

b(t) = —2 Re@jR+dy) (52) 0.997 |
a=0.99854 b'=0.99789 b =0.99848

where ay is the electronic coherence between statasd k.
Note that we follow Tully’s original method and never reset g0 | . . |

the electronic coherence during the calculation of a trajectory. 45 50 55 60 65
For a two-state system, time (fs)
. Figure 10. ax(t) versus time. The open circles linked by solid lines
by(t) = ay(t) (53) represent values obtained through integratiorbaft) by method I.
The pluses linked by dotted lines represent values obtained through
and integration ofby(t) with method 1.
0,,(t) = (1) (54) than the probability calculated by method II; the effect of
_ . integrating through the peaks and the valleys with method I is
and the hopping probabilities become to smooth the changes in the electronic probabilities, which

reduces the calculated hopping probabilities. We should point
— a(t) — axy(t + A (55) out that the TFS method is formally independent of step size.
21 ay(t) In the example given above, the state populations at kirfioe
both methods should be identical, since in method Il some of
and the trajectories on the lower surface that hopped down in the
intervalab’ should hop back up in the intervidb. In actuality,
_ag(t) —ay(t+ AY) 56 trajectories on the lower electronic surface need not follow the
127 ay,(t) (56) same paths that trajectories on the excited surface do, and in
the present example, trajectories that reach the lower surface

Note that only one ofj,1 or gi» can be positive; the negative  tend to rapidly dissociate instead of remaining in the interaction
valued hopping probability is set to zero. region and hopping back up.

The TFS method requires small steps, since it is based on In a typical system, this small error in the calculation of the
the time derivative of the electronic state probabilities. The BS hopping probabilities would not tend to result in a systematic
integrator, however, is designed to take large steps. There iserror in the final trajectory attributes. However, in the current
thus a mismatch between these two components. Figure 10system, there are two characteristics that exacerbate this error.
shows a plot of the functioay,(t) calculated in two different First, the nonadiabatic coupling vector is never large, so the
ways. The open circles represent steps taken during the courselectronic probabilities change by only a small amount during
of integratingb,a(t) with the BS integrator described above. This the trajectories lives. For example, in calculations with the
is called method 1. The solid lines are drawn to connect the TFS-d method at 2.030 eV, the average probability for being
circles. The pluses represent the results of integrdiya@) in on the upper surface at the end of a trajectory was 0.91. Second,
a fashion that required it to take small steps near extrema inthe energy of the trajectory in the 000 and 010 states is
ag(t) (zeros inbyy(t)). This method will be discussed below, insufficient to allow it to dissociate on the upper electronic
and it is called method Il. The dashed lines are drawn to connectsurface. In order to dissociate, trajectories in these states must
the pluses in Figure 10. Note that the two methods agree; thequench. These trajectories typically spent a long time in the
locations of the open circles always occur on the dashed lines.exciplex before hopping. For example, using the TH®ethod
The difference is that method | is able to accurately take larger at 2.030 eV, the lifetime of the trajectories was 0.59 ps, while
steps. This allows it to partially bypass the peaks and valleys the total integration time was 0.90 ps. These long times
in the electronic probabilities. These extrema are probably well- combined with small probability changes seem to make the
approximated by second-order polynomials, which the modified trajectories more sensitive to small errors in the hopping
midpoint integrator can integrate exactly. It can thus cross the probability.
peaks without reducing the intervél. This is an efficient Decreasingegs makes the peaks slightly less well-ap-
method of integration, but it results in an incorrect calculation proximated by a second-order function, so the integrator cannot
of the hopping probability. Consider the interval labeledéby take as large a step through it. This reduces the error in the
and b in Figure 10. According to eq 55, the probability of hopping probabilities, and it explains the trends of the final
hopping from surface 2 to surface 1 with method | over the trajectory attributes withegs as shown in Figures —79.
interval ab is (0.998 54— 0.998 48)/0.998 54= 6.0 x 107°. Ultimately, decreasing the tolerance should result in converged
On the other hand, if we integrate the trajectory with method final quantities. This brute force method is unattractive for
I, the integrator must first step to a poinft, for example. The several reasons. First, this is an indirect method for obtaining
probability of hopping is different. The probability for hopping convergence of the hopping probabilities. The trajectories
over the intervakb' is (0.998 54— 0.997 89)/0.998 54= 6.5 converge slowly with respect tess, as evidenced in Figures
x 1074, and the probability of hopping over the interizb is 7—9. The computational effort required to converge these
zero. These calculations differ by an order of magnitude. Note quantities with respect tegs is very large. We reiterate that
that the hopping probability calculated by method | is smaller the accuracy of the integrator is not an issue here; the error in
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the hopping probability occurs between successive integration 1E+00 g3
steps. Second, decreasing the tolerance means that the integrator i ]
must integrate all of the remaining equations more accurately.  1g01 L
This could force the integrator to use small step sizes even in
regions wherd(t) is not changing rapidly. Finally, it should
be mentioned that the error in the calculation of the hopping
probability is not limited to the BS integrator but that this error
will occur in any high-order adaptive step size integrator. Since
these integrators in general will have different criteria for [
adjusting their step sizes, it is important to find a general method ~ 1&04 ¢
that is widely applicable. ‘
A subtle alternative is to prohibit the integrator from stepping 1.E-05
over peaks and valleys in the electronic probabilities. We

1.E-02 |

Probability

1.E-03

accomplished this by dividing the quantity(t) in eq 51 into Energy (eV)
positive and negative components and then integrating themFigure 11. Quantum mechanical probability of a transition from the
separately: Na(3s)+ Hx(0)) state to any Na(3s} Hx(2j') states. The solid line
indicatesj = 10, and the dotted line indicat¢s= 2.
bjt(t) = max(b,(t),0] (57) TABLE 5: Average Statistical Uncertainty in the Calculated
Values
by (t) = min[by(t),0] (58) TFSd  rotated TFSd  TFSg  rotated TFSy
O 0.013 0.016 0.014 0.011
t+A + t+A - oo 0.052 0.064 0.066 0.048
o = Jo o) + [0 dty(®) (59) zps  0.006 0.019 0.007 0.015
=
: a(t)

10 000 trajectories into 4 sets of 5000 trajectories (by consider-
This is called method I1. The integral ovbﬁ(t) ineq 59 is a ing the first 5000, the second 5000, the odql 5_000, and the even
function that either increases with time or remains constant with 2000), and we calculated the standard deviation from the mean
| for the average final vibrational and rotational quantum numbers
and for the lifetimes for each of the 4 groups. Table 5 presents
the standard deviation averaged over all seven energies for each
method. This table implies that 10 000 trajectories is sufficient
for meaningful results.

We also checked the convergencel®f) [I[J and r with
respect to the final separation between Na andwden we
stopped integrating the trajectory. Na and hust have a
separation large enough that there are no interactions between
them in order for the final state analysis to be correct. To test
that this criterion was being satisfied, we performed a set of
10 000 trajectories with the TF&method at 2.03 eV, and we
ended the integration at separations of 10, 15, and 20 A. Neither
@'0) 070 nor T showed dependence on this parameter. For our
final calculations, we ended the integration when the final
separation was larger than 15 A.

All of our TSH calculations were carried out in the adiabatic
representation, as recommended by T8

time, but it never decreases with time. Similarly, the integra
overby(t) in eq 59 is a function that never increases with time.
Thus, neither peaks nor valleys appear in either of the integrals
in eq 59. The functionb]{(t) andby(t) are continuous every-
where, but all of their derivatives are discontinuous whgt)
equals zero. The BS integrator has difficulty in its extrapolation
step when it crosses this point. Consequently, it reduces the
step size in this region, as is evidenced by the clustering of
points near the extrema in Figure 10. The improved convergence
obtained with this method is illustrated in Figures¥by dotted
lines. We note that any other high-order adaptive step size
integrator will also have difficulties stepping through points
whereby(t) is zero, and therefore, eqs 539 are generally
applicable.

We should point out that although it may be more straight-
forward to converge fixed-step integrators with respect to step
size than to converge variable step size integrators, we have
found that the current system requires very small fixed step sizes
and that the BS integrator with the adaptive step size control is
more efficient. For systems with larger changesijt), the
adaptive step size modification is unnecessary, and it is clear We calculated the accurate quantum mechanical probabilities
that in this case variable step size integrators will be even morefor an H, molecule in they = 0, ] = 10 state and in the = 0,
efficient. Apart from efficiency issues, an important aspect of j = 2 state to collide with Na(3s) and experience a transition to
the adaptive step size control described above is that it freesany v’ = 2 state as a function of energy. This is shown in Figure
the TFS method from integrator dependence, even for systemsl1l. Note the appearance of resonances corresponding to the

5. Results

with small hopping probabilities. formation of Nah exciplexes.
For our final calculations, we used valuesegg equal to 5 For the TFS methods, the histogram methd¢ linear
x 10713 andhmi, equal to 104 ap. Twenty-eight percent of all ~ smooth sampling (LSS) methd##346 and quadratic smooth
the trajectories at all energies took steps smaller thanwith sampling (QSSY#"method were used to assign final vibrational
the TFSd method. These trajectories took an average of 1.6 and rotational states. We found that the differences between
modified midpoint steps. these three methods were negligible, and therefore, we present
In addition to converging the final trajectory attributes with only the histogram results.
respect to the numerical parametegs andhm,, we converged In all of the semiclassical calculations, we only included

them with respect to the number of trajectories we calculated. trajectories that finished on the lower surface. All seven of the
We calculated the statistical error by performing 10 000 energies we studied are lower than the zero-point energy of Na-
trajectory calculations at each energy and with each of the 4 (3p) + H»(0,0). However, since we do not enforce the zero-

trajectory methods. We then randomly divided each group of point energy, five of the trajectory calculations (those beginning
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Figure 12. Quenching probability versus energy. The thick black line
represents the quantum results. Squares reprdseethods; triangles
represeng methods. Solid symbols represent nonrotated methods, and
open symbols represent rotated vector methods.
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Figure 13. Final average vibrational quantum number versus the total
energy. Symbols are the same as in Figure 12.

in the 026-060 states) produce products on the excited potential
energy surface. We neglect trajectories that do not quench, sinc

ical calculations, which of course cannot dissociate on the upper
surface. Figure 12 illustrates the quenching probability as a
function of energy.

After assigning probabilities for final states with integral

guantum numbers to all trajectories, we used these probabilities

to calculate the final average vibrational and rotational quantum
numbers for the productt/,j") for each batch of trajectories.
These averages are defined in eqs 20 and 21. Figures 13 an
14 show plots of(@'0and 0O/'0 respectively, for all four
semiclassical methods and compares them to the accurat
guantum mechanical calculations. We also calculated the
average final relative energy of the products for each batch of
trajectories. Figure 15 shows the average final relative energy
of the products for each of the semiclassical calculations.

We obtained the lifetimes of the resonances from our quantum
mechanical calculations according to eq 22. In order to obtain
the corresponding quantities from our TSH calculations, we first
calculated the delay tim& for each trajectory, which is a
measure of the amount of time two particles interact with other.
Let T(o',E) be the amount of time it takes for an exciplex with
energyE to decay into products Na(3) Hx(v',j') moving at
a final relative velocity ofyv,, to reach a separatiopl. The
quantity p'fv,, is approximately the time it would have taken
two noninteracting particles to travel the same distance. The
difference of these two times, in the limit of infinite separation,
is the delay time:

e B) = lim [T(o',E) = p'lve] (60)

g

we are interested in comparing our results to quantum mechan-
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Figure 14. Final average rotational quantum number versus the total
energy. Symbols are the same as in Figure 12.
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Figure 15. Average final relative energy versus the total energy.
Symbols are the same as in Figure 12.

This definition is different than in earlier wotk”-#°in that the
initial velocity and distance is not present in the limit in eq 59.
This is because we are performing calculations for a unimo-
ecular decay reaction rather than for a bimolecular collision.
In order to determine the lifetimes of the semiclassical
unimolecular decay states, we plotted the number of undecayed
exciplexes versus the delay time on a semi-log plot. This plot
shows noise for large delay times because there are only a few
undecayed exciplexes remaining. For small delay times, the
decay is not expected to be statistical. Therefore, we fit the
center third of the distribution to a straight line as a function of

6he delay time. The negative inverse of the slope of this line

givesr, the lifetime of the exciplex. We note that this definition
of the lifetime is the appropriate one for comparison to the

Sifetime given by eq 22; it can be shown thatis the mean

lifetime for exponential deca¥f. Figure 16 shows the semiclas-
sical mean lifetimes and compares them to the calculated
guantum mechanical lifetimes.

Table 6 presents the overall root-mean-square (RMS) errors
for the four semiclassical methods for each of the four quantities
we calculated: the average final vibrational and rotational
guantum numbers, the mean lifetimes, and the final average
relative energies. The absolute RMS error is defined as

Err,,.= « [errory0

(61)
and the relative RMS error is defined as

Errg = \/ u ﬁu (62)
a )

where the average in both cases is over the seven resonance
energies.

(errorf

ccurate quantum mechanical va
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Figure 16. Mean lifetime versus the total energy. Symbols are the
same as in Figure 12.

TABLE 6: Semiclassical RMS Errors in the Mean Lifetime,
in the Final Vibrational Moment, in the Final Rotational
Moment, and in the Average Final Relative Energy for
Potential Matrix 62

TFSd  rotated TFH TFSqg rotated TFSg
absolute RMS Errors
7, PS 0.28 0.30 0.26 0.26
'O 0.27* 0.23* 0.89 1.20
oo 1.40* 2.15* 3.15 3.90
[Eal) eV 0.17* 0.24* 0.13* 0.22*
relative RMS Erros
7, pS 43 55 39 44
'O 32* 24* 105 36
oo 32* 46* 42 55
Eeoljev  18* 25% 14* 23*

aBold numbers indicate the lowest error for each of the four
quantities. Asterisks indicate calculations in which the quantum
mechanical trend of the quantity with energy is reproduced by the
semiclassical method.
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Figure 17. Average hopping location as a function®ands. In this
plot, y is equal to 90, which is the angle of the average hop. Solid
squares represent TRBcalculations, and solid triangles represent
TFSqg calculations.
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Figure 18. Distributions of the change in energy along each mode
during hops for the TF8and TFSg methods. Solid lines represent
the TFSd method, and dotted lines represent the Tg-®ethod.

1.5

20 shows a plot of the average energy gap during a hop; Figure
21 shows a plot of the average kinetic energy at the time of a
hop.

We also examined the rotated method in detail. In particular,
we are interested in how the rotated vector methods differ from
their nonrotated counterparts. Figure 22 shows the percentage
of trajectories that experienced one or more rotations of the
hopping vector. Figure 23 shows the average angle the hopping
vector needed to be rotated in order to allow a hop.

6. Discussion

The semiclassical methods will be unable to predict the
characteristic resonance behavior illustrated, for example, in
Figure 11. Presumably, semiclassical predictions of these
collisional transition probabilities would be a smoothly changing
function of energy that would be an average of the resonant
behavior shown in Figure 11. However, Figure 11 illustrates
that at certain energies Na(3s) ang{#;}) may form quasi-bound
exciplexes that serve to redistribute energy between vibration
and rotation. With this interpretation of the resonance behavior,
we model the decay of the exciplexes directly by beginning

We examined the hopping events of the semiclassical methodsthe semiclassical calculations in the intermediate quasi-bound
in more detail in order to describe trends that appear in the final states. In a sense, we bypass the purely quantum aspect of these
product distributions as the energy is increased. Figure 17 resonances, which is that these exciplex states are quantized

illustrates the average locations of hops for the TH®3ethod
and for the TFS3 method. Figure 18 illustrates the distribution

and are only formed at particular energies. We ask three
questions of these trajectory calculations. First, which method

of energy changes in the three vibrational modes at the time of does the best at describing the quantum mechanics calculations?

hopping for the TFS} and TFSg methods at 2.030 eV. Figure
19 illustrates thev and§ components ofl andg (defined in

Second, when the TF&and TFSg methods differ substantially,
why do they differ? Third, what effect does the rotation of the

Appendix B) versus energy. At each energy, these componentshopping vector have on final trajectory quantities?

were calculated & ands values corresponding to the average
hopping location. For this plofy was chosen to be equal to
80°, since the vectod is undefined when equals 90. Figure

Examination of Figures 13 and 14 shows that the TS
rotated TFSd methods do better than the TSand rotated
TFS-g methods do at describing the trend@fJand [jl Cwith
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Figur_e 20. Average energy gap between thg two adiabatic surfaces at H2(0,0) channel, which opens at 2.373 eV. The classical
hopping events. Symbols are the same as in Figure 12.
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Figure 21. Average kinetic energy at hopping events. Symbols are
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the total energy. The TF§-and rotated TFS$r methods give
final average quantum numbers that are nearly independent of Table 6 summarizes the absolute errors of the semiclassical

energy.

methods do not enforce zero-point energy, so above 2.104 eV,
where the classical Na(3g) H, asymptote becomes energeti-
cally accessible, some trajectories dissociate on the upper surface
rather than hop. The incorrect trend ofwith energy is also
related to the hopping probabilities, which tend to be very small.
Trajectories are more likely to dissociate on the upper surface
long before a hop occurs, if energy permits. It can be seen in
Figure 12 that only a small fraction of the trajectories quench
at high energies. If zero-point energies were enforced, however,
higher energy trajectories would be prevented from dissociating,
and they would hop down after oscillating on the upper surface
for some time. These trajectories would then add their longer
decay times to the population, and the calculated mean lifetimes
should increase. We have not tested this prediction.

For the 000 and 010 states, however, zero-point-energy
conservation does not have such a pronounced effect. If we
consider only these two states, it is clear that the rotated methods
predict a lifetime that is too high.

methods and their ability to reproduce the trends that the

All of the semiclassical methods correctly describe the trend quantum mechanical calculations show. All of the methods
of the quantum mechanical relative energies to increase with reproduce the trend of the average final relative energy to
increasing total energy (Figure 15). The Tg#&ethod has the
smallest error, and the TR$+method is slightly higher than
this. The rotated methods both show a decreased amount ofenergy, but the error of the TR$Gmethod is only slightly larger.
average final relative energy than their nonrotated counterparts.The TFSd and rotated TF® methods are the only methods

None of the TFS methods show the same trend of the lifetime that correctly describe the trends of the average vibrational and
to increase as a function of energy as the quantum methodsrotational quantum numbers with energy. The absolute errors
This is probably related to the zero-point energy of the Na(3p) of these two methods for the final vibrational quantum numbers

increase with increasing total energy. The Tg-8ethod has
the lowest error in the calculation of the average final relative
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are comparable, but the TEBmethod has a much smaller error The rotated vector methods show many systematic differences
in the average final rotational quantum number. None of the from the nonrotated methods. For example, the rotated A FS-
methods reproduces the trend of the final lifetime, and all of method predicts a systemic increaséjinfrom the nonrotated
the errors are roughly comparable. For these reasons, we believd FS-d prediction, while the rotated TF§-method predicts a
that the nonrotated TF8-method is the best method for this systematic decrease iif Jand an increase ifid'Ofrom the
system. nonrotated TFSy prediction. The rotated methods also seem
An examination of the hopping events may indicate how the o shift the final average relative energy to lower values. We
differences in the final products result. In Figure 17, we can €an understand these trends in terms of Figure 18. For example,
see that as energy is increased, both the GRS TFSel if a rotated TFSd trajectory hops to a lower energy surface,
methods show similar changes in the average hopping location.Foughly 1.0 eV of the potential energy is converted into kinetic
This similarity indicates that the hopping location alone is not €Nergy in the rotational coordinate, according to Figure 18. If,

sufficient to account for the different dynamics observed with 2t & later time, this trajectory attempts a hop with insufficient
each method. momentum alongd, this probably indicates that the energy

The difference in the final product distribution can be which had recently been deposited in the rotational mode has

- . . become partitioned into mostly potential energy. By rotating

Endeirr?toosl tm el>r<]alr:‘ri1|nl:lg ;ge \(/:vhange?r:ntrziametntﬂn:gn?g thethed vector, we allow the kinetic energy in other modes to be

opping event. gure 2o, we see that theector tends to used to hop up. At a later time, the trajectory will again hop
have the largest component alofrfgwhile theg vector has the

largest component alorjg This explains why the TF§-method down and more kinetic energy will be added into the rotational
and the rotated TF§-method show a much highe¥ dand a mode. Thus, rotating the hopping vector has the effect of taking

energy out of modes that are not associated with the nonrotated
much lower[lCthan the TFSd method and the rotated THE- 9y

X hopping vector and adding that energy into modes that are
method do. Neither the TF§-method nor the TF§-method  ,qsnciated with the nonrotated hopping vector. In Figures 13
shows much change in energy alovig

and 14, we see that the rotated T§8wethod has added energy

The trends of#'Uand [ with energy shown in Figures 13 into the vibrational mode and removed it from the rotational
and 14 are likely caused by a change in the orientation of the mode. The rotated TF8-method, on the other hand, has added
d andg vectors with geometry. This is illustrated in Figure 19. energy to the rotational mode and removed it from the
Note that the largest component of tHevector lies alongh translational coordinate, as can be seen in Figures 13 and 15.
and that this component becomes smaller as the energywe can see in Figures 22 and 23 that a larger number of
increases. This correctly describes the trend illustrated by thetrajectories experience momentum prohibited hops in this system
TFS4 calculations in Figure 14, which shows that the average and also that the or g vector is rotated by a fairly large angle
rotational quantum number decreases as the energy increasesvhen these hops occur. The strong effect that rotation has in
The component of thel vector alongy, on the other hand,  this system is probably related to the large energy gap during
increases. This agrees with the trend of the THB8ethod shown hopping events.

in Figure 12, which shows that the average vibrational quantum  The rotated vector methods also show systematic trends that
number increases as the energy decreases. The components @kem less dependent on the choice of hopping vector. The
the g vector remain relatively independent of energy, which increase in the mean lifetime and the decrease in quenching
agrees with the trends of the TRSnethod illustrated in Figures  probability over the nonrotated methods are two examples. In
13 and 14. It thus appears that in this system, the final energy hoth cases, the effects stem from the small hopping probabilities
distributions are determined by the orientation of the hopping in the current system. The lifetime is increased because
vectors at the moment of hopping. trajectories that hop back to the excited surface will spend a
This suggests that the redistribution of internal energy by the long time trapped in the exciplex before hopping again. At
exciplex is negligible by comparison. One might wonder, for higher energies, trajectories that hop back up are more likely
example, whether trajectories that spent a longer amount of timeto dissociate on the excited surface rather than hop back down,
in the exciplex prior to hopping systematically accumulated and as a result, the quenching probabilities decrease.
energy in any particular vibrational mode. We investigated this  These effects are likely to worsen if energetically forbidden
possibility by dividing our batches of 10 000 trajectories into 3 surface hops are allowed to occur. In the TéF8alculations at
groups according to the time of their first surface hop. We 2.032 eV, for example, 85% of the trajectories experienced at
calculatedz' Jand [j Cfor each group, and we discovered that least one energy-prohibited hop, and the average number of
there was no correlation between how long trajectories spentenergy-prohibited hops was 3.8. On the other hand, only 32%
in the exciplex prior to the first hop and the final energy of the trajectories experienced at least one momentum-prohibited
distribution. The large average energy gap at the moment of hop, and the average number of momentum prohibited hops
hopping is probably the reason for this. As seen in Figures 20 was 1.3. Correcting the energy problem might drastically
and 21, the average energy gap is about 1.0 eV, while theincrease the lifetime at low energies and decrease the quenching
amount of kinetic energy prior to a hop is only about 0.25 eV. probability at higher energies. In these cases, it is possible that
Tully has suggested that the ratio of these two energies is anhops should not have occurred in the first place. It could be a
indication of how accurate TSH methods might%pen this shortcoming in the quantum path equations that the electronic
situation, it seems to indicate how sensitive the final products probabilities change in regions where hops cannot occur. This
will be to the method used to adjust the momentum during the may suggest a strategy of building the energy criteria and the
hopping event. Other systems with smaller average energy gapsnomentum criteria into the quantum path equations themselves,
may show less dependence on the choice of vector used to adjusinstead of devising methods to correct hopping failures.
the momentum at the moment of hopping. Thus, in earlier As a final note, we reiterate the features in this system that
studies’ it is possible that thel vector and theg vector pointed make accurate semiclassical calculations difficult. The electronic
in different directions but that the small energy gap at hopping probabilities change by a very small amount over the life of
events made this difference negligible. the trajectories. Thus, the hopping probability at each integration
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step is very small and is more sensitive to errors. Second, they Ebia(x;R)|He'(x;R)|¢f‘(x;R)D= [BGR)| VHT(XR)|

low-energy trajectories spend a long time in the exciplex before a

dissociating, causing these errors in the hopping probability to ¢ R)0— [E(R) — E(R)IW{(X;R)| Ve[ (x;R)I=0 (A1)

accumulate. Third, zero-point energy is not conserved, and )

higher energy trajectories can dissociate without quenching onWhich gives

the upper surface. Finally, the final products seem to be very

sensitive to the direction that the hopping vector points, due to

the large energy gap in this system. Despite these difficulties,

the semiclassical calculations show qualitative agreement with

quantum mechanical calculations. whereHel(x;R) is the electronic Hamiltonian and the adiabatic
energiesE;(R) andEx(R) are given by

[93(x;R) | VRH(X;R)95(x;R) T
Ex(R) — Ey(R)

di(R) = (A2)

7. Concluding Remarks

We have presented quantum mechanical scattering calcula- E,(R)=U(R) — \/AU(R)2 + U, (R) (A3)
tions at energies associated with Nabtciplex resonance states.
These calculations provide the total and partial widths of the E,(R) = O(R) + \/AU(R)Z + U122(R) (A4)

resonances, and they allow the determination of their lifetimes

and of the final average rotational and vibrational numbers of

the products of decay. We have used trends in the energy
spacings, lifetimes, and product-state distributions to assign the _ 1
resonances. We compared these results with trajectory surface U(R) =35 (U(R) + Uy(R)) (A5)
hopping calculations employing Tully’s fewest switches algo-

where

rithm with four different directions for adjusting the momentum _1

at the time of a hop (this direction is called the hopping vector). AUR) = 2 (Uzo(R) = Up(R)) (A6)

The TFSd method (which uses the prescription originally

suggested by Preston and Tully) and the TFR®&ethod (which We expand the adiabatic wave functions in a diabatic basis
uses the prescription originally suggested by Blais and Truhlar)

give very different results. The two other methods, TFS rotdted- PIGR) = c5(R)$I(X) + C1o(R)$5(X) (A7)

and TFS rotatedy; are new in this paper. It is shown that the

TFSd and the rotated TF8-methods describe the trends in P3(x;R) = ch(R)qb‘l’(x) + CZZ(R)¢>g(x) (A8)

@' Cand 7 Dwith energy much better than the TESsr rotated

TFSg methods do. None of the four methods correctly describes Substituting eqs A3 and A4 into eq A2 and recognizing that
the trend of the lifetimes with energy. The rotated-vector the gradient of the diabatic wave functions is zero (by assump-
methods show several systematic changes in the computed fination!:5%.53 gives

quantities from their nonrotated counterparts, and rotation of

the hopping vector has a strong effect on the energy distribu- R) = 1 R R)V R) +

tions. Nevertheless, although rotation provides a solution to the diR) E,R) — El(R){Cll( )C1(R)VRU14(R)

coupled nuclear-electronic dynamics that preserves the self- c. (R RYV.U.L(R) + [c..(R R) +
consistency of the ensemble averages better than not rotating, 12(R)CAR)VRU2AR) + [C12(R)C2AR)

it does notsystematicallyimprove the calculated values of CAR)CH(R)IVRU(R)} (A9)

physical observables. In fact, the strong systematic changes . ) . )
caused by rotation tend to increase the average errors, andi€ré; Ui(R) and Uxx(R) are the diagonal diabatic potential

therefore we believe the nonrotated TESrethod is the best ~ Matrix elements and;(R) is the off-diagonal diabatic coupling
method for the present system. This is the first time we have €lément. The diabatic wave-function coefficients and the
found a system where the results of choosing dhand g ad|aba}t|c energies are determlneq by dlagonal|2|ng the Q|abqt|c
directions of the hopping vector are different. Hence, this potentl_al energy matrix. The gradlen_ts of ogranalytlc_al diabatic
provides the first numerical evidence that either method is Potential matrix elements were derived with the Adifor algo-
superior to the other. rithm. , ) o ) ,
We have also presented an adaptive integration scheme for Thej gradient of the differences in adiabatic potential energies
the TFS method that allows hopping probabilities to be IS defined by
calculated more accurately. This adaptive integrator is essential
for systems like the presezt one, WhiCF:)h has vegry small changes 912(R) = Va(E4(R) — Ex(R))
in the electronic probabilities.

(A10)

Substituting eqs A3 A6 into eq A10 gives a result that can be
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Appendix A /AU(R)Z + U122

This appendix summarizes the numerical methods used to )
calculated;A(R) andgi2(R). In the calculation of both of these ~ APpendix B
vectors, only the diabatic potential matrix elemétg(R), U1 In order to decompospr into pyi, and prot, We define five
(R), and U22(R) and their gradients are required. new unit vectors as follows:

We calculate the nonadiabatic coupling vector between two
adiabatic stategpi(x;R) and ¢3(x;R) with the Hellmanm- 5— a4xQ (B1)
Feynman expression Iq x Q]

VR[Ull(R) - Uzz(R)] (All)
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o—4d
y q (B2)
o _Q
% 3 (B3)
XR=2x7 (B4)
X=2xY (B5)

Thenpy andpg can be expressed in terms of these five unit
vectors as

Pgq = PguX T Pgy¥ + Py 2 (B6)
Po = PoxX + PoyY + Po.2 (B7)
where

Pgx = Pg'X (B8)

Pgy = PgY (B9)

Pgz = Pq"Z (B10)

Pox = Po'X (B11)

Poy = PorY (B12)

Po. = P2 (B13)

We note thak, ¥, 2, X, Y, pg, andpg are all three-vectors. For

a triatomic system in a center-of-mass coordinate system, there

~
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pWW qpqx+ QpQX gx

e @)

Equation B14 describes the BC bend, and eq B15
describes the rotational motion of the ABC molecule in the ABC
plane. Note that whereas the momenta defined in eqsEH3
describe independent motion of eitli@or g and are thus three
vectors, the momenta defined in eqs B14 and B15 describe
concerted motion of botlQ and g and are six vectors. The
momentum described in eq B14, for example, is a combination
of the motion ofq along % with a magnitude ofQ[(Qpyx —

(B15)

qpox)/(Q? + )], and the motion ofQ along —X with a
magnitude ofg[(Qpyx — Apex)/(Q* + &)
We then write
0 qux qu,X Q)A(
Pyib = IOQY( )+ pqy( )+ —Q 7 (—qf( (B16)
and
prot sz pqz Q +q QX

Generalization to collinear geometries is straightforward. For
collinear geometriesy = +Y. We pick two arbitrary unit
vectors,i andV, that are orthogonal to each other and/ tand
Y. Then pq and pg can be expressed in terms of these unit
vectors as

are 6 degrees of freedom. For noncollinear geometries, there

are three vibrational modes, and these modes all lie within the
triatomic plane. These modes constitpte, described above,
and they do not contribute to the total angular momentum of

the system. The remaining three degrees of freedom describe

the rotation of the ABC molecule along three different axis,
and they constitutp,o. These three modes determine the angular
momentum of the system, and they do not change the internal
coordinates of the system.

The momentum component defined by eq B9 describes the
vibration of the BC bond, and thus, it is one of the components
of pvib.- The momentum component defined by eq B12 describes
the vibration of the A-BC bond, and therefore, it too is a
component opyip. The momentum components defined by eqs
B10 and B13 describe the motion of tgeand Q vectors in a
direction normal to the ABC molecular plane, and they are
therefore components pfq. Thus, two of the three vibrational

Pgq = Pgull + Pgy¥ + g,V (B18)
Po = Poul + PoyY + Po, ¥ (B19)
where

Pgu = Pyl (B20)

Pgy = Pq'0 (B21)

Pg, = Pl (B22)

Pou= Pg* (B23)

Poy = PgY (B24)

Po. = Po ¥ (B25)

For collinear geometries, there are four vibrational modes. Two

modes and two of the three rotational axes have been specifiedof them are given by eqs B21 and B24, which describe the

by the coordinate system defined by eqs#b and B&-B13.
There remains one vibrational mode and one rotational axis to
complete the specification qfo: and pyip.

Equations B8 and B11l each describe motion that both

vibration of the BC diatom and the vibration of the-8C bond,
respectively. Using the forms of the momenta suggested by eqgs
B14 and B15, we define four new momentum components by
taking linear combinations of the components defined in eqs

contributes to the total angular momentum and changes theB20, B22, B23, and B25:

Jacobi angle, (which is the angle betweeB ands). We take
linear combinations ofpy& and poxX to form two new
momenta such that one of them changes the andlet does
not contribute to the total angular momentum and the other
preserves the angle and does contribute to the total angular
momentum. These linear combinations are given by

_ qu,x - quX )
= — q)A(

F+q

ox

&

p W (B14)

0., — QPqu ~ Pou [Q ( ) (B26)
| QP+ q cosy
~  apyu 1 QPou (g cos
b Dy = ib (?ga x ) (B27)
Q +qg
~ Qpy, —drg, (Q\? )
pb3 37 Q2 + q2 _q\’; cosy (828)
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b — ap,,, + QPq,, [q¥ cosy
by4 ™ Q2+ q2 QU

Note that cog¢ = +1 for collinear geometries.
We then write

0 ~
pvib = pQ,Y (? )+ pq,y ()(;)+

(B29)

qu,u B quu (QO )+

Q*+ ¢ \~dicosy

Qpy, — 9Py, (Qv )

T+ \-avcosy) B

and
. qpq,u + QpQu qﬁ COSy
ot — 2 . 2 Qa +
Q" +q
ap,, + Qg (q\z cosx) (B172)

Q+g \Q
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