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Abstract 

 

Non-Born–Oppenheimer processes (also called electronically nonadiabatic processes) are 

those in which nuclear motion induces a nonradiative change in the electronic state of the 

system.  This thesis presents the results of theoretical and computational studies in three 

areas related to non-Born–Oppenheimer chemistry:  (i) coupled potential energy matrices 

(PEMs), (ii) accurate quantum mechanical scattering calculations, and (iii) semiclassical 

trajectory methods for dynamics.  Chapter 1 is an introduction.  Chapter 2 presents 

PEMs, accurate quantum mechanical scattering calculations, and semiclassical trajectory 

calculations for a family of triatomic model systems with two weakly-coupled electronic 

states.  The problem of energetically forbidden surface hops in the semiclassical 

trajectory surface hopping approach is discussed.  Chapter 3 presents PEMs for the LiFH 

and NaFH systems and an application of the semiclassical trajectory approach to the 

photodissociation of LiFH and NaFH excited-state complexes.  Trends in the lifetimes 

and reaction probabilities are related to features of the PEMs.  Chapter 4 presents an 

improved semiclassical trajectory algorithm designed to lessen the errors that result from 

classically forbidden surface hops.  The new method is shown to be the most accurate of 

several methods tested.  Chapter 5 presents an analytic global PEM for the two lowest-

energy electronic states of LiFH.  The fit is based on high-level electronic structure 

calculations over a dense grid of nuclear geometries.  Chapter 6 presents an improvement 

to the trajectory surface hopping method discussed in Chapter 4.  Chapter 7 presents 

subthreshold and near-threshold quantum mechanical scattering calculations for the 

ground-state reaction Li + HF � LiF + H.  Trends in the lifetimes of the series of 

resonances observed in the reaction profile are explained by associating the resonance 

features with quasibound states of the Li…FH van der Waals well. 
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Chapter One 

1 
Introduction 

 

 

 

 This chapter introduces non-Born–Oppenheimer (non-BO) chemistry and 

summarizes the studies in Chapters 2–7.  These chapters are arranged in the order in 

which the work was carried out and may be categorized as follows:  (i) the development 

of potential energy matrices (PEMs) for model systems (Chapter 2) and for realistic 

chemical systems (Chapters 3 and 5), (ii) the calculation of accurate quantum mechanical 

scattering dynamics using the outgoing wave variational principle (Chapters 2 and 7), and 

(iii) the testing, application, and systematic improvement of the semiclassical trajectory 

method for simulating non-BO dynamics (Chapters 2, 3, 4, and 6). 

Many chemical systems may be modeled adequately within the framework of the 

Born-Oppenheimer (BO) approximation.1–3  This approximation recognizes the large 

mass disparity of nuclei and electrons and allows their different time-scale motions to be 

decoupled.  Nuclear motion is then governed by a single BO (also called adiabatic) 

potential energy surface, which describes the variation of the ground-state electronic 

energy with changes in the nuclear geometry. 

 For some processes (called non-BO processes or electronically nonadiabatic 

processes), more than one electronic state is important in the overall dynamics, and the 

single-surface BO approximation is not accurate.  Using a generalization of the BO 

approximation, one may obtain an adiabatic potential energy surface for each electronic 

state.  In general, nuclear motion in each electronic state will be coupled to motion in the 

other electronic states by the action of the nuclear gradient operator �N on the electronic 

part of the wave function, i.e., by the matrix elements 
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  ji Nij ∇=d , (1) 

where i and j label different electronic states, and dij is called the nonadiabatic coupling 

vector.  It is usually possible to rotate the electronic states in electronic state space (via a 

unitary transformation) to obtain a diabatic representation4,5 where the elements of the 

nonadiabatic coupling vector dij are small enough (for many purposes) to neglect.  The 

resulting diabatic potential energy surfaces are coupled to one another by a scalar 

coupling term (sometimes called the potential coupling) that is a smooth function of 

geometry.  If no approximations are made (e.g., in an accurate quantum mechanical 

calculation), the adiabatic and diabatic electronic representations yield identical results. 

 When characterizing non-BO systems using analytic functions to represent the 

potential surfaces and their couplings, it is often more convenient to work in the diabatic 

representation.  For example, diabatic potential energy surfaces are usually smoother 

functions of geometry than adiabatic potential energy surfaces, and the nonadiabatic 

coupling vector may contain infinities, whereas the diabatic scalar coupling is well-

behaved.  The diabatic potential energy surfaces, together with the scalar potential energy 

coupling terms, are collectively referred to as a potential energy matrix (PEM).  Chapters 

2, 3, and 5 contain descriptions of PEMs for non-BO reactive chemical systems with 

three atoms and two electronic states. 

With an analytic PEM in hand, one may proceed to modeling or calculating the 

non-BO dynamics.  For chemical systems with three or four atoms and two electronic 

states, the dynamics may be calculated using accurate quantum mechanical techniques.  

The outgoing wave variational principle6 (OWVP) has been applied to three-body, two-

state systems and is a particularly efficient because it divides the scattering problem into 

two smaller problems.  Specifically, the Hamiltonian is written as a distortion 

Hamiltonian plus a coupling potential.  The distortion Hamiltonian is solved numerically 

to obtain a set of distorted wave functions.  These wave functions are then used to solve 

variationally for the contribution to the scattering matrix that comes from the coupling 

potential.  Chapters 2 and 7 contain applications of the OWVP method to the scattering 

dynamics of reactive non-BO chemical systems. 
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For systems larger than a few atoms, an accurate quantum mechanical dynamical 

treatment is not computationally affordable, and one employs approximate 

“semiclassical” methods where the full dynamics of the system is approximated in some 

way using classical ideas.7  Semiclassical methods may be defined as the small-� (or 

large-mass, high-temperature, etc.) limit of quantum mechanics.  It is often more useful, 

however, to develop semiclassical methods using the intuitive procedure of incorporating 

quantum effects ad hoc into classical theories.  Although semiclassical algorithms 

presented in this way may be less rigorously justified, the methods are theoretically 

important because they often provide a physical picture (i.e., a language) with which one 

may interpret abstruse quantum mechanical phenomena. 

The semiclassical methods considered here may be classified as trajectory 

ensemble (TE) methods, where a swarm of classical trajectories is used to simulate the 

nuclear motion of the system.  A quantum mechanical nuclear wave packet has some 

inherent width in configuration and momentum space, whereas classical trajectories are 

delta functions in phase space.  In addition, the coordinates and momenta of a quantal 

particle have some uncertainty, whereas these quantities are fully determined in a 

classical system.  An ensemble of trajectories (as opposed to a single trajectory) is 

therefore required to approximate the quantal situation, where the initial conditions for 

each trajectory in the ensemble are distributed to mimic the accurate quantal wave 

packet.8  In this sense, each trajectory may be thought of as a basis function, and taken 

together, the ensemble of trajectories approximates the full nuclear wave packet.  

Alternatively, each trajectory may be thought of as a single chemical event governed by 

the probability distribution inherent in the spread of the quantum mechanical wave 

packet. 

 A non-BO process modeled using the TE approach may be interpreted as follows:  

as the ensemble of nuclear trajectories evolves in time, the nuclear motion causes a 

change in the overall electronic state of the system (via the nonadiabatic or scalar 

coupling terms) which in turn results in a new effective potential energy felt by the 

trajectories, affecting the nuclear motion.  This nuclear-electronic interaction is the 

source of nonadiabatic electronic state changes, and to properly treat these non-BO 



4 

effects a self-consistent treatment of the nuclear-electronic coupling is necessary (i.e., the 

electronic and nuclear degrees of freedom must be made to evolve simultaneously).9  

Several methods for incorporating this self-consistency into the TE approximation have 

been proposed, and before we discuss some of them specifically we will first consider the 

evolution of the nuclear and electronic degrees of freedom separately. 

Each nuclear trajectory in the ensemble evolves classically according to 

Hamilton’s equations of motion.  The semiclassical effective potential energy function V 

that is used in the classical equations of motion must be carefully chosen such that the 

self-consistency discussed above is maintained.  The electronic motion along each 

classical trajectory is obtained by propagating the solution to the electronic Schrödinger 

equation with the appropriate initial conditions.  The solution takes the form of an 

electronic density matrix ρρρρ, where the diagonal elements ρii are the electronic state 

probabilities, and ρij for i � j are the electronic state coherences.10,11 

One may anticipate that a successful semiclassical effective potential energy 

function V will be some function of the potential surfaces, their couplings, and the 

electronic state density matrix ρρρρ.  Several semiclassical algorithms have been proposed 

with differing prescriptions for V, and the approaches may be divided into two general 

categories:  (i) time-dependent self-consistent field methods, and (ii) trajectory surface 

hopping methods.  Each category will be discussed briefly. 

 The starting point for time-dependent self-consistent field (TDSCF) methods is 

the quantum Ehrenfest theorem12,13 which states that the expectation values of the 

position and momentum operators evolve according to classical equations of motion with 

an effective potential energy function given by the expectation value of the potential 

energy operator.  We define the semiclassical Ehrenfest (SE) TE method by taking V to 

be the expectation value of the electronic Hamiltonian. 

The SE method has many disadvantages that result from the mean-field 

assumption.14  Although at any instant along a SE trajectory it is physically meaningful 

for a system to be influenced by some average of the potential energies of all of the 

electronic states, it is not physically meaningful for the nuclear motion corresponding to 

each electronic state to be described by a single trajectory.  If the potential energies of the 
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various electronic states are similar in topography and energy, then the nuclear motions in 

each state will be such that an average SE trajectory may provide a reasonable 

approximation.  For many chemical systems, however, this is not the case, and it is not 

possible for a mean-field trajectory to approximate the motion in these different 

electronic states.  An important consequence of this arises in the case of low-frequency 

events.  A SE trajectory will be dominated by the character of the high-probability 

motions, and low-probability motions may not be properly explored.  Furthermore, it is 

also not clear how to interpret the final state of a SE trajectory.  In general, a SE 

trajectory will finish the simulation in a mixed electronic state, whereas physically we 

expect isolated products to be in pure electronic states (if there is no electronic state 

coupling in the product region of phase space).  The internal energy distribution of 

products in a mixed electronic state is not reliable because it does not correspond directly 

to the internal energy distribution of any single physically meaningful product. 

Several modifications of the SE method have been suggested to remedy these 

deficiencies.  The NDM method15 is representative of the modified SE methods, which 

vary in their details but in general attempt to force the system into a pure electronic state 

as the system leaves the strong coupling region.  The NDM method adds terms to the 

electronic state density matrix ρρρρ such that the system decoheres (dephases, demixes) to a 

pure electronic state in regions of vanishing coupling.  At any instant along an NDM 

trajectory, the system is decohering from each state i towards state a single state K at a 

rate ~1/τiK, where τiK is a physically motivated decoherence time (or demixing time) that 

may be calculated from the local properties of the system.  A NDM trajectory behaves 

like a SE trajectory in strong coupling regions and collapses to a pure state 

asymptotically.  The method retains the desirable feature of the SE method in that inter-

state coherences are included when the electronic states are strongly coupled.  

Additionally, the NDM method is able to treat low-probability events and gives realistic 

product states. 

 Another approach to TE dynamics is the trajectory surface-hopping approach,10 

where the semiclassical potential V is taken to be the potential energy surface that 

corresponds to the currently occupied state.  This single-surface propagation is 
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interrupted by instantaneous surface transitions (called surface hops) to some other state 

according to a time-dependent hopping probability that is integrated along the classical 

trajectory.  The hopping probability may be defined in various ways, and we will discuss 

two of the prescriptions below. 

The surface hopping method that has perhaps found the most use in physical 

applications is the molecular dynamics with quantum transitions method of Tully;10,11 

we will call this Tully’s fewest-switches (TFS) method.  Trajectories are propagated 

locally under the influence of a single-state potential energy function, and this 

propagation is interrupted at small time intervals with hopping decisions.  A hopping 

decision consists of computing a probability for hopping from the currently occupied 

state to some other state such that hopping is minimized in the sense that hopping only 

occurs when there is a net flow (in an ensemble averaged sense) of electronic state 

probability density out of the currently occupied state.  At each hopping decision, the 

hopping probability is computed and compared with a random number to determine if a 

surface hop occurs. 

The accurate quantal picture is represented by a swarm of TFS trajectories, each 

hopping between the various electronic states at slightly different locations.  In this way, 

the flow of probability density (which may occur over an extended region in phase space) 

is accurately modeled.  One drawback of TFS method is the lack of the proper treatment 

of decoherence effects.  In the SE method, a single trajectory is used to represent the 

motion in all of the electronic states and the different motions are thus allowed to 

interfere.  In the TFS method, several trajectories are required to model the nonadiabatic 

dynamics even for a single initial condition.  (In practice each trajectory has different 

initial conditions corresponding to initial vibrational and rotational phases, orientations of 

angular momentum states, and so forth, but the important point is that in contrast to the 

SE method where there is only one possible trajectory for each initial position and 

momentum, there are several possible trajectories for a single initial position and 

momentum in the TFS method which differ from each other in their hopping locations.)  

To properly treat coherence, the TFS trajectories would be required to interfere with each 

other,16 but they do not do so in the standard TFS method.  This lack of decoherence 
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effects can have a significant effect on the final results because the electronic state 

coherences show up in the expressions for electronic state populations, and these 

quantities are used to compute the TFS hopping probabilities.  The trade-off for this lack 

of coherence is the ability to model chemical processes that involve divergent trajectories 

on different electronic states. 

 A significant problem that must be dealt with when using the TFS formulation is 

the existence of classically forbidden electronic transitions.  The TFS algorithm may 

predict a nonzero hopping probability to a higher-energy electronic state in regions where 

the nuclear momentum is insufficient to allow for an energy adjustment that will 

conserve total energy.  When these classically forbidden, or “frustrated” hops are 

encountered in the TFS method, they are either ignored or the momentum reversed in the 

direction of the nonadiabatic coupling vector dij, and in both cases the trajectory does not 

change electronic states. 

The existence of frustrated hopping may cause errors in the predicted 

nonadiabatic probabilities.  For example, quantum mechanical particles have some 

probability density in regions of phase space that are classically forbidden due to 

tunneling.  These tails of the nuclear wave function decrease exponentially, so we do not 

expect significant populations in “highly” classically forbidden regions, but these tails 

may be important for regions that are only “slightly” classically forbidden, i.e., regions 

that are somewhat close to classically accessible regions.  These tails in the quantum 

mechanical wave function contribute to the existence of frustrated hopping, and these 

frustrated hops must be somehow allowed to switch electronic states in order to model 

the proper nonadiabatic dynamics. 

 The fewest-switches with time-uncertainty (FSTU) method has been developed to 

correct these deficiencies without explicitly including tunneling or coherence effects.  

The FSTU method is identical to the TFS method except when a frustrated hop is 

encountered.  If a FSTU trajectory experiences a frustrated hop at time t0, the system is 

allowed to hop at time th along the trajectory, where th is determined by selecting the 

closest time to t0 (either forward or backward in time) such that:  (1) a hop at that time is 

classically allowed, and (2) the difference between t0 and th is small enough that 
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  2/0 �≤∆− Ett h , (2) 

where ∆E is the amount of energy that the system would have to “borrow” to hop at time 

t0.  This treatment is clearly inspired by the time-energy uncertainty relations, and these 

nonlocal hops can be thought of as approximating those parts of the quantal system that 

borrow energy and tunnel into classically forbidden regions.  If a suitable th cannot be 

found that meets the above criteria, then the frustrated hopping attempt is treated 

according to the �V prescription.  Briefly, if the gradient of the target electronic state in 

the direction of the nuclear momentum is positive, the trajectory is reflected.  Otherwise, 

no momentum adjustment is made.  In both cases, the trajectory continues in the occupied 

electronic state and no surface hop occurs. 

 Semiclassical trajectory methods and results are presented and discussed in 

Chapters 2, 3, 4, and 6.  Details of the studies presented in Chapters 2–7 will now be 

discussed briefly. 

 In Chapter 2, a family of four weakly coupled electronically nonadiabatic 

bimolecular model potential energy matrices is presented.  Fully converged quantum 

mechanical calculations with up to 25 269 basis functions were performed for full-

dimensional atom-diatom collisions to determine the accurate scattering dynamics for 

each of the four systems.  The quantum mechanical probabilities for electronically 

nonadiabatic reaction and for nonreactive electronic de-excitation vary from 10–1 to 10–5.  

Tully’s fewest-switches (TFS) semiclassical trajectory surface-hopping method is tested 

against the accurate quantal results.  The nonadiabatic reaction and nonreactive de-

excitation events are found to be highly classically forbidden for these systems, which 

were specifically designed to model classically forbidden electronic transitions (also 

called frustrated hops).  The TFS method is shown to systematically overestimate the 

nonadiabatic transition probabilities due to the high occurrence of frustrated hops.  In 

order to better understand this problem and learn how to best minimize the errors, several 

variants of the TFS method are tested on the four model systems and also on a set of three 

more strongly coupled model systems.  The methods tested here differ from one another 

in their treatment of the classical trajectory during and after a frustrated hopping event.  
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We find that ignoring frustrated hops instead of reversing the momentum along the 

nonadiabatic coupling vector results in the best agreement with the accurate quantum 

results for the final vibrational and rotational moments.  We also test the use of 

symmetrized probabilities in the equations for the TFS hopping probabilities.  These 

methods systematically lead to increased errors for systems with weakly coupled 

electronic states unless the hopping probabilities are symmetrized according to the 

electronic state populations.  We will return to the problem of classically forbidden hops 

in Chapters 4 and 6. 

 In Chapter 3, the photodissociation of Li…FH and Na…FH van der Waals 

complexes17,18 is studied using Tully’s fewest-switches surface-hopping and the natural 

decay of mixing semiclassical trajectory methods for coupled-state dynamics.  The 

lifetimes of the predissociated excited-state complex (exciplex), as well as the branching 

ratios into reactive and nonreactive arrangements and internal energy distribution of the 

products are reported at several excitation energies.  The semiclassical trajectory methods 

agree with each other only qualitatively, and the results are even more strongly dependent 

on the choice of electronic representation.  In general, the lifetime of the LiFH exciplex is 

shorter and less dependent on the excitation energy than the lifetime of the NaFH 

exciplex.  The semiclassical dynamics of LiFH and NaFH are interpreted in terms of the 

features of their coupled potential energy surfaces. 

 In Chapter 4, a modification of Tully’s fewest-switches (TFS) trajectory surface 

hopping is presented that is called the fewest-switches with time uncertainty (FSTU) 

method.  The FSTU method improves the self-consistency of the fewest-switches 

algorithm by incorporating quantum uncertainty into the hopping times of classically 

forbidden hops.  This uncertainty allows an electronic transition that is classically 

forbidden at some geometry to occur by hopping at a nearby classically allowed 

geometry if an allowed hopping point is reachable within the Heisenberg interval of time 

uncertainty.  The increased accuracy of the FSTU method is verified using a challenging 

set of three-body, two-state test cases for which accurate quantum mechanical results are 

available.  The FSTU method is shown to be more accurate than the TFS method in 

predicting total nonadiabatic quenching probabilities and product branching ratios. 
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 In Chapter 5, high-level ab initio calculations for the global adiabatic potential 

energy surfaces of the ground state ( X
~  2A') and several excited states ( A

~
 2A', B

~  2A", 

C
~

 2A', D
~  2A', and E

~  2A") of LiFH including the valleys leading to Li + HF and LiF + H 

are presented.  The ab initio calculations were carried out using the singles and doubles 

multireference configuration interaction method19–21 with 99 reference configuration 

state functions (CSFs) for the 2A' states and 39 reference CSFs for the 2A" states.  The 

basis set consisted of 140 contracted Gaussian functions, including specifically optimized 

diffuse functions, and calculations were performed on a dense grid of ~3500 nuclear 

geometries which allowed us to construct an accurate analytic representation of the two 

lowest-energy LiFH potential energy surfaces.  An analytic 2 x 2 quasidiabatic potential 

energy matrix was obtained by fitting physically motivated functional forms to the ab 

initio data for the two lowest-energy adiabatic states and explicitly including long-range 

interactions.  The newly presented LiFH fit is compared to several ground-state LiFH fits 

and one excited-state LiFH fit that have appeared in the literature. 

 In Chapter 6, a new prescription (called the �V prescription) for treating 

classically forbidden surface hops in semiclassical trajectory surface hopping simulations 

is presented.  The new method uses gradient information about the target electronic 

surface to determine the nuclear dynamics at a frustrated hopping event.  We have tested 

this prescription, along with previously suggested prescriptions, against accurate quantum 

dynamics for 21 cases.  We find that the fewest switches with time uncertainty (FSTU) 

algorithm with the �V prescription for momentum changes at frustrated hops is the most 

accurate of the six variants of the surface hopping approach that we tested. 

In Chapter 7, state-to-state, state-specific, and cumulative reaction probabilities 

are presented for the bimolecular scattering process Li + HF � H + LiF in the ground 

electronic state.  Calculations were performed for zero total angular momentum at total 

energies from 0.26 to 0.50 eV (relative to HF at its classical equilibrium bond distance 

and infinitely far from Li).  The energy dependence of the state-to-state, initial-state-

selected, and cumulative reaction probabilities for LiFH in the low-energy regime 

displays a pronounced resonance structure due to quasibound states associated with a 

Li…FH van der Waals well in the entrance valley of the potential energy surface.  The 
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lifetimes of the long-lived resonances are obtained by fitting the calculated eigenphase 

sum to the multichannel Breit-Wigner formula.22–24  The final rotational state 

distributions of the LiF product fragment resulting from decay of the resonance state 

complexes are presented for two resonances.  Quantum numbers are assigned to the 

resonances using bound-state and quasibound-state calculations in the Li…FH van der 

Waals well, and possible decay mechanisms are discussed.  The lifetimes show a 

systematic dependence on the translational vibrational quantum number. 
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Chapter Two 

2 
The Treatment of Classically Forbidden Electronic Transitions in 

Semiclassical Trajectory Surface Hopping Calculations 

 

 

 

I.  Introduction 

 Semiclassical methods for calculating the probabilities of electronically 

nonadiabatic events have a long history,1 and a variety of multistate approximations have 

been developed and reviewed.2–6  An important recent development is the use of 

converged quantum mechanical dynamics calculations for full-dimensional atom-

molecule collisions to test the semiclassical theories.7–17   

 One may classify electronically nonadiabatic systems in various ways, the 

simplest of which recognizes strongly coupled and weakly coupled systems.  The former 

are epitomized by surface intersections and localized, narrowly avoided crossings, the so-

called Landau-Zener-Teller case,1,2,4,18 and the latter are epitomized by wide regions of 

coupling, often of weakly coupled but nearly parallel potential functions, the so-called 

Rosen-Zener-Demkov case.1,2,4,19,20  The present article is primarily concerned with 

developing and testing semiclassical methods for atom-molecule collisions in the latter, 

less studied case.  In particular we focus on the trajectory surface hopping21–36 (TSH) 

method and specifically on Tully’ s fewest-switches (TFS) algorithm6,30 for surface 

hopping.  (TFS is also called molecular dynamics with quantum transitions or MDQT.)  

Surface hopping is an ad hoc addition to classical mechanics in which trajectories 

instantaneously switch electronic states, i.e., the potential energy function that determines 

the nuclear motion is discontinuous.  The TFS algorithm is an affordable and often 



15 

accurate method7–14 despite the apparent shortcoming of using sudden surface switches 

(hops) to describe the nonadiabatic flow of probability in electronic state space. 

 There are two important decisions that must be made when implementing surface 

hopping:  1) When a surface hop to a different electronic state is called for and is 

classically allowed, how should the kinetic energy be adjusted so as to conserve total 

energy? and 2) what is the best way to treat hopping attempts that are classically 

forbidden?  The first question has a satisfactory answer.  The direction along which the 

nuclear momentum is adjusted is represented by a unit vector called the hopping vector, 

and it has been shown9,11 that using the direction of the nonadiabatic coupling vector 

(instead of the gradient of the electronic energy gap, for example) as the hopping vector 

and adjusting the nuclear momentum such that total energy is conserved results in the 

best agreement with quantum mechanical calculations.  This procedure has also been 

justified theoretically.22,28,37 

 Our present study will concentrate on the second question.  Hopping attempts that 

are classically forbidden are called frustrated hops, and their treatment has attracted some 

attention recently,12,14,34–36,38,39 but a satisfactory procedure has not yet been obtained.  

It has been suggested that frustrated hops should be ignored, and this method has been 

applied with some success.34  It has also been argued23,25,38 that when a trajectory 

experiences a frustrated hop, the nuclear momentum should be reversed along the 

hopping vector, as if the trajectory experiences a repulsive wall normal to the hopping 

vector as it attempts and fails to hop to a higher-energy electronic state.  In past 

work,7,9−15,27 our group has generally followed the procedure used by Blais and 

Truhlar;27 this involves a combination of these two approaches, i.e., energetically 

forbidden frustrated hops are ignored while energetically allowed, but momentum 

forbidden frustrated hops are reflected. 

 It has been noted35 that one may distinguish two possible reasons for the 

occurrence of classically forbidden hopping attempts.  The first possible reason is that the 

trajectory surface hopping algorithm is somehow inadequate and should not be predicting 

transitions where they cannot occur.  This argument is strengthened by studies that show 

surface hopping methods to be more accurate when frustrated hops are ignored.34  
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Motivated by this reasoning, a variant of the TFS method called the MDQT* method has 

recently been proposed35,36 that eliminates hopping attempts in classically forbidden 

regions by using a symmetrized velocity in the equations for the electronic state 

populations.  The second possible reason for frustrated hops is that the trajectory should 

hop to the energetically forbidden state, but classical trajectories are limited by the 

conservation of total energy, whereas quantum mechanical particles can borrow energy 

for a finite time according to the uncertainty principle.  This idea suggests that the 

method for adjusting the nuclear kinetic energy during a hopping attempt is somehow 

deficient.  Our group has recently proposed a method for redistributing the nuclear kinetic 

energy in order to allow some classically forbidden hops,12,14 although this method 

generally led to increased semiclassical errors for the cases to which it was applied. 

 In a recent work,13 two semiclassical methods were tested against accurate 

quantum mechanical calculations for the weakly coupled BrH2 system, which is a 

reactive Rosen-Zener-Demkov case.  The results show that despite a difficulty in 

achieving numerical convergence, the TFS method is more accurate than the 

semiclassical Ehrenfest method40,41 for this case.  In the present work, we test 

semiclassical methods on a family of four weakly coupled three-atom systems called the 

YRH systems with features qualitatively similar to the BrH2 system.  The family of 

systems has members with quantum mechanical nonadiabatic transition probabilities 

varying from ~10–1 to ~10–5, and it was specifically designed to provide a more 

systematic test of nonadiabatic semiclassical trajectory methods than the previously 

described BrH2 system.  Using the TFS algorithm, we find for the model systems studied 

here that hopping to the ground state is rare, but once the system is in the ground state, a 

large percentage (25 – 80%) of trajectories experience at least one frustrated hopping 

attempt.  This results in a breakdown of the self-consistency of the TFS algorithm, i.e., 

the fraction of trajectories in each state does not correspond to the distribution demanded 

by the fewest-switches algorithm.   

 Due to the high percentage of trajectories affected by frustrated hops and the low 

probability of multiple hopping trajectories, the new YRH model systems presented here 
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provide good test cases for studying the treatment of frustrated hops.  We use the family 

of YRH systems along with a previously described15 set of more strongly coupled model 

systems, called MXH systems, to explore several variants of the TFS method which 

differ in their treatment of frustrated hopping.  Section II presents the model YRH 

systems, and Section III presents the accurate quantum mechanical dynamics calculations 

for these systems.  Section IV discusses the semiclassical algorithms, and Sections V and 

VI present and discuss the results of the semiclassical methods applied to the model YRH 

and MXH systems. 

 

II.  Model Potential Energy Matrices and Scattering Conditions 

 In order to design a simple and systematic set of test cases for studying the 

treatment of surface hops without interference from competing effects, a family of model 

three-body potential energy matrices (PEMs) with weakly coupled electronic states was 

created.  Each PEM models the nonadiabatic scattering process of an electronically 

excited model Y atom interacting with a diatomic RH molecule initially in some discrete 

vibrational and rotational quantum state ),( jv :  

(R1b)
(R1a)

                                         
, ),(YH R
),(RHY

),(RH *Y
�
�
�

′′+
′′′′+

→+
jv

jv
jv  

where the asterisk indicates electronic excitation, and the primes on the quantum numbers 

indicate that these quantities are not conserved.  There is some probability PR that the 

system will react to form the YH diatomic product (R1b) and some probability PQ that 

the system will quench, typically accompanied by vibrational and rotational excitation of 

the RH diatom (R1a).  The sum of these probabilities is the total nonadiabatic probability 

PN for the system to undergo an electronic transition to the ground state during the 

scattering event. 

 The electronic excitation energy of the Y atom is taken as 0.36 eV, and the 

equilibrium bond energies of the RH and YH molecules are 3.9 and 4.3 eV, respectively.  

The zero point energies of RH and YH are 0.18 eV and 0.19 eV, respectively.  The mass 

combination for all calculations was chosen to be 10 amu and 6 amu for the Y and R 

atoms, respectively.  The H atom has the mass of hydrogen, i.e., 1.00783 amu.  This mass 
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combination provides an interesting and challenging test case for semiclassical methods.  

The system is modeled in the diabatic representation and has qualitative features of the 

Rosen-Zener-Demkov type,1,2,19,20 i.e., the diagonal diabatic potential energy surfaces 

U11 and U22 never cross and are nearly parallel in the entrance valley.  The diabatic 

coupling U12 is localized in the interaction region.  The energy gap between the diabatic 

surfaces is roughly equal to 0.36 eV throughout the strong interaction region.  Details of 

the functional forms and the parameters used in the analytic representation of the family 

of YRH surfaces are available as supporting information.42 

 Each member of the family of YRH matrices differs from the others only in the 

value of the maximum diabatic coupling max
12U .  Four potential matrices with values of 

max
12U = 0.20, 0.10, 0.03, and 0.01 eV are discussed in this paper.  The PEMs in the series 

will be referred to individually as YRH( max
12U /eV), where max

12U /eV is max
12U  in eV, 

e.g., YRH(0.20).  A plot of the diabatic matrix elements U11, U12 and U22 along an 

approximate reaction path of U11 in the internuclear bond distance coordinate system is 

given for YRH(0.10) in Figure 1.  Also shown in Figure 1 are the two different total 

scattering energies (1.10 and 1.02 eV) used for the calculations reported in this paper and 

the energies of some asymptotic rovibrational states.  

 Adiabatic potential energy surfaces were obtained by diagonalizing the diabatic 

PEM.  In the adiabatic representation the scalar product of the velocity and the 

nonadiabatic coupling vector d (due to the nuclear linear momentum) couples the nuclear 

and electronic degrees of freedom.6,24  Using the Hellman-Feynman theorem, we can 

calculate d without approximation from the diabatic matrix elements and their 

gradients.24  Figure 2 contains contour plots of the upper and lower adiabatic surfaces 

and the magnitude of d.  Also shown are the magnitudes of the three components of d, 

expressed in the reactant-Jacobi coordinate system, where S is the magnitude of the 

vector S that points from Y to the center-of-mass of RH, s is the magnitude of the vector 

s that points from R to H, and χ is the angle between S and s. 
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Initial scattering conditions may be labeled by the shorthand (E/eV, j) where E/eV 

is the total energy in eV, and j is the initial rotational quantum number; in all cases the 

initial electronic quantum number is 2 (which corresponds to the excited electronic state), 

the initial vibrational quantum number is zero, and the total angular momentum is zero.  

We consider three cases for the YRH systems:  (1.10, 0), (1.10, 6), and (1.02, 0).  Note 

that the initial total internal energy for a collision of Y* with RH(v = 0, j = 0) is 0.94 eV 

and that for RH(v = 0, j = 6) is 1.02 eV.   

 Although this paper focuses on the model YRH systems, we also consider the 

previously described15 set of MXH model PEMs.  These systems are more strongly 

coupled than the YRH systems; the quantum mechanical nonadiabatic transition 

probabilities vary from 0.15 to 0.49.  For these systems we consider the (mM, mX, mH) = 

(6.04695 amu, 2.01565 amu, 1.00783 amu) mass combination and the (1.10, 0) set of 

initial conditions.  We consider all three sets of MXH surfaces which were previously15 

labeled SB, SL, and WL.  See Reference 15 for a complete description of the MXH 

surfaces. 

 

III.  Quantum Dynamics for the Model YRH Systems 

 Fully converged, six-dimensional (three vibrations and three rotations) quantum 

mechanical scattering calculations were performed on each of the four YRH potential 

energy matrices using the outgoing wave variational principle (OWVP),43–46 as 

implemented in version 18.8 of the VP computer code.47  The OWVP is a linear algebraic 

variational principle48 employing both �2 and non-�2 basis functions.  The calculations 

reported here employ a basis of asymptotic eigenstate functions multiplied by half-

integrated Green’ s functions49 for energetically open channels and by Gaussian functions 

for energetically closed channels.  A channel is defined as a unique set of the asymptotic 

quantum numbers including: the molecular arrangement, the diabatic electronic quantum 

number, the vibrational quantum number of the diatomic molecule, and the rotational 

quantum number of the diatomic molecule.  (For nonzero total angular momentum J one 

could also include the relative translational orbital angular momentum �, but for J = 0, we 
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have � equal to j, j′ , or j ′′ .)  All of the rotational-state channels for a given vibrational 

state, electronic state, and molecular arrangement were coupled to each other, whereas 

channels with different vibrational states, electronic states or molecular arrangements 

were uncoupled when solving the finite difference problem to obtain the basis functions 

for the variational step.  The surfaces were fully coupled during the variational step in the 

calculations See Refs. 43–46 for details. 

 We define our potential energy matrices and perform our quantum mechanical 

calculations in the diabatic representation with zero nuclear momentum coupling.  In 

such a model, there is a one-to-one transformation between diabatic and adiabatic 

representations, and the quantum mechanical results are independent of which one is 

chosen. 

A list of the OWVP basis set parameters can be found in the supporting 

information.42  Basis set I contains 18934 basis functions and was used to calculate all of 

the observables reported in this paper.  The larger basis set, basis set II was used to check 

the convergence of basis set I for the YRH(0.20) and YRH(0.01) systems at several 

scattering energies.  The number of basis functions in the convergence check is 25269.  

In these convergence checks, the state-to-state transition probabilities out of the Y* + 

RH(v = 0, j = 0) (for E = 1.10 and 1.02 eV) and the Y* + RH(v = 0, j = 6)  (for E = 1.10 

eV) initial states are converged to better than 1% for greater than 95% of the 

energetically accessible final channels, with the remaining state-to-state transition 

probabilities (high- j′  or j ′′  channels) converged to better than 5%.  For all of the state-

to-state transition probabilities (including all initial states), 94% of the transition 

probabilities (with an average value of 0.013) are converged to better then 1%, 3% of the 

transition probabilities (with an average value of 4.5 x 10–5) are converged to better than 

5%, and the remaining 3% of transition probabilities have an average value of 2.1 x 10–8.  

The first moments (i.e., averages) of the vibrational and rotational quantum numbers, and 

the reaction and quenching probabilities are converged to better than 1%.   

Quantum mechanical observables often exhibit an oscillatory structure as 

functions of scattering energy.  In contrast, semiclassical properties often do not show 
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these oscillations, and in such cases it is most appropriate to compare them to energy-

averaged quantum results.  In the present case we checked that the semiclassical results 

depend only slowly on energy.  It is therefore desirable to compare the semiclassical 

results obtained at a single scattering energy to the average quantum mechanical value 

obtained over a range of energies.  Quantum mechanical calculations were performed at 

seven energies at and around the nominal scattering energies42 and averaged to obtain 

values that are used to compute the errors reported in Tables 2 and 3.  In most cases, the 

values obtained by averaging are similar to the values obtained at the nominal scattering 

energy. 

 

IV.  Semiclassical Trajectory Calculations 

 Semiclassical trajectory surface hopping calculations were carried out using 

version 6.0 of the NAT computer code50 (which is a generalized version of our previous 

TSH code).  For all the calculations reported in this work, the hopping vector was taken to 

be a unit vector in the direction of the nonadiabatic coupling vector, i.e.,  

  
d
dh =  . (1) 

The initial coordinates and momenta for each trajectory in the ensemble were selected as 

described previously.11,25   

 The final reaction and quenching probabilities (PR and PQ) were determined by 

counting trajectories, and the final rotational and vibrational moments (< v′ > and < j′ > 

for reactive trajectories, and < v ′′ > and < j ′′ > for quenching trajectories) were calculated 

according to the energy-nonconserving histogram (EN-H) analysis scheme.11  

Vibrational and rotational moments were also calculated using the energy-nonconserving 

quadratic smooth sampling11,51 (EN-QSS), and the energy-nonconserving linear smooth 

sampling (EN-LSS) analysis schemes.  We also tested an energy-conserving (EC) 

variant11 of the three sampling schemes, i.e., EC-H, EC-QSS, and EC-LSS.  The EC 

methods result in systematically slightly lower rotational and vibrational moments and 

lead to increased semiclassical errors.  The results from the six analysis schemes typically 
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differ from each other by less than 2%.  For this reason, we report only one set of results, 

and we chose the EN-H result, because it has a well defined statistical uncertainty 

estimate.25 

 

IV.A.  Treatment of the Nuclear Momentum at a Frustrated Hop 

 During a surface hopping event, a trajectory attempts to hop from the occupied 

electronic state to a target electronic state.  A hopping attempt is classically forbidden if it 

is not possible to adjust the nuclear momenta along the hopping vector h, such that total 

energy is conserved.  One may further divide classically forbidden hops into three 

categories,12 namely:  energy-, angular-momentum-, and linear-momentum-forbidden 

hops.  Energy-forbidden hops occur when the target state has an energy greater than the 

total energy of the system.  The distinction between the other two types of frustrated hops 

depends on dividing the energy into vibrational and rotational contributions.  A hop is 

angular-momentum-forbidden when the hop is not energy-forbidden, but the vibrational 

energy is less than the energy of the target state, i.e., the nuclear momentum cannot be 

adjusted in any direction such that total angular momentum is conserved.  A linear-

momentum-forbidden hop occurs when there is sufficient energy in vibrational modes to 

exist on the target surface, but there is insufficient energy along the hopping vector h to 

allow for the energy adjustment.  We note that for systems where the total angular 

momentum J is equal to zero, there is no energy in the rotation of the system and angular-

momentum-forbidden hops cannot occur.  For the calculations reported here, the orbital 

angular momentum �class is selected classically from 0 � �class � � for the j = 0 state and 

from 6 � � �class � 7 � for the j = 6 state, and therefore the total angular momentum J is 

can have values that range from –½ � < J < ½ �.  The occurrence of angular-momentum-

forbidden hops, however, is much less than 0.01% of the total number of attempted hops, 

and the treatment of angular-momentum-forbidden (but otherwise allowed) hops will not 

be considered in this paper. 

 Several variants of the TFS method which differ in their treatment of frustrated 

hops will be tested.  We will refer to the TFS variants as TFS-(Prot-L, Prot-E), where 
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Prot-L denotes the protocol for linear-momentum-forbidden hops, and Prot-E denotes the 

protocol for energy-forbidden hops.  The allowed values for Prot-L and Prot-E will be 

introduced and defined as needed. 

 In recent work,7,9–15 following an older protocol,27 our group has used an 

implementation of the TFS method in which momentum- and energy-forbidden hops are 

treated differently.  When a trajectory experiences a linear-momentum-forbidden hop, the 

nuclear momentum along the hopping vector h is reversed, whereas when a trajectory 

experiences an energy-forbidden hop, the attempted hop is ignored.  We will refer to this 

method as the TFS-(−,+) method, where the “ –”  indicates that the nuclear momentum is 

reversed along h, and the “ +”  indicates that the nuclear momentum is not reversed along 

h.  In assessing whether this is the best procedure, we note that interstate coupling in the 

adiabatic representation is proportional to the scalar product of the velocity of the 

trajectory and d, and therefore it is independent of the components of the velocity 

orthogonal to d.  We also note that it is the energy in the modes orthogonal to d that 

differentiates the two different types of forbidden hops.  These considerations motivate a 

method that treats frustrated hops consistently.  In particular, along with the TFS-(−,+) 

method, we test two alternate schemes, namely the TFS-(+,+) and the TFS-(–,–) methods.  

In the TFS-(–,–) method, all frustrated hops are reflected along h.  The TFS-(–,–) method 

was the method used in the original implementation of the TFS method.30,38  In the 

TFS-(+,+) method, all frustrated hops are ignored.  The TFS-(+,+) method has also been 

suggested and tested in the literature.34 

 We have previously described a method for removing linear-momentum-

frustrated hops by rotating the hopping vector h within the zero angular momentum 

region of configuration space by the smallest amount that allows for hopping.12  In the 

present work, we call this the TFS-(R,+) method, where the “ R”  indicates that linear-

momentum-forbidden hops are allowed using a rotated hopping vector.  Rotating the 

hopping vector cannot be used to allow energy-forbidden hops, and when an energy-

forbidden hop is attempted, it is ignored. 
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IV.B.  Symmetrized-Speed and Symmetrized-Coupling Methods 

 The four variants of the TFS method discussed in the previous section, TFS-(−,+), 

TFS-(–,–), TFS-(+,+) and TFS-(R,+), differ in their treatment of the classical trajectory 

after a hopping attempt that is generated by the TFS algorithm turns out to be frustrated.  

An alternate approach is to modify the TFS algorithm to eliminate hopping attempts in 

regions where hops are classically forbidden.  For a trajectory following the path R(t), we 

can write the electronic wavefunction for a two-state system as 

  ))(()())(()()( 2211 ttcttct RR φ+φ=Ψ , (2) 

where 1φ  and 2φ are the adiabatic electronic basis functions for the ground-state and 

excited-state, respectively, and c1 and c2 are expansion coefficients that depend on the 

time t.  The electronic state population of state χ at time t is given by  

  
2

)()( tctn χχ = . (3) 

The TFS probability of hopping from the occupied electronic state k to the target state l is 

given by30 
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where 

  )Re(2 * dR ⋅−= kklkl ab � , (5) 

∆t is the change in time between hopping checks, akl is the electronic state coherence 

*
lk cc , and kR�  is the velocity of the system on the occupied surface k.  When a hop 

occurs, the internal energy is adjusted along the h vector, such that energy is conserved, 

i.e., according to the following equation 

  )()()()( lElTkEkT +=+ hh , (6) 

where Th(k) is the kinetic energy associated with the component of the nuclear linear 

momentum in the h direction when the trajectory is on surface k, and E(k) is the potential 

energy of surface k.   As mentioned previously, a hopping attempt is frustrated if the 

energy of the occupied state k is less than the energy of the target state l, and the kinetic 
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energy along h before the hopping attempt is less than the energy gap between the two 

potential energy surfaces, i.e., if 

 )()()( kElEkT −<h . (7) 

A method called the MDQT* method35,36 has been proposed for the case where 

eq. (4) is used, such that one uses a geometrically symmetrized speed (GS) to eliminate 

hopping attempts in regions where eq. (7) is true.  This method was justified35 by noting 

that while a TFS classical trajectory exists on only one potential energy surface, a 

quantum mechanical wavefunction has some probability density on both electronic 

surfaces, and hence the magnitude of the velocity that appears in the electronic dynamics 

through eq. (5) is replaced by a speed more representative of the motion on both surfaces.  

We test this method along with seven variants.  All eight methods eliminate frustrated 

hopping, by rewriting eq. (5) as 

  )),,(Re(2 * dRR lkklkl Fab ��−=′ , (8) 

where the exact form of ),,( dRR lkF ��  depends on the method.  (Note that akl is also a 

function of dR ⋅k
� , and ),,( dRR lkF ��  is used in place of dR ⋅k

�  when calculating akl for 

the eight new methods presented here.)  In the MDQT* method, which we will also call 

the GS(½) method, 
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where the velocity of the trajectory in the currently occupied electronic state is kR� .  The 

value of lR�  must be computed at each time step, where lR�  is the velocity that the 

trajectory would have if it were to hop to the other electronic surface.  Whenever a 

hopping attempt would be frustrated, lR�  does not exist, and ),,( dRR lkF ��  is set to zero.  

All frustrated hops are eliminated in this method.  The hopping probability does not go 

smoothly to zero as hopping becomes frustrated, because lR�  can have nonzero 

components orthogonal to d as hopping becomes frustrated.   

 We also note that in the GS(½) method,35,36 the components of the velocity 

orthogonal to d contribute to the electronic dynamics.  This might be considered 
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unphysical since, as previously mentioned, these components do not couple the adiabatic 

electronic states in the original equation for bkl given in eq. (5).  An alternate prescription 

that eliminates frustrated hopping with a smoothly vanishing hopping probability 

function is the geometrically symmetrized coupling scheme, GC(½).  In this formulation, 
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Using eq. (10), the hopping probability goes smoothly to zero as hopping becomes 

frustrated.  The GC(½) method symmetrizes only the component of the velocity which is 

along d; the components of the velocity orthogonal to d do not contribute to the 

electronic dynamics, which is consistent with eq. (5). 

 For completeness, we also test the AS(½) and AC(½) methods, in which the speed 

or the coupling is arithmetically symmetrized.  Specifically, 
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 The symmetrized coupling equations for the GS(½), GC(½), AS(½), and AC(½) 

methods defined in eqs. (9–12) weight the speed or coupling of both surfaces equally.  In 

general, the wavepacket is not evenly distributed between the two electronic states.  In 

order to incorporate this into the dynamics we define the method GC(nχ) by rewriting eq. 

(10) as 
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where nχ is the electronic state population of state χ.  With this form of FGC(nχ), the 

coupling terms that arise from each electronic surface are weighted according to their 

state populations nχ instead of arbitrarily by ½.  We also test the GS(nχ), AS(nχ), and 

AC(nχ) methods which are defined by replacing the ½ weighting factors that appear in 

eq. (9), eq. (11) and eq. (12), respectively, by nχ, specifically: 
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IV.C.  Absorbing Frustrated Hops 

 It is interesting to calculate the reaction and quenching probabilities that would be 

obtained by the TFS method if somehow frustrated trajectories were provided with the 

necessary energy to hop.  We can obtain a lower limit on the total nonadiabatic 

probability PN by re-analyzing the data from a TFS calculation and using only those 

trajectories that do not experience a frustrated hop to calculate the final probabilities and 

moments.  This method can be thought of as the result obtained by absorbing trajectories 

with frustrated hops to the upper electronic state and is called the AFH result. This result 

provides a lower limit on the TFS total nonadiabatic probability PN because the 

possibility that some of the re-assigned trajectories may hop back down to the lower state 

is not included.  Note that the TFS-AFH method cannot be used to compute the moments 

on the upper surface, but we do not consider such moments in the present paper. 

 

IV.D.  Semiclassical Ehrenfest Method 

 Although our main goal here is to determine the optimum procedure for trajectory 

surface hopping calculations when the surfaces are weakly coupled, we also carried out 

calculations using the semiclassical Ehrenfest version39,40 of the time-dependent self-

consistent-field method.  The calculations show that the Ehrenfest method fails badly for 

these systems, and this finding further motivates the present study.  The Ehrenfest results 

are discussed briefly in the appendix. 
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V.  Results 

 We tested all of the methods mentioned in this paper on the YRH(0.2) PEM at the 

(1.10, 0) set of initial conditions, and the results are summarized in Table 1.  We further 

tested the TFS-(–,+), TFS-(+,+), TFS-(–,–), TFS-(R,+), and GC(nχ) methods on all four 

of the YRH PEMs at each of the three different sets of initial conditions (1.10, 0), (1.10, 

6), and (1.02, 0) and on the set of three model MXH systems (SB, SL, and WL) for the 

(1.10, 0) set of initial conditions.  The detailed results of all of the semiclassical trajectory 

calculations can be found in the supporting information.42 

 Unless one single semiclassical method is best for all observables for all cases, the 

choice of “ best method”  is not unique.  Nevertheless, we will present some statistics that 

will help us to determine a reasonable (if not unique) answer to the question of which 

method is the most accurate and to quantitatively compare the overall accuracy of the 

several semiclassical methods.  First, unsigned errors were computed for each vibrational 

and rotational moment.  The quenching probabilities, reaction probabilities and total 

nonadiabatic probabilities vary by several orders of magnitude over the four YRH PEMs, 

and therefore the errors in these quantities were calculated using logarithms, in particular 

the unsigned logarithmic error in log10PX is given by 

  quantal
10

calsemiclassi
1010 loglog)(logUE XXX PPP −= , (17) 

where X = “ R” ,  “ Q”  or “ N” .  We also consider the error in the reactive branching ratio 

FR which is defined as the ratio of the reaction probability PR to the total nonadiabatic 

probability PN.  The unsigned errors for all of the semiclassical methods discussed in this 

paper for the YRH(0.20) PEM and the (1.10, 0) set of initial conditions are shown in 

Table 2.  The method with the lowest unsigned error is listed in bold.  If another 

semiclassical method has an uncertainty that overlaps that of the best method, that 

method is also listed in bold. 

 Mean unsigned errors (MUEs) were calculated for the TFS-(–,+), TFS-(+,+), 

TFS-(–,–), TFS-(R,+), and GC(nχ) semiclassical methods for the YRH systems by 

averaging over the twelve cases studied here (four YRH PEMs and three sets of initial 

conditions) and are presented in Table 3.  Table 4 shows the MUEs for five semiclassical 
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methods for the MXH systems, averaged over the three MXH PEMs.  In each column, 

the method with the smallest MUE is indicated with bold font.  By adding and subtracting 

the uncertainty of the observable from the nominal values, we obtain an upper and a 

lower bound on the value of the observables.  We can then compute an upper bound on 

the MUEs by calculating the MUE using either the upper or lower value of each 

observable, whichever results in the greatest error.  A lower bound on the MUE can be 

calculated in a similar way.  Taken together, these values were used to determine if the 

method with the lowest MUE is statistically different from the other methods.  If the 

method with the lowest MUE has an uncertainty in its MUE that overlaps with the 

uncertainty in the MUE of one or more the other methods, each method with overlapping 

MUEs is also listed in bold in Table 3. 

 Table 4 evaluates the semiclassical methods in a different way; in particular, it 

presents “ scorecards”  for the five semiclassical methods that we applied to all fifteen 

cases.  For each of the observables, a point is given to the method with the lowest 

absolute error (or absolute error of the logarithms for the probabilities) for each PEM and 

set of initial conditions.  If the best method has an error with an uncertainty that overlaps 

one or more of the other semiclassical methods, each of the winning methods receives a 

point.  Table 5 summarizes the data in Tables 3 and 4. 

 

VI.  Discussion 

 The term “ classically forbidden”  can have a variety of meanings in a technical 

sense, but it is nevertheless useful and easily understood as a label for certain kinds of 

events.  Consider, e.g., the expansion of the electronic wavefunction Ψ  given in eq. (2). 

At the start of the simulation, the system is in a pure state, i.e., )0( =tcχ  is a Kronecker 

delta, δχ2.  It would be reasonable to say that a hop down is classically forbidden 

whenever 2
1 )( ∞=tc  is less than ½.  With this definition, electronic transitions are 

classically forbidden for nearly every one of the more than twelve million trajectories 

calculated for the YRH systems in the present study.  In fact, less than 0.1% of 

trajectories for YRH(0.20) and YRH(0.10) have values of 2
1 )( ∞=tc  > ½, and the 
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maximum value of 2
1 )( ∞=tc  is 0.12 and 0.10 for YRH(0.03) and YRH(0.01), 

respectively.  One may therefore expect semiclassical methods to fail for systems with 

weakly coupled electronic states.  We find, however, that the semiclassical methods 

tested here provide reasonably accurate results, although the results are somewhat 

sensitive to the treatment of frustrated hops. 

 The weakly coupled nature of the electronic states of the YRH PEMs requires a 

large number of trajectories in order to generate good statistics.  The number of 

trajectories computed for each simulation is included in the supporting information42 and 

varies from five thousand to five hundred thousand.  Each trajectory takes about 1.2 

seconds of computer time on an IBM SP supercomputer with 375 MHz Power 3 

WinterHawk+ processors, and it is worthwhile to note that for these weakly coupled 

systems, the fully converged quantum mechanical calculations (with our unique, highly 

optimized computer program) are less expensive than some of the well converged (with 

respect to the number of trajectories) semiclassical trajectory methods.  Nevertheless, 

trajectory methods remain more easily programmable and affordable for large systems 

where accurate quantum dynamics become prohibitive, so it is important to test the 

reliability of the semiclassical methods.  

 The TFS-(–,+) method systematically overestimates the reaction and quenching 

probabilities for weakly coupled systems.  (This is also true for the TFS-(–,–) and 

TFS-(+,+) methods.  However, the choice of the “ +”  or “ –”  protocol is not important to 

the discussion in this and the next several paragraphs, and only the TFS-(–,+) method 

will be discussed.)  We can explain the trend in PR and PQ by noting that in the twelve 

YRH cases studied here, 25 – 80% of the TFS-(–,+) trajectories that finish the simulation 

on the lower electronic surface experience at least one frustrated hopping attempt.  

Trajectories that experience frustrated hopping attempts are trapped in the ground 

electronic state, leading to values of PR and PQ that are greater than the value demanded 

by the fewest-switches algorithm.  We can estimate a lower limit on the TFS transition 

probabilities by considering only those trajectories that do not experience any frustrated 

hops.  This is accomplished by the TFS-AFH method.  The TFS-(–,+) result, the 
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TFS-AFH result, and the quantum mechanical result for the reaction and quenching 

probabilities for the (1.10, 0) initial conditions are plotted in Figure 3.  For all four of the 

PEMs, the quantum mechanical transition probabilities are bracketed by the TFS-(–,+) 

and TFS-AFH results.  For (1.10, 6) and (1.02, 0), this trend is observed for three of the 

four PEMs.  The total nonadiabatic probability PN, which was defined above as PR + PQ, 

is bracketed by the TFS-(–,+) result and the TFS-AFH result for all four PEMs in the 

YRH family and all three sets of initial conditions. 

 For the YRH systems, the likelihood that a trajectory will hop to the ground-state 

twice is approximately equal to 2
NP , which is in most cases negligible compared to PN.  

(Note that this is not true for the more strongly coupled MXH systems where multiple 

hopping trajectories are an important part of the nonadiabatic dynamics.)  Therefore, for 

weakly coupled systems, the TFS-AFH result is not merely a lower limit on the TFS 

transition probabilities; the TFS-AFH result is approximately the result that would be 

obtained if every frustrated hopping attempt called for by the TFS algorithm were 

allowed to occur.  The fact that neither the TFS-(–,+) method nor the TFS-AFH method 

is accurate for the weakly coupled YRH systems motivates the search reported in this 

paper for a modification to the TFS method that allows some frustrated hops and removes 

(or ignores) others.   

 We note that the model YRH systems provide a dramatic example of the role that  

frustrated hopping plays in the sensitivity of TSH calculations to the choice of electronic 

representation.  As previously mentioned, all of the semiclassical calculations reported in 

this paper were carried out in the adiabatic representation, except when noted otherwise.  

The model YRH(0.20) system and the initial conditions (1.10, 0), TFS-(–,+) calculations 

carried out in the diabatic representation (called the TFS-(–,+)-di method) predict 

reaction probabilities ten times greater and quenching probabilities four times greater 

than those predicted by the adiabatic TFS-(−,+) calculations.  We note that ~97% of 

trajectories that finish the simulation in the lower diabatic state experience at least one 

frustrated hopping attempt, and that the quantum mechanical reaction and quenching 

probabilities (which are invariant to the choice of electronic representation) are bracketed 
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by the TFS-(–,+)-di and the TFS-AFH-di methods, just as they are for the adiabatic 

results.  We will not discuss the diabatic calculations further. 

 The symmetrized probability methods that weight the surfaces by ½ significantly 

over-estimate the reaction and quenching probabilities for the weakly coupled model 

YRH systems.  We have previously discussed how frustrated hopping causes the 

TFS-(−,+) method to overestimate PN.  The symmetrized methods eliminate frustrated 

hopping, but do so in a way that increases the probability of transitions to lower-energy 

states and decreases the probability of transitions from lower-energy states to higher-

energy states.  This can be seen from eqs. (9–16).  For any of the symmetrized methods, 

klb′  will be greater than the value of klb  for the TFS-(Prot-L, Prot-E) methods given by 

eq. (5) whenever the trajectory is in the higher-energy electronic state, and klb′  will 

always be less than klb  when the trajectory is in the lower-energy electronic state.    

 The more physical nχ-weighted methods have much lower errors in the 

probabilities than the ½-weighted methods.  For the YRH systems, 01 ≈n  and 12 ≈n , so 

the value of klb′  is nearly equal to klb  when the trajectory is in the higher-energy 

electronic state.  The value of klb′  is not equal to klb  when the trajectory is in the lower-

electronic state, but multiple hopping trajectories are not important in determining the 

dynamics of the YRH systems.  Therefore, the value of klb′  after a hop down to the 

lower-energy state is only important in determining whether or not the trajectory will 

experience a frustrated hop.  In the nχ-weighted methods, frustrated hops are eliminated, 

which has the same effect on the final observables as ignoring the frustrated hops, and the 

nχ-weighted methods give similar results to the TFS-(+,+) method.  The total 

nonadiabatic probability is systematically slightly higher than the TFS-(+,+) method due 

to the considerations discussed above for the ½-weighted methods.  Table 3 shows that 

the GC(nχ) method (which is, overall, the most accurate of the symmetrized methods 

tested here) predicts less accurate values for PN than any of the TFS-(Prot-L, Prot-E) 

methods. 



33 

 It should also be noted that the symmetrized methods cannot be used in the 

diabatic representation, because the diabatic coupling is not a function of the velocity of 

the classical trajectory.  We also note that the functions presented in eqs. (9–16) are not 

smooth functions, i.e., they have discontinuous first derivatives.  This arises from the fact 

that while the trajectory is traveling on a single electronic surface, eqs. (9–16) are 

functions of the velocity (or speed) of the trajectory on both electronic states.  This speed 

for the unoccupied state does not correspond to a physical path of a trajectory travelling 

on the unoccupied electronic surface.  For example, if on the occupied surface the 

trajectory experiences a turning point in one of its modes, the velocity in that mode will 

decrease, pass through zero, and increase from zero with a different sign.  The velocity 

computed for the unoccupied surface will also switch signs, but it will not necessarily go 

through zero, resulting in discontinuities in the velocity in that mode and its derivative.  

These discontinuities can affect the efficiency of the trajectory calculation if the 

equations for akl are integrated with an algorithm that requires smooth derivatives. 

 We will now turn our attention to the TFS-(–,+), TFS-(+,+), TFS-(–,–), and 

TFS-(R,+) methods.  The treatment of frustrated hops can have a significant effect the 

final observables.  The effect is greater for the weakly coupled YRH systems than for the 

more strongly coupled MXH systems, where multiple hopping trajectories are important.  

In general, the TFS-(+,+) method predicts the most accurate moments, the TFS-(–,–) 

method predicts the most accurate values of FR, and the TFS-(R,+) method predicts the 

most accurate values of PN. 

 Reflecting the nuclear momentum along d during a frustrated hop leads to 

increased error in the final moments and decreased error in the product branching ratio.  

We can explain the trend in FR by noting that for the (1.10, 0) and (1.02, 0) sets of initial 

conditions, the reaction probability PR for the TFS-(–,–) method is usually less than PR 

calculated by the TFS-(+,+) method, whereas the total nonadiabatic probability PN is 

relatively unchanged.  The upper electronic state in the reactive arrangement is 

energetically inaccessible, leading to a large number of trajectories that experience 

energy forbidden hops as they are exiting in this arrangement.  In the TFS-(+,+) method, 
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these frustrated hops are ignored, and the trajectories finish in the reactive arrangement.  

In the TFS-(–,–) method, trajectories with frustrated hopping attempts in this region are 

reflected in the direction of d, which has a large component parallel to the reactive 

channel.  This causes some trajectories to be reflected back into the interaction region, 

lowering the value of PR for the TFS-(–,–) method.  For the (1.10, 6) set of initial 

conditions, the increased energy in the rotational modes leads to an increased number of 

momentum-forbidden hops in the quenching product arrangement.  These trajectories are 

reflected back into the interaction region in the TFS-(–,–) method, lowering the value of 

PQ relative to the TFS-(+,+) method.  For all three sets of initial conditions, reflection of 

trajectories with frustrated hops back into the interaction region improves the agreement 

of the semiclassical value of FR with the quantum mechanical result.  However, the 

reflection along d also leads to increased errors in the final moments.   

 It is reasonable, therefore, to consider methods that combine the “ +”  and the “ –”  

protocols, such as the TFS-(–,+) method.  We have previously mentioned, however, that 

energy-forbidden and momentum-forbidden hops should be treated consistently.   Our 

results indicate that the TFS-(–,+) method is not the best strategy for combining the two 

reflection protocols, and it leads to less accurate final moments and the product branching 

ratios than either the TFS-(+,+) method or the TFS-(–,–) method.  It should also be noted 

that the d direction may not be the best direction in which to reflect the nuclear 

momentum during a frustrated hopping attempt when applying the “ –”  protocol. 

 We can draw a similar conclusion about the TFS-(R,+) method.  The TFS-(R,+) 

method predicts the best values for the total nonadiabatic probability PN.  We can explain 

this for the YRH systems, by observing that the quantum mechanical data lie between the 

TFS-(–,+) and the TFS-AFH data, as shown in Fig. 3.  The TFS-(R,+) method allows a 

subset of frustrated trajectories (namely those trajectories with momentum-frustrated 

hops) to occur, improving the agreement of the semiclassical value of PN with the 

quantum mechanical result.  We note, however, that because the probability of hopping to 

the ground state twice is small, the trajectories that hop to the upper electronic state using 

the rotated d vector do not significantly affect the final reaction or quenching moments.  

In other systems where multiple hopping trajectories are important, the rotated hopping 
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vector has a larger effect on the final moments, as observed in a previous study12 and in 

the present study for the rotational moments of the more strongly coupled MXH systems. 

 Although it would be desirable for Tables 3–5 to show a clearly superior method, 

it is evident that a semiclassical method that successfully solves the problem of 

classically forbidden hops must be more sophisticated than the simple methods tested in 

this paper.  We can, however, use the results of the present systematic study to suggest 

several important features that a method likely must have in order to successfully treat 

frustrated hops:  1)  Some, but not all, frustrated trajectories should be reflected.  2)  

Some, but not all, frustrated hops should somehow be allowed to hop to the upper 

electronic state.  3)  The criterion for reflection and the criterion for allowing classically 

forbidden hops should not be based on the partition of energy in modes orthogonal to d, 

i.e., energy-forbidden and momentum-forbidden hops should be treated consistently.  4)  

The use of symmetrized speed or coupling functions in the expression for the hopping 

probability systematically leads to increased reaction and quenching probabilities and 

thereby to worse agreement with accurate calculations; hence these methods are not 

recommended.   

 The choice of “ best method”  depends on the observable of interest, specifically: 

the TFS-(+,+) method performs best when calculating the final vibrational and rotational 

moments, the TFS-(–,–) method gives the best value for the reactive/nonreactive 

branching ratio FR, and the TFS-(R,+) method gives the best electronically nonadiabatic 

transition probabilities.  Although there is no method that is the best method for all 

observables, we see from Table 5 that, averaged over all observables, the TFS-(+,+) 

method is the most accurate of the semiclassical methods for modeling weakly coupled 

systems, where classically forbidden hops are a serious problem. 

 

VII.  Conclusions 

 We have presented fully converged quantum mechanical scattering calculations 

for four weakly coupled three-atom, two-state systems.  The systems are fully three-

dimensional and realistic.  The systems are specifically designed to be weakly coupled 

systems where the frustrated hopping problem is most serious; if one is to make a 
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recommendation about the best way to treat frustrated hopping, it is most appropriate to 

make that decision on the basis of studying systems where the various choices have the 

most significant impact on the results, i.e., systems where classically forbidden hops are 

an essential part of the problem.   

 We tested the TFS (Tully’ s fewest-switches) surface hopping method with three 

different sets of initial conditions for each of the four YRH PEMs, as well as with one set 

of initial conditions for a more strongly coupled set of three MXH PEMs.  We have 

shown that for weakly coupled systems, the TFS method systematically over-estimates 

the reaction and quenching probabilities due to the frequent occurrence of classically 

forbidden hopping attempts.  We have explored several variants of the TFS method 

which differ in their treatment of frustrated hopping and have shown that the treatment of 

frustrated hopping has a large effect on the final nonadiabatic transition probabilities and 

the final vibrational and rotational moments.  The effect of frustrated hops was shown 

here to be critically important for the correct treatment of systems with weakly coupled 

electronic states, and we know from previous work12,14 and additional studies presented 

here that the treatment of frustrated hops is also significant for more strongly coupled 

systems. 

 The TFS-(R,+) method is shown to predict the best total nonadiabatic 

probabilities.  The TFS-(+,+) scheme, which ignores all types of frustrated hops, predicts 

the best final vibrational and rotational moments, and the TFS-(–,–) method predicts the 

best product branching ratios.  Averaged over all observables, the TFS-(+,+) method is 

the best of the semiclassical methods tested here.  Although there is no method that 

completely solves the problem of classically frustrated hops, we have motivated the 

search for a more sophisticated protocol for the treatment of frustrated hops, and we have 

inferred several features that a successful method is likely to have. 

 We also tested eight symmetrized velocity and coupling methods.  These methods 

were shown to be extremely ill suited for modeling the dynamics of weakly coupled 

systems when the coupling contributions from both surfaces were weighted equally.  

Weighting using the electronic state populations significantly increased the accuracy of 

the method, and the results of the best symmetrized method are only slightly less 
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accurate, on the average, as those obtained using the best non-symmetrized coupling 

method.  However, the symmetrized methods are specialized to the adiabatic 

representation, systematically increase the nonadiabatic transition probabilities, and can 

cause numerical difficulties in their implementation. 

 Although, a major goal of this work was the comparison of various strategies for 

dealing with the frustrated hopping problem, we should not lose sight (in considering 

relative accuracy of the methods) of an important conclusion about absolute accuracy of 

multidimensional semiclassical methods in general for weakly coupled systems.  This is 

the most extensive test ever carried out (superceding Ref. 13) for weakly coupled 

multidimensional semiclassical nonadiabatic methods for three-body collisions in full 

three-dimensional space, featuring new quantum mechanical results and over twelve 

million trajectories.  The accurate quantal values of the probability PN of a nonadiabatic 

event (averaged over energy intervals of 0.06 eV) range from 3 x 10–5 to 1 x 10–1, or, on 

a logarithmic scale, log10PN ranges from –4.5 to –1.0.  And yet the five semiclassical 

methods that were applied to all twelve cases have mean unsigned errors in log10PN that 

range from 0.09 to 0.15 (corresponding to typical errors of only about 30%).  Thus, 

semiclassical methods are remarkably accurate even in these highly nonclassical weakly 

coupled systems.  This provides strong confirmation of the value of past detailed studies 

of these methods, and it also validates their use for applications.  Furthermore it 

motivates the continuing search for further refining these methods so that other aspects of 

the results, for example, the probabilities of nonadiabatic reaction, may become equally 

accurate. 
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Appendix:  Ehrenfest Method 

 Although this paper is primarily concerned with studying the treatment of 

frustrated hopping in trajectory surface hopping calculations, we also tested the 
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semiclassical Ehrenfest method39,40 for all four YRH systems and all three sets of initial 

conditions, for a total of twelve cases.  In the semiclassical Ehrenfest method, trajectories 

are propagated on a mixed potential energy surface which is a linear combination of the 

adiabatic surfaces weighted by the quantum mechanical state populations.  The 

semiclassical Ehrenfest method predicts no reaction because mixing in even a small 

amount of the upper surface prohibits the system from reaching the product.  However, 

we can still test the method for PQ, < v ′′ >, < j ′′ >, and PN. 

 Semiclassical Ehrenfest (SE) trajectories finish the simulation in a mixed stated in 

the Y + RH arrangement.  The final state electronic state populations n1 and n2 are used 

to assign electronic probability density to the upper and lower surfaces.  Here we test 

three different methods for assigning the electronic probability.  In the SE-H method, the 

trajectory is assigned to the closest electronic surface.  For the YRH(0.20) system, a 

small set of trajectories finish with a n1 > 0.5.  For the other PEMs, the SE-H method 

predicts zero quenching probability.  The SE-LSS method assigns a weight of n1 to the 

quenching probability.  This method has errors comparable to the TFS methods for the 

quenching and total nonadiabatic probabilities and the final moments.  The SE-QSS 

method assigns a weight of 2
1n  to the quenching probability if n1 < n2 (which is usually 

the case) and a weight of 1– 2
2n  if n1 > n2.  The results of the SE-QSS method are 

intermediate of the SE-LSS and the SE-H methods.  Table 6 gives MUEs of the 

semiclassical Ehrenfest methods.
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Table 1.  Reaction, quenching and total nonadiabatic transition probabilities, final vibrational and rotational 

moments, and product branching ratios for the YRH(0.20) system and the (1.10, 0) initial conditions. 

Method PR < v′ > < j′ > PQ <v ′′ > < j ′′ > FR PN 

Quantuma 0.010 0.83 12.4 0.047 0.90 3.35 0.176 0.057 
Average quantumb  0.012 0.93 12.1 0.045 0.90 3.30 0.213 0.057 
TFS-(–,+) 0.034 0.77 13.1 0.068 0.47 5.57 0.333 0.102 
TFS-AFH 0.007 0.81 13.9 0.020 0.35 7.92 0.256 0.027 
TFS-(+,+) 0.035 0.90 12.7 0.066 0.65 5.12 0.349 0.101 
TFS-(–,–) 0.027 0.81 12.7 0.073 0.45 5.77 0.272 0.101 
TFS-(R,+) 0.020 0.84 13.5 0.035 0.56 5.95 0.361 0.055 
GS(½) ≡ MDQT* 0.057 0.85 13.1 0.109 0.62 5.67 0.342 0.166 
GC(½) 0.097 0.95 12.3 0.165 0.66 5.41 0.369 0.262 
AS(½) 0.133 0.97 12.2 0.234 0.66 5.22 0.362 0.367 
AC(½) 0.062 0.86 13.0 0.116 0.65 5.14 0.349 0.178 
GS(nχ) 0.038 0.87 12.8 0.067 0.62 5.74 0.359 0.105 
GC(nχ) 0.040 0.89 12.8 0.075 0.63 5.61 0.346 0.115 
AS(nχ) 0.040 0.86 12.9 0.070 0.59 6.03 0.364 0.110 
AC(nχ) 0.035 0.85 13.0 0.063 0.59 5.90 0.360 0.098 
TFS-(–,+)-di 0.331 0.54 12.5 0.269 0.40 5.50 0.552 0.600 
TFS-AFH-di 0.001 1.00 14.0 0.015 0.14 5.26 0.075 0.016 
aQuantum mechanical result for the scattering energy 1.10 eV. 

bAverage of seven quantum mechanical calculations performed at the following scattering energies:  1.07, 

1.08, 1.09, 1.10, 1.11, 1.12 and 1.13 eV. 
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Table 2.  Unsigned errors in the semiclassical methods for the YRH(0.20) system and the (1.10,0) initial 

conditions.a 

Method  log10PR < v′ > < j′ >  log10PQ <v ′′ > < j ′′ >  FR log10PN Overallb 
TFS-(–,+)  0.45 0.16 0.99  0.18 0.43 2.27  0.12 0.25 0.62 
TFS-(+,+)  0.46 0.04 0.66  0.16 0.25 1.81  0.14 0.24 0.44 
TFS-(–,–)  0.35 0.12 0.61  0.21 0.45 2.47  0.06 0.24 0.52 
TFS-(R,+)  0.21 0.10 1.44  0.11 0.34 2.64  0.15 0.02 0.54 
GS(½) ≡ MDQT*  0.67 0.08 1.01  0.38 0.28 2.37  0.13 0.46 0.64 
GC(½)  0.90 0.01 0.22  0.56 0.24 2.11  0.16 0.66 0.61 
AS(½)  0.71 0.08 0.95  0.41 0.25 1.84  0.14 0.49 0.64 
AC(½)  1.04 0.03 0.07  0.71 0.24 1.91  0.15 0.81 0.68 
GS(nχ)  0.49 0.06 0.71  0.17 0.28 2.44  0.15 0.26 0.50 
GC(nχ)  0.51 0.05 0.75  0.22 0.27 2.30  0.13 0.30 0.50 
AS(nχ)  0.46 0.08 0.87  0.14 0.31 2.60  0.15 0.23 0.53 
AC(nχ)  0.52 0.07 0.81  0.19 0.31 2.73  0.15 0.28 0.55 
TFS-(–,+)-di  1.43 0.40 0.40  0.77 0.50 2.20  0.34 1.02 1.28 
aNumbers in bold indicate the method with the lowest error for each column.  See text for a complete discussion. 

bTo obtain the overall mean error, each column was normalized to have a mean value of 0.62, which is the 

average value of all unsigned errors in the table.  Then the eight columns for a given method were 

averaged. 
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Table 3.  Mean unsigned errors in the semiclassical methods averaged over 12 YRH cases and 3 MXH cases.a 

System Method  log10PR < v′ > < j′ >  log10PQ <v ′′ > < j ′′ >  FR log10PN Overallb 
YRHc TFS-(–,+)  0.36 0.25 1.4  0.11 0.36 2.2  0.11 0.13 0.59 

 TFS-(+,+)  0.36 0.15 1.3  0.10 0.22 1.9  0.11 0.11 0.47 
 TFS-(–,–)  0.29 0.25 1.4  0.13 0.38 2.2  0.07 0.13 0.58 
 TFS-(R,+)  0.30 0.15 1.5  0.13 0.25 2.1  0.13 0.09 0.51 
 GC(nχ)  0.37 0.18 1.5  0.13 0.23 2.1  0.11 0.15 0.54 
              

MXHd TFS-(–,+)  0.37 0.06 1.2  0.09 0.06 0.43  0.23 0.16 0.37 
 TFS-(+,+)  0.37 0.07 1.1  0.06 0.06 0.39  0.23 0.16 0.35 
 TFS-(–,–)  0.32 0.08 1.3  0.10 0.07 0.50  0.18 0.15 0.36 
 TFS-(R,+)  0.37 0.06 1.3  0.16 0.05 0.60  0.27 0.12 0.42 

 GC(nχ)  0.37 0.07 1.2  0.13 0.06 0.27  0.20 0.20 0.40 
aNumbers in bold indicate the method with the lowest error for each column.  See text for a complete 

discussion. 

bTo obtain the overall mean error, each column was normalized to have a mean value of 0.46, which is the 

average value of all unsigned errors in the table.  Then the eight columns for a given method were averaged. 

cAverage of the 12 unsigned errors from all four YRH PEMs (0.20, 0.10, 0.03, and 0.01) at all three sets of 

initial conditions. 

dAverage unsigned error from the three MXH PEMs (SB, SL and WL) at the (1.10, 0) set of initial conditions. 
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 Table 4.  Scorecard for the semiclassical methods summed over twelve YRH cases (four potential energy matrices and three sets of 

initial conditions) and three MHX cases (three potential energy matrices and one set of initial conditions). 

System Method  log10PR < v′ > < j′ >  log10PQ <v ′′ > < j ′′ >  FR log10PN  Probabilitiesa Momentsb 

YRHc TFS-(–,+)  3 4 7  6 1 2  2 4  15 14 
 TFS-(+,+)  1 9 11  6 8 8  0 7  14 36 
 TFS-(–,–)  5 4 8  2 0 3  9 6  22 15 
 TFS-(R,+)  9 9 7  8 5 5  0 8  25 26 
 GC(nχ)  3 9 8  5 5 3  3 4  15 25 
                

MXHd TFS-(–,+)  0 3 2  0 1 1  0 0  0 7 
 TFS-(+,+)  0 2 2  2 2 1  0 0  2 7 
 TFS-(–,–)  2 2 1  0 1 0  2 0  4 4 
 TFS-(R,+)  0 3 0  0 1 0  0 3  3 4 
 GC(nχ)  1 2 1  1 1 3  2 0  4 7 
aSum of the four probabilities columns. 

bSum of four moments columns. 

cTwelve cases: four YRH PEMs (0.20, 0.10, 0.03, and 0.01) at three sets of initial conditions. 

dThree cases:  MXH PEMs (SB, SL and WL) at the (1.10, 0) set of initial conditions. 
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Table 5.  Overall summary including both YRH and MXH systems 

 
Pointsa 

Normalized mean 
unsigned errorb 

Probabilities   
TFS-(–,+)  3.8 0.46 
TFS-(+,+)  5.5 0.43 
TFS-(–,–)  9.5 0.42 
TFS-(R,+)  9.2 0.48 
GC(nχ)  7.8 0.51 

Moments   
TFS-(–,+)  10.5 0.50 
TFS-(+,+)  16.0 0.39 
TFS-(–,–)  7.8 0.52 
TFS-(R,+)  10.5 0.45 
GC(nχ)  13.2 0.43 

Probabilities and moments   
TFS-(–,+)  14.3 0.48 
TFS-(+,+)  21.5 0.41 
TFS-(–,–)  17.3 0.47 
TFS-(R,+)  19.7 0.46 
GC(nχ)  21.0 0.47 
aFrom Table 4 with YRH and MXH weighted equally, specifically: ¼ YRH points + 

MXH points. 

bFirst, each column in Table 3 was normalized to have an average value of 0.46.  

Averages were then computed over the four probabilities, the four moments, or all eight 

observables with the YRH and MXH surfaces weighted equally. 
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Table 6.  Mean unsigned errors in the semiclassical methods for quenching and 

nonadiabatic probabilities for the four YRH systems and three sets of initial conditions 

(12 cases). 

Method log10PQ < v ′′ > < j ′′ > log10PN 

TFS-(–,+) 0.11 0.36 2.20 0.13 

TFS-(+,+) 0.10 0.22 1.92 0.11 

TFS-(–,–) 0.13 0.38 2.19 0.13 

TFS-(R,+) 0.13 0.25 2.14 0.09 

SE-Ha 1.12 0.03 1.79 1.21 

SE-LSS 0.13 0.86 0.89 0.17 

SE-QSS 1.67 0.88 1.29 1.75 

aThe Ehrenfest-Histogram method does not predict any quenching for YRH(0.10), 

YRH(0.03), or YRH(0.01) at any of the initial conditions.  The errors presented here are 

the average of the three initial conditions for the YRH(0.20) system. 
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Figure Captions 

Figure 1. Values of the diabatic potential energy matrix elements U11, U12 and U12 

plotted as a function of an approximate reaction coordinate for the ground state 

reaction Y + RH → R + YH at a fixed YRH bond angle of 120o.  The U12 

curve shown corresponds to the YRH(0.10) PEM.   Also shown are the two 

scattering energies used in this study, as well as the energies of several 

asymptotic rovibrational states (χ,v,j), where χ is the electronic quantum 

number, v is the vibrational quantum number, and j is the rotational quantum 

number. 

Figure 2. Contour plots of the adiabatic energies and the nonadiabatic coupling vector, 

plotted as functions of the translational Jacobi coordinate S, and the diatomic 

Jacobi coordinate s, with the Jacobi angle χ = 120o.  (a) Lower-energy 

adiabatic potential energy surface. (b)  Higher-energy adiabatic potential 

energy surface.  (c)  Magnitude of the nonadiabatic coupling vector |d|.  (d)  

Magnitude of the component of d that lies in the direction of the diatomic 

Jacobi coordinate.  (e)  Magnitude of the component of d that lies in the 

direction of the translational Jacobi coordinate.  (f) Magnitude of the 

component of d that lies in the direction of the Jacobi angle.  For panels (a) and 

(b), the lowest energy contours are at 0.2 and 0.8 eV, respectively, and the 

contour spacing is 0.2 eV.  For panels (c), (d), and (f) the contour spacing is 

10–4 1
0a − .  For panel (e), the contour spacing is 10–5 1

0a − . 

Figure 3. Reaction and quenching probabilities for the four YRH PEMs and for the 

initial conditions (1.10, 0).  The thick line represents the accurate quantum 

mechanical results.  The solid line with symbols and error bars represents the 

TFS-(–,+) result.  The dashed line with symbols and error bars represents the 

TFS-AFH result, i.e., the results for absorbing frustrated hops onto the upper 

surface.  Note that both axes are logarithmic. 
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Figure 2 
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Supporting Information 

S.1.  Functional Form of the Model YRH Potential Energy Matrices 

 The model YRH matrices are formulated in the diabatic representation by 

defining the matrix elements U11, U12 and U22.  The adiabatic potential energy surfaces 

and coupling terms can be obtained analytically from the diabatic matrix elements 

without approximation.  The YRH systems are defined to have no electronic angular 

momentum. 

 

S.1.1.  U11 Potential Energy Surface 

 The functional form of U11(R) is an extended LEPS (London-Eyring-Polanyi-

Sato) function of the form 

  ( ) ,)()(
2
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)()()()(

YH
2
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RQRQRQU

++−
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R
 (S-1) 

where 
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and R is the vector of internuclear distances:  RYH, RRH, RYR.  The exchange Jα(Rα) and 

Coulomb Qα(Rα) integrals are given by 

  ( ))()(
2
1

)( ααααααα RTwRSRQ += , (S-4) 

  ( ))()(
2
1

)( ααααααα RTwRSRJ −= , (S-5) 

where α = RH, YH, and YR.  The parameters wα were introduced to decrease the energy 

of the system in the interaction region.  This treatment is identical to introducing Sato 

parameters directly into eq. (S-1).  The singlets Sα(Rα) and triplets Tα(Rα) are Morse and 

anti-Morse curves, respectively, i.e., 
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  ( )[ ] ααααααα β DRRDRS −−−−=
20 )(exp1)( , (S-6) 

  ( )[ ] ααααααα β DRRDRT
2
120

2
1 )(exp1)( −−−+= . (S-7) 

The values of the parameters used in the representation of U11(R) are listed in Table S-1. 

 

S.1.2.  U22 Potential Energy Surface 

 The U22(R) potential energy surface is a weighted sum of diatomic terms 

  ( ) YH2RHRHYRYRRHRH22 *)Y()()()()( DEwRTRTRSU ++++=R , (S-8) 

where E(Y*) can be thought of as the electronic excitation energy of the model Y atom 

and w2 is a weighting factor that makes U22 more energetically accessible towards 

smaller RYR and RRH.  Sα(Rα) and Tα(Rα) are the same singlets and triplets that appear 

in the definition of U11(R).  The values of the parameters introduced for U22(R) are listed 

in Table S-1. 

 

S.1.3.  U12 Coupling Surface 

 The potential coupling surface is a rotated two-dimensional Gaussian in the YH 

and RH bond lengths 

     [ ] ,),(),(exp),( 2
RHYH

2
RHYH

max
12RHYH12 RRGRRGURRU yyxx αα −−=  (S-9) 

where Gx(RYH,RRH) and Gy(RYH,RRH) define the rotated coordinate system 

  ( ) ( ) θθ sincos),( *
YHYH

*
RHRHRHYH RRRRRRGx −+−=  (S-10) 

  ( ) ( ) θθ cossin),( *
YHYH

*
RHRHRHYH RRRRRRGy −−−= . (S-11) 

In the preceding set of equations, *
RHR  and *

YHR  define the location of maximum 

coupling, and θ is the angle of rotation of the Gaussian axes (Gx, Gy) with respect to the 

coordinates (RRH, RYH).  The Gaussian width parameters are given by αx and αy.  The 

values of the parameters used for U12(RYH,RRH) are listed in Table S-1.  The parameter 
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max
12U  defines the maximum potential coupling; this parameter is varied to create the 

family of matrices used in this study. 

 Note that the electronic matrix elements of the nuclear momentum vector are 

assumed to be zero in the diabatic representation.  Although the nuclear momentum 

coupling cannot be strictly vanishing everywhere, is can be neglected in the invariant-

space approximation, and we use that approximation here. 
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Table S-1.  Model YRH potential energy matrix parameters. 

Surface Parameter Value  Surface Parameter Value 

U11 DYH 4.3 eV   wYH 0.9  

 DRH 3.9 eV   wRH 0.9  

 DYR 0.4 eV   wYR 0.2  

 0
YHR  2.1 a0  U22 E(Y*) 0.36 eV 

 0
RHR  2.1 a0   w2 0.2  

 0
YRR  2.5 a0  U12   θ π/4 rad 

   βYH 1.0 1
0a −      αx 0.8 2

0a −  

   βRH 1.0 1
0a −      αy 1.0 2

0a −  

   βYR 1.5 1
0a −    *

RHR  2.2 a0 

 Ca 1.5 eV   *
YHR  4.2 a0 

 Cb 1.0 eV-2   max
12U  Variablea 

 Cc 0.15 1
0a −       

aThe value of this parameter is varied to create the four different PEMs that are discussed 

in this paper.  It has the values 0.20, 0.10, 0.03, and 0.01 eV. 
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Table S-2.  OWVP basis set parameters. 

Parameter Set I Set II  Parameter Set I Set II 

NFD 13 15  G
lS (α = 1, χ = 1) 1.64 1.54 

Nasymp 12 14  G
uS (α = 1, χ = 1) 7.910 8.155 

QV
1N  10 12  ∆S(α = 1, χ = 1) 0.110 0.105 
QV
2N  15 17  c(α = 1, χ = 1) 0.90 0.95 
QA
12N  250 270  eg,m (α = 1, χ = 1) 58 64 
QA
1N  60 70  No (α = 1, χ = 1) 27 27 
QA
2N  70 80  Nc (α = 1, χ = 1) 80 105 

N(HO) 80 90  Me (α = 1, χ = 1) 4640 6720 

Jmax (α = 1, χ = 1, v = 0) 28 31  Mg (α = 1, χ = 1) 1566 1728 

Jmax (α = 1, χ = 1, v = 1) 25 27  G
lS (α = 1, χ = 2) 1.58 1.50 

Jmax (α = 1, χ = 1, v = 2) 21 24  G
uS (α = 1, χ = 2) 8.21 8.50 

Jmax (α = 1, χ = 1, v = 3) 17 20  ∆S(α = 1, χ = 2) 0.130 0.125 

Jmax (α = 1, χ = 1, v = 4) 11 15  c(α = 1, χ = 2) 0.90 0.95 

Jmax (α = 1, χ = 1, v = 5)  9  2) 1,( eg, == ��m  52 57 

Jmax (α = 1, χ = 2, v = 0) 24 27  No (α = 1, χ = 2) 9 9 

Jmax (α = 1, χ = 2, v = 1) 20 23  Nc (α = 1, χ = 2) 64 84 

Jmax (α = 1, χ = 2, v = 2) 16 19  Me (α = 1, χ = 2) 3328 4788 

Jmax (α = 1, χ = 2, v = 3) 9 14  Mg (α = 1, χ = 2) 468 513 

Jmax (α = 1, χ = 2, v = 4)  5  G
lS (α = 2, χ = 1) 1.64 1.54 

Jmax (α = 2, χ = 1, v = 0) 33 35  G
uS (α = 2, χ = 1) 7.91 8.155 

Jmax (α = 2, χ = 1, v = 1) 30 32  ∆S(α = 2, χ = 1) 0.110 0.105 
Jmax (α = 2, χ = 1, v = 2) 27 29  c(α = 2, χ = 1) 0.90 0.95 

Jmax (α = 2, χ = 1, v = 3) 23 26  1) 2,( eg, == ��m  58 64 

Jmax (α = 2, χ = 1, v = 4) 19 22  No (α = 2, χ = 1) 52 52 
Jmax (α = 2, χ = 1, v = 5) 13 17  Nc (α = 2, χ = 1) 102 128 
Jmax (α = 2, χ = 1, v = 6) 2 12  Me (α = 2, χ = 1) 5916 8192 
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Table S-2(continued).  OWVP basis set parameters. 

Parameter Set I Set II  Parameter Set I Set II 
F
0S  1.0 0.9  Mg (α = 2, χ = 1) 3016 3328 

F
1)F( +NS  20 22  Me 13884 19700 

SDf  0.90 0.92  Mg 5050 5569 
SDN  40 42  M 18934 25269 
QR
lS  1.0 0.9  εk 12 14 
QR
uS  15 17  εrad 100 120 

NQS 170 180  εt 12 14 

NQGL 7 9  εW 12 14 

N(F) 1230 1662  εB 12 14 
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Table S-3.  Quantum mechanical reaction probability, quenching probability and final 

vibrational and rotational moments as a function of scattering energy for the initial 

condition Y + RH(v = 0, j = 0), and centered around 1.10 eV. 

System Energy  PR < v′ > < j′ >  PQ < v ′′ > < j ′′ > 

YRH(0.20) 1.07  1.05E-02 1.17 10.9  5.56E-02 0.96 2.88 
 1.08  1.27E-02 0.99 11.7  5.44E-02 0.95 2.84 
 1.09  1.06E-02 0.86 12.1  5.39E-02 0.92 3.29 
 1.10  1.01E-02 0.83 12.4  4.72E-02 0.90 3.35 
 1.11  1.36E-02 0.97 12.2  3.82E-02 0.89 3.15 
 1.12  1.37E-02 0.90 12.5  3.48E-02 0.84 3.68 
 1.13  1.40E-02 0.83 12.9  3.25E-02 0.83 3.95 
 Average  1.22E-02 0.93 12.1  4.52E-02 0.90 3.30 

YRH(0.10) 1.07  6.98E-03 0.76 12.2  3.85E-02 0.96 1.91 
 1.08  8.25E-03 0.81 11.9  3.43E-02 0.95 1.71 
 1.09  8.97E-03 0.79 12.0  3.08E-02 0.93 1.60 
 1.10  9.12E-03 0.76 12.4  2.95E-02 0.93 1.68 
 1.11  9.76E-03 0.80 12.7  2.83E-02 0.93 1.55 
 1.12  9.07E-03 0.76 13.1  2.86E-02 0.93 1.62 
 1.13  7.67E-03 0.67 13.2  2.98E-02 0.93 1.95 
 Average  8.55E-03 0.76 12.5  3.14E-02 0.94 1.72 

YRH(0.03) 1.07  7.11E-04 0.93 11.7  2.85E-03 0.97 2.29 
 1.08  7.44E-04 0.74 12.5  3.02E-03 0.95 2.62 
 1.09  8.68E-04 0.81 12.1  3.24E-03 0.94 3.02 
 1.10  1.07E-03 0.86 11.6  3.27E-03 0.93 3.24 
 1.11  1.20E-03 0.82 11.9  3.17E-03 0.91 3.44 
 1.12  1.20E-03 0.76 12.4  3.11E-03 0.90 3.52 
 1.13  1.19E-03 0.76 12.4  3.04E-03 0.90 3.50 
 Average  9.98E-04 0.81 12.1  3.10E-03 0.93 3.09 

YRH(0.01) 1.07  8.54E-05 1.00 11.4  2.90E-04 0.97 2.24 
 1.08  8.58E-05 0.79 12.5  3.04E-04 0.95 2.53 
 1.09  9.75E-05 0.85 12.1  3.29E-04 0.93 3.00 
 1.10  1.20E-04 0.89 11.6  3.38E-04 0.93 3.28 
 1.11  1.32E-04 0.82 11.9  3.35E-04 0.91 3.53 
 1.12  1.32E-04 0.77 12.3  3.31E-04 0.90 3.60 
 1.13  1.33E-04 0.78 12.4  3.29E-04 0.90 3.59 
 Average  1.12E-04 0.84 12.0  3.22E-04 0.93 3.11 
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Table S-4.  Quantum mechanical reaction probability, quenching probability and final 

vibrational and rotational moments as a function of scattering energy for the initial 

condition Y + RH(v = 0, j = 6), and centered around 1.10 eV. 

System Energy  PR < v′ > < j′ >  PQ < v ′′ > < j ′′ > 

YRH(0.20) 1.07  2.71E-02 1.06 11.6  7.71E-02 0.96 4.06 
 1.08  2.83E-02 1.06 12.3  1.22E-01 0.97 5.35 
 1.09  2.73E-02 1.23 11.3  1.32E-01 0.95 5.01 
 1.10  2.43E-02 1.20 11.6  1.39E-01 0.96 4.95 
 1.11  2.59E-02 1.11 12.4  1.91E-01 0.96 5.83 
 1.12  2.27E-02 0.92 12.8  1.74E-01 0.94 5.61 
 1.13  2.45E-02 0.91 12.8  1.20E-01 0.95 4.49 
 Average  2.57E-02 1.07 12.1  1.37E-01 0.95 5.04 

YRH(0.10) 1.07  2.24E-02 1.42 10.0  4.96E-02 0.94 5.04 
 1.08  2.47E-02 1.27 10.9  3.48E-02 0.89 6.13 
 1.09  2.63E-02 1.15 11.9  4.07E-02 0.84 5.82 
 1.10  2.54E-02 1.06 12.5  6.24E-02 0.89 5.19 
 1.11  2.44E-02 0.95 13.4  7.99E-02 0.95 5.15 
 1.12  2.69E-02 0.91 13.8  9.49E-02 0.95 5.45 
 1.13  2.61E-02 0.77 14.2  9.66E-02 0.96 5.01 
 Average  2.52E-02 1.08 12.4  6.56E-02 0.92 5.40 

YRH(0.03) 1.07  2.20E-03 1.46 10.1  1.61E-02 0.96 4.56 
 1.08  2.81E-03 1.41 10.3  1.01E-02 0.92 4.34 
 1.09  3.11E-03 1.27 11.4  8.68E-03 0.89 5.26 
 1.10  3.41E-03 1.10 12.6  1.16E-02 0.91 5.51 
 1.11  3.29E-03 1.02 13.2  1.31E-02 0.94 5.61 
 1.12  3.60E-03 0.99 13.5  1.39E-02 0.97 5.85 
 1.13  3.98E-03 0.92 13.8  1.51E-02 0.97 5.98 
 Average  3.20E-03 1.17 12.1  1.27E-02 0.94 5.30 

YRH(0.01) 1.07  2.55E-04 1.46 10.1  1.67E-03 0.95 4.49 
 1.08  3.20E-04 1.43 10.2  1.18E-03 0.92 4.45 
 1.09  3.55E-04 1.29 11.3  9.74E-04 0.88 5.27 
 1.10  3.92E-04 1.11 12.5  1.38E-03 0.91 5.53 
 1.11  3.81E-04 1.04 13.1  1.57E-03 0.94 5.60 
 1.12  4.15E-04 1.00 13.5  1.66E-03 0.98 5.90 
 1.13  4.62E-04 0.93 13.8  1.78E-03 0.97 6.02 
 Average  3.69E-04 1.18 12.1  1.46E-03 0.94 5.32 
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Table S-5.  Quantum mechanical reaction probability, quenching probability and final 

vibrational and rotational moments as a function of scattering energy for the initial 

condition Y + RH(v = 0, j = 0), and centered around 1.02 eV. 

System Energy  PR < v′ > < j′ >  PQ < v ′′ > < j ′′ > 

YRH(0.20) 0.99  1.19E-02 1.28 8.92  5.85E-02 0.96 2.23 
 1.00  4.89E-03 1.52 7.59  3.79E-02 0.98 2.10 
 1.01  8.28E-03 1.36 8.60  3.31E-02 0.95 2.91 
 1.02  1.18E-02 1.51 8.52  4.23E-02 0.97 3.12 
 1.03  1.13E-02 1.28 9.42  3.60E-02 0.93 2.84 
 1.04  7.98E-03 1.31 10.0  3.33E-02 0.95 2.53 
 1.05  6.28E-03 1.19 11.2  4.43E-02 0.94 3.04 
 Average  8.92E-03 1.35 9.18  4.08E-02 0.95 2.68 

YRH(0.10) 0.99  3.59E-04 1.59 7.31  2.64E-02 1.00 2.00 
 1.00  3.73E-04 1.63 6.45  2.49E-02 1.00 1.86 
 1.01  1.09E-03 1.59 6.97  2.70E-02 0.99 1.45 
 1.02  1.20E-03 1.38 8.72  2.98E-02 0.99 1.49 
 1.03  1.72E-03 1.03 10.7  3.64E-02 0.99 1.79 
 1.04  3.12E-03 0.89 11.5  4.17E-02 0.99 1.93 
 1.05  4.55E-03 0.84 12.0  4.20E-02 0.98 2.10 
 Average  1.77E-03 1.28 9.10  3.26E-02 0.99 1.80 

YRH(0.03) 0.99  1.25E-05 1.51 7.67  3.83E-03 1.00 2.55 
 1.00  1.90E-05 1.54 7.35  3.93E-03 1.00 2.47 
 1.01  7.48E-05 1.60 7.22  4.24E-03 1.00 2.67 
 1.02  2.15E-04 1.55 7.88  3.83E-03 0.99 2.78 
 1.03  2.94E-04 1.47 8.69  3.67E-03 0.99 2.29 
 1.04  5.42E-04 1.44 9.20  2.49E-03 0.98 1.66 
 1.05  5.77E-04 1.25 10.5  2.22E-03 0.98 1.77 
 Average  2.48E-04 1.48 8.37  3.46E-03 0.99 2.31 

YRH(0.01) 0.99  1.23E-06 1.51 7.68  4.31E-04 1.00 2.58 
 1.00  1.93E-06 1.52 7.47  4.30E-04 1.00 2.55 
 1.01  7.46E-06 1.59 7.32  4.78E-04 1.00 2.72 
 1.02  2.37E-05 1.55 7.89  4.42E-04 0.99 2.88 
 1.03  3.39E-05 1.47 8.69  4.36E-04 0.99 2.43 
 1.04  6.54E-05 1.45 9.13  2.97E-04 0.98 1.76 
 1.05  7.12E-05 1.29 10.4  2.30E-04 0.98 1.77 
 Average  2.92E-05 1.48 8.37  3.92E-04 0.99 2.38 
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Table S-6.  Reaction and quenching probabilities and vibrational and rotational moments for Y* + RH(0,0), 1.10 eV.a 

PEM  Method  
Ntraj 

(thousands) 
 PR < v′ > < j′ >  PQ < v ′′ > < j ′′ > 

YRH(0.20)  Quantum    1.22 x 10–2 0.93 12.1  4.52 x 10–2 0.90 3.30 

  TFS-(–,+)  100  (3.40 ± 0.01) x 10–2 0.77 ± 0.01 13.1 ± 0.1  (6.82 ± 0.08) x 10–2 0.47 ± 0.01 5.57 ± 0.05 

  TFS-AFH  100  (6.81 ± 0.01) x 10–3 0.81 ± 0.03 13.9 ± 0.2  (1.98 ± 0.04) x 10–2 0.35 ± 0.01 7.92 ± 0.10 

  TFS-(+,+)  100  (3.52 ± 0.06) x 10–2 0.90 ± 0.01 12.7 ± 0.1  (6.56 ± 0.08) x 10–2 0.65 ± 0.01 5.12 ± 0.06 

  TFS-(–,–)  100  (2.73 ± 0.05) x 10–2 0.81 ± 0.01 12.7 ± 0.1  (7.32 ± 0.08) x 10–2 0.45 ± 0.01 5.77 ± 0.05 

  TFS-(R,+)  100  (2.00 ± 0.04) x 10–2 0.84 ± 0.02 13.5 ± 0.1  (3.54 ± 0.06) x 10–2 0.56 ± 0.01 5.95 ± 0.08 

  GS(½) ≡ MDQT*  10  (5.67 ± 0.23) x 10–2 0.85 ± 0.03 13.1 ± 0.2  (1.09 ± 0.03) x 10–1 0.62 ± 0.01 5.67 ± 0.15 

  GC(½)  10  (9.65 ± 0.30) x 10–2 0.95 ± 0.03 12.3 ± 0.1  (1.65 ± 0.04) x 10–1 0.66 ± 0.01 5.41 ± 0.12 

  AS(½)  10  (1.33 ± 0.03) x 10–1 0.97 ± 0.02 12.2 ± 0.1  (2.34 ± 0.04) x 10–1 0.66 ± 0.01 5.22 ± 0.10 

  AC(½)  10  (6.21 ± 0.24) x 10–2 0.86 ± 0.03 13.0 ± 0.2  (1.16 ± 0.03) x 10–1 0.65 ± 0.01 5.14 ± 0.14 

  GS(nχ)  100  (3.76 ± 0.06) x 10–2  0.87 ± 0.01 12.8 ± 0.1  (6.71 ± 0.08) x 10–2 0.62 ± 0.01 5.74 ± 0.06 

  GC(nχ)  100  (3.97 ± 0.07) x 10–2 0.89 ± 0.01 12.8 ± 0.1  (7.52 ± 0.08) x 10–2 0.63 ± 0.01 5.61 ± 0.06 

  AS(nχ)  100  (4.00 ± 0.06) x 10–2 0.86 ± 0.01 12.9 ± 0.1  (6.98 ± 0.08) x 10–2 0.59 ± 0.01 6.03 ± 0.06 

  AC(nχ)  100  (3.53 ± 0.06) x 10–2 0.85 ± 0.01 13.0 ± 0.1  (6.28 ± 0.08) x 10–2 0.59 ± 0.01 5.90 ± 0.06 

  TFS-(–,+)-di  5  (3.31 ± 0.07) x 10–1 0.54 ± 0.02 12.5 ± 0.1  (2.69 ± 0.06) x 10–1 0.40 ± 0.01 5.50 ± 0.12 
  TFS-AFH-di  5  (1.20 ± 0.49) x 10–3 1.00 ± 0.33 14.0 ± 1.3  (1.48 ± 0.17) x 10–2 0.14 ± 0.04 5.26 ± 0.44 

YRH(0.10)  Quantum    8.55 x 10–3 0.76 12.5  3.14 x 10–3 0.94 1.72 

  TFS-(–,+)  100  (1.48 ± 0.04) x 10–2 0.79 ± 0.02 13.0 ± 0.1  (3.45 ± 0.06) x 10–2 0.47 ± 0.01 5.51 ± 0.07 

  TFS-AFH  100  (4.81 ± 0.22) x 10–3 0.88 ± 0.03 13.2 ± 0.2  (1.22 ± 0.03) x 10–2 0.38 ± 0.01 7.50 ± 0.12 

  TFS-(+,+)  100  (1.49 ± 0.04) x 10–2 0.89 ± 0.02 12.9 ± 0.1  (3.22 ± 0.06) x 10–2 0.66 ± 0.01 5.04 ± 0.08 

  TFS-(–,–)  100  (1.27 ± 0.04) x 10–2 0.87 ± 0.02 12.7 ± 0.1  (3.46 ± 0.06) x 10–2 0.46 ± 0.01 5.71 ± 0.07 

  TFS-(R,+)  100  (1.01 ± 0.03) x 10–2 0.81 ± 0.02 13.5 ± 0.1  (1.92 ± 0.04) x 10–2 0.53 ± 0.01 6.24 ± 0.11 

  GC(nχ)  100  (1.62 ± 0.04) x 10–2 0.91 ± 0.02 12.7 ± 0.1  (3.61 ± 0.06) x 10–2 0.62 ± 0.01 5.51 ± 0.08 
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Table S-6(continued).  Reaction and quenching probabilities and vibrational and rotational moments for Y* + RH(0,0), 1.10 eV.a 

PEM  Method  
Ntraj 

(thousands) 
 PR < v′ > < j′ >  PQ < v ′′ > < j ′′ > 

YRH(0.03)  Quantum    9.98 x 10–4 0.81 12.1  3.10 x 10–3 0.93 3.09 

  TFS-(–,+)  200  (1.89 ± 0.10) x 10–3 0.82 ± 0.04 13.0 ± 0.2  (4.09 ± 0.14) x 10–3 0.50 ± 0.02 5.39 ± 0.14 

  TFS-AFH  200  (6.70 ± 0.58) x 10–4 0.97 ± 0.06 12.4 ± 0.3  (1.60 ± 0.09) x 10–3 0.51 ± 0.03 6.28 ± 0.26 

  TFS-(+,+)  200  (1.95 ± 0.10) x 10–3 0.84 ± 0.04 12.8 ± 0.2  (4.15 ± 0.14) x 10–3 0.64 ± 0.02 4.98 ± 0.16 

  TFS-(–,–)  200  (1.44 ± 0.08) x 10–3 0.89 ± 0.04 12.6 ± 0.3  (4.45 ± 0.15) x 10–3 0.49 ± 0.02 5.53 ± 0.14 

  TFS-(R,+)  200  (1.36 ± 0.08) x 10–3 0.84 ± 0.05 13.3 ± 0.3  (2.38 ± 0.11) x 10–3 0.60 ± 0.02 5.45 ± 0.21 

  GC(nχ)  200  (2.02 ± 0.10) x 10–3 0.86 ± 0.04 13.2 ± 0.2  (4.29 ± 0.15) x 10–3 0.67 ± 0.04 4.99 ± 0.15 

YRH(0.01)  Quantum    1.12 x 10–4 0.84 12.0  3.22 x 10–4 0.93 3.11 

  TFS-(–,+)  300  (2.57 ± 0.29) x 10–4 0.83 ± 0.09 12.6 ± 0.5  (4.50 ± 0.39) x 10–4 0.56 ± 0.04 4.90 ± 0.35 

  TFS-AFH  300  (1.00 ± 0.18) x 10–4 0.97 ± 0.13 12.4 ± 0.7  (1.70 ± 0.24) x 10–4 0.51 ± 0.07 5.76 ± 0.65 

  TFS-(+,+)  300  (1.83 ± 0.25) x 10–4 0.87 ± 0.10 12.3 ± 0.6  (4.40 ± 0.38) x 10–4 0.64 ± 0.04 4.97 ± 0.39 

  TFS-(–,–)  300  (1.73 ± 0.24) x 10–4 0.90 ± 0.11 12.6 ± 0.6  (5.67 ± 0.43) x 10–4 0.48 ± 0.04 5.49 ± 0.33 

  TFS-(R,+)  300  (1.23 ± 0.20) x 10–4 0.73 ± 0.13 13.1 ± 0.8  (2.33 ± 0.28) x 10–4 0.66 ± 0.05 4.27 ± 0.45 

  GC(nχ)  300  (2.43 ± 0.28) x 10–4 0.81 ± 0.08 13.0 ± 0.6  (5.47 ± 0.43) x 10–4 0.62 ± 0.04 5.15 ± 0.36 

aThe values after the ± sign are the 1σ statistical uncertainties due to the finite number of trajectories. 
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Table S-7.  Reaction and quenching probabilities and vibrational and rotational moments for Y* + RH(0,6), 1.10 eV. 

PEM  Method  
Ntraj 

(thousands) 
 PR <v'> <j'>  PQ <v''> <j''> 

YRH(0.20)  Quantum    2.57 x 10–2 1.07 12.1  1.37 x 10–1 0.95 5.04 
  TFS-(–,+)  50  (2.57 ± 0.07) x 10–2 0.81 ± 0.02 12.0 ± 0.1  (1.74 ± 0.02) x 10–1 0.71 ± 0.00 5.90 ± 0.04 
  TFS-AFH  50  (2.14 ± 0.21) x 10–3 1.33 ± 0.07 11.9 ± 0.4  (1.20 ± 0.01) x 10–1 0.79 ± 0.01 5.62 ± 0.05 
  TFS-(+,+)  50  (1.58 ± 0.06) x 10–2 0.99 ± 0.03 12.6 ± 0.0  (1.71 ± 0.02) x 10–1 0.78 ± 0.00 6.03 ± 0.05 
  TFS-(–,–)  50  (2.51 ± 0.07) x 10–2 0.90 ± 0.02 11.7 ± 0.1  (1.76 ± 0.02) x 10–1 0.70 ± 0.00 5.89 ± 0.04 
  TFS-(R,+)  50  (7.42 ± 0.38) x 10–3 1.13 ± 0.04 12.2 ± 0.3  (1.37 ± 0.02) x 10–1 0.79 ± 0.00 5.77 ± 0.05 
  GC(nχ)  50  (1.85 ± 0.06) x 10–2 0.97 ± 0.03 12.8 ± 0.1  (2.08 ± 0.02) x 10–1 0.78 ± 0.00 6.03 ± 0.04 

YRH(0.10)  Quantum    2.52 x 10–2 1.08 12.4  6.56 x 10–2 0.92 5.40 
  TFS-(–,+)  75  (1.40 ± 0.04) x 10–2 0.98 ± 0.02 11.8 ± 0.1  (1.15 ± 0.01) x 10–1 0.77 ± 0.00 6.14 ± 0.04 
  TFS-AFH  75  (2.65 ± 0.19) x 10–3 1.25 ± 0.05 11.9 ± 0.3  (8.87 ± 0.10) x 10–2 0.82 ± 0.00 5.91 ± 0.05 
  TFS-(+,+)  75  (1.37 ± 0.04) x 10–2 0.98 ± 0.03 12.8 ± 0.1  (1.14 ± 0.01) x 10–1 0.80 ± 0.00 6.45 ± 0.04 
  TFS-(–,–)  75  (1.44 ± 0.04) x 10–2 0.97 ± 0.02 11.9 ± 0.1  (1.17 ± 0.01) x 10–1 0.76 ± 0.00 6.02 ± 0.04 
  TFS-(R,+)  75  (6.48 ± 0.29) x 10–3 1.15 ± 0.04 11.9 ± 0.2  (1.03 ± 0.01) x 10–1 0.82 ± 0.00 6.09 ± 0.04 
  GC(nχ)  75  (1.56 ± 0.05) x 10–2 1.04 ± 0.02 12.6 ± 0.1  (1.29 ± 0.01) x 10–1 0.79 ± 0.00 6.57 ± 0.04 

YRH(0.03)  Quantum    3.20 x 10–3 1.17 12.1  12.7 x 10–2 0.94 5.30 
  TFS-(–,+)  100  (2.33 ± 0.15) x 10–3 1.00 ± 0.05 12.4 ± 0.3  (1.41 ± 0.04) x 10–2 0.76 ± 0.01 6.72 ± 0.10 
  TFS-AFH  100  (6.30 ± 0.79) x 10–4 1.32 ± 0.09 12.1 ± 0.5  (1.09 ± 0.03) x 10–2 0.82 ± 0.01 6.64 ± 0.11 
  TFS-(+,+)  100  (2.04 ± 0.14) x 10–3 1.09 ± 0.06 12.9 ± 0.3  (1.46 ± 0.04) x 10–2 0.78 ± 0.01 7.17 ± 0.10 
  TFS-(–,–)  100  (1.83 ± 0.14) x 10–3 1.08 ± 0.06 12.2 ± 0.4  (1.44 ± 0.04) x 10–2 0.75 ± 0.01 6.56 ± 0.10 
  TFS-(R,+)  100  (1.44 ± 0.12) x 10–3 1.15 ± 0.06 12.4 ± 0.4  (1.22 ± 0.03) x 10–2 0.81 ± 0.01 6.65 ± 0.10 
  GC(nχ)  100  (2.35 ± 0.15) x 10–3 1.12 ± 0.05 12.4 ± 0.3  (1.40 ± 0.04) x 10–2 0.74 ± 0.01 7.62 ± 0.10 

YRH(0.01)  Quantum    3.69 x 10–4 1.18 12.1  1.46 x 10–3 0.94 5.32 
  TFS-(–,+)  200  (1.90 ± 0.31) x 10–4 1.03 ± 0.14 12.0 ± 0.9  (1.75 ± 0.09) x 10–3 0.73 ± 0.02 7.11 ± 0.20 
  TFS-AFH  200  (6.00 ± 1.73) x 10–5 1.17 ± 0.23 12.7 ± 1.4  (1.40 ± 0.08) x 10–3 0.78 ± 0.02 7.07 ± 0.21 
  TFS-(+,+)  200  (2.30 ± 0.34) x 10–4 1.04 ± 0.12 13.2 ± 0.8  (1.70 ± 0.09) x 10–3 0.79 ± 0.02 7.29 ± 0.20 
  TFS-(–,–)  200  (2.05 ± 0.32) x 10–4 1.22 ± 0.13 11.2 ± 0.8  (1.79 ± 0.09) x 10–3 0.73 ± 0.02 6.96 ± 0.20 
  TFS-(R,+)  200  (1.85 ± 0.30) x 10–4 1.14 ± 0.12 11.9 ± 0.7  (1.33 ± 0.08) x 10–3 0.85 ± 0.02 6.72 ± 0.20 
  GC(nχ)  200  (2.45 ± 0.35) x 10–4 0.96 ± 0.11 13.9 ± 0.5  (1.72 ± 0.09) x 10–3 0.74 ± 0.02 7.79 ± 0.21 
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Table S-8.  Reaction and quenching probabilities and vibrational and rotational moments for Y* + RH(0,0), 1.02 eV. 

PEM  Method  Ntraj 
(thousands) 

 PR <v'> <j'>  PQ <v''> <j''> 

YRH(0.20)  Quantum    8.92 x 10–3 1.35 9.18  4.08 x 10–2 0.95 2.68 
  TFS-(–,+)  100  (2.29 ± 0.05) x 10–2 0.87 ± 0.02 11.9 ± 0.1  (7.60 ± 0.08) x 10–2 0.54 ± 0.01 4.73 ± 0.04 
  TFS-AFH  100  (3.28 ± 0.18) x 10–3 1.05 ± 0.04 11.7 ± 0.2  (3.11 ± 0.05) x 10–2 0.72 ± 0.01 4.54 ± 0.06 
  TFS-(+,+)  100  (2.24 ± 0.05) x 10–2 1.09 ± 0.02 11.3 ± 0.1  (7.24 ± 0.08) x 10–2 0.80 ± 0.00 3.82 ± 0.04 
  TFS-(–,–)  100  (1.74 ± 0.04) x 10–2 0.80 ± 0.02 11.8 ± 0.1  (8.19 ± 0.09) x 10–2 0.53 ± 0.01 4.60 ± 0.04 
  TFS-(R,+)  100  (1.48 ± 0.04) x 10–2 1.02 ± 0.02 11.7 ± 0.1  (4.53 ± 0.07) x 10–2 0.74 ± 0.01 4.38 ± 0.05 
  GC(nχ)  100  (2.51 ± 0.05) x 10–2 1.04 ± 0.02 11.5 ± 0.1  (8.08 ± 0.09) x 10–2 0.80 ± 0.00 4.05 ± 0.04 

YRH(0.10)  Quantum    1.77 x 10–3 1.28 9.10  3.26 x 10–2 0.99 1.80 
  TFS-(–,+)  100  (8.35 ± 0.29) x 10–3 0.87 ± 0.03 12.0 ± 0.2  (3.08 ± 0.05) x 10–2 0.51 ± 0.01 4.97 ± 0.06 
  TFS-AFH  100  (2.03 ± 0.14) x 10–3 1.02 ± 0.05 11.8 ± 0.3  (1.37 ± 0.04) x 10–2 0.63 ± 0.01 5.19 ± 0.09 
  TFS-(+,+)  100  (8.28 ± 0.29) x 10–3 1.03 ± 0.03 11.7 ± 0.2  (2.97 ± 0.05) x 10–2 0.76 ± 0.01 4.20 ± 0.07 
  TFS-(–,–)  100  (6.70 ± 0.26) x 10–3 0.84 ± 0.03 11.8 ± 0.2  (3.04 ± 0.05) x 10–2 0.51 ± 0.01 4.76 ± 0.06 
  TFS-(R,+)  100  (5.39 ± 0.23) x 10–3 0.98 ± 0.03 12.0 ± 0.2  (1.88 ± 0.04) x 10–2 0.68 ± 0.01 4.86 ± 0.08 
  GC(nχ)  100  (8.96 ± 0.30) x 10–3 1.08 ± 0.03 11.5 ± 0.1  (3.16 ± 0.06) x 10–2 0.73 ± 0.01 4.53 ± 0.07 

YRH(0.03)  Quantum    2.48 x 10–4 1.48 8.37  3.46 x 10–3 0.99 2.31 
  TFS-(–,+)  200  (1.05 ± 0.07) x 10–3 0.89 ± 0.05 12.0 ± 0.3  (3.41 ± 0.13) x 10–3 0.53 ± 0.02 5.17 ± 0.13 
  TFS-AFH  200  (3.05 ± 0.39) x 10–4 0.93 ± 0.09 11.9 ± 0.5  (1.62 ± 0.09) x 10–3 0.62 ± 0.03 5.28 ± 0.20 
  TFS-(+,+)  200  (8.80 ± 0.66) x 10–4 1.06 ± 0.06 11.7 ± 0.3  (3.62 ± 0.13) x 10–3 0.70 ± 0.02 4.93 ± 0.14 
  TFS-(–,–)  200  (7.40 ± 0.61) x 10–4 0.85 ± 0.07 12.0 ± 0.3  (3.84 ± 0.14) x 10–3 0.51 ± 0.02 5.13 ± 0.13 
  TFS-(R,+)  200  (7.25 ± 0.60) x 10–4 1.05 ± 0.06 11.6 ± 0.3  (2.29 ± 0.11) x 10–3 0.58 ± 0.02 5.57 ± 0.17 
  GC(nχ)  200  (1.05 ± 0.07) x 10–3 1.01 ± 0.05 11.8 ± 0.3  (3.61 ± 0.13) x 10–3 0.69 ± 0.02 4.79 ± 0.14 

YRH(0.01)  Quantum    2.92 x 10–5 1.48 8.37  3.92 x 10–4 0.99 2.38 
  TFS-(–,+)  500  (1.16 ± 0.15) x 10–4 0.83 ± 0.10 12.0 ± 0.5  (4.16 ± 0.29) x 10–4 0.47 ± 0.03 5.64 ± 0.24 
  TFS-AFH  500  (4.00 ± 0.89) x 10–5 1.25 ± 0.15 10.9 ± 0.9  (1.96 ± 0.20) x 10–4 0.51 ± 0.05 6.39 ± 0.35 
  TFS-(+,+)  500  (9.00 ± 2.12) x 10–5 1.56 ± 0.14   8.9 ± 0.9  (4.05 ± 0.45) x 10–4 0.75 ± 0.05 4.41 ± 0.40 
  TFS-(–,–)  500  (8.50 ± 2.06) x 10–5 0.82 ± 0.13 12.7 ± 0.6  (4.60 ± 0.48) x 10–4 0.39 ± 0.05 5.30 ± 0.36 
  TFS-(R,+)  500  (4.50 ± 1.50) x 10–5 1.22 ± 0.21 11.8 ± 0.9  (2.25 ± 0.34) x 10–4 0.71 ± 0.07 5.20 ± 0.53 
  GC(nχ)  500  (1.14 ± 0.15) x 10–4 0.96 ± 0.10 12.3 ± 0.6  (4.10 ± 0.29) x 10–4 0.75 ± 0.03 4.48 ± 0.26 
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Table S-9.  Reaction and quenching probabilities and vibrational and rotational moments 

for the MXH systems with the (1.10, 0) initial conditions.a 

PEM  Method  PR < v′ > < j′ >  PQ < v ′′ > < j ′′ > 

MXH(SB)  Quantumb  0.15 0.26 7.76  0.32 0.82 3.64 
  TFS-(–,+)b  0.45 0.26 6.49  0.35 0.73 3.42 
  TFS-AFH  0.21 0.25 6.60  0.14 0.97 3.69 
  TFS-(+,+)  0.47 0.23 6.74  0.32 0.82 3.36 
  TFS-(–,–)  0.35 0.25 6.72  0.42 0.70 3.22 
  TFS-(R,+)  0.45 0.24 6.42  0.27 0.88 3.18 
  GC(nχ)  0.53 0.23 6.52  0.37 0.84 3.53 

MXH(SL)  Quantumb  0.20 0.23 8.11  0.49 0.57 3.56 
  TFS-(–,+)b  0.53 0.33 6.89  0.35 0.60 3.07 
  TFS-AFH  0.37 0.32 7.15  0.13 0.65 2.82 
  TFS-(+,+)  0.54 0.32 7.14  0.34 0.56 3.00 
  TFS-(–,–)  0.49 0.34 6.77  0.37 0.61 2.98 
  TFS-(R,+)  0.53 0.33 6.79  0.38 0.66 2.93 

  GC(nχ)  0.52 0.33 6.69  0.40 0.52 3.23 

MXH(WL)  Quantumb  0.37 0.28 8.34  0.17 0.49 3.19 
  TFS-(–,+)b  0.61 0.35 7.21  0.14 0.58 2.68 
  TFS-AFH  0.53 0.35 7.33  0.07 0.50 2.80 
  TFS-(+,+)  0.57 0.39 6.98  0.17 0.34 2.87 
  TFS-(–,–)  0.60 0.39 6.90  0.15 0.53 2.67 
  TFS-(R,+)  0.59 0.36 7.01  0.12 0.49 2.47 
  GC(nχ)  0.51 0.38 7.32  0.30 0.37 2.82 

aThe Monte Carlo errors for PR, PQ, and < v′ > are no greater than 0.01, for < v ′′ > are no 

greater than 0.02, and for < j′ > and < j ′′ > are no greater than 0.2. 

bThe quantum and TFS-(–,+) results are taken from Ref. 15. 
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Chapter Three 

3 
Photodissociation of LiFH and NaFH van der Waals Complexes:   

A Semiclassical Trajectory Study 

 

 

 

I.  Introduction 

There has been recent interest in the transition-state spectroscopy1,2 of metal-

halide “ harpooning” 3–8 reactions: 

  
�
�
�

+
+

→→⋅⋅⋅
, HXM

  HMX
MXH*HXM

h�
 

(R2)
(R1)

 

where X is a halogen, M is a metal atom, “ … ”  indicates a weak van der Waals 

interaction, and “ *”  indicates electronic excitation.  These processes provide a means of 

probing the transition-state of the M* + HX reaction.  The excited-state complex 

(exciplex) that is formed by vertically exciting the system from the van der Waals well is 

characterized by a relatively deep well in the excited-state (e.g., ~0.5 eV for 

Na… FH9,10).  The long-lived exciplex may decay by one of two pathways.  In the 

“ harpooning”  process (R1), the change in the electronic state of the system weakens the 

HX bond and leads to the formation of MX product.  In the competing process (R2), the 

system relaxes to the ground electronic state by exciting the internal vibrational and 

rotational modes of HX.  In addition, when the excitation energy is high enough, the 

system may also decay into excited M* and HX.   

 Here we consider the (R1) and (R2) processes for the cases where M = Li or Na 

and X = F.  Both the potential energy surfaces9–25 and dynamics18,22–37 of the ground 

electronic states of the LiFH and NaFH systems have been widely studied.  The coupled 

potential energy surfaces and coupled-state dynamics of LiFH19 and NaFH7,9,10,38 have 
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also been studied in a more limited sense.  The NaFH and LiFH systems are similar in 

many respects to the coupled-state problem in the well studied LiH239–42 and NaH239,43–

50 systems, which may be interpreted to first approximation by the ionic-covalent 

intersection model of Magee et al.51  A critical difference though is that LiH2 and NaH2 

have conical intersections of their adiabatic ground- and excited-state surfaces, whereas 

LiFH and NaFH have appreciable energy gaps at all geometries. 

 We have previously presented38 collinear quantum mechanical wave packet and 

semiclassical trajectory results for the NaFH system.  These results show qualitative 

disagreement between the semiclassical and quantum calculations, presumably due to the 

deep quantum nature of the electronic transitions in systems with large adiabatic energy 

gaps.  Our group has recently developed several improved methods52–54 for simulating 

processes involving electronic state changes that may be more applicable to large-gap 

systems.  These methods are based on the semiclassical Ehrenfest55 method and have the 

desirable feature that trajectories decohere to a single electronic state in the absence of 

electronic-state coupling.  One of these new methods, namely the natural decay of 

mixing54 (NDM) algorithm, is general enough to treat photodissociation, and we will 

apply this method to the photodissociation of Li… FH and Na… FH in the present paper.  

For comparison we also consider the fewest-switches56 surface-hopping56–70 scheme 

suggested by Tully. 

 In this article we report fully three-dimensional semiclassical dynamics 

calculations in which we modeled the photodissociation of the LiFH and NaFH systems 

using the NDM self-consistent potential method and Tully’ s fewest-switches (TFS) 

surface-hopping method.  Both methods may be formulated in terms of the adiabatic or 

the diabatic representations.  It has been suggested70 that the adiabatic representation 

should always be preferred, although we have found that in some cases more accurate 

results are obtained using the diabatic electronic states.71  In the present work, we find 

that surface-hopping is more sensitive to the choice of electronic representation than the 

NDM method.  The results of the NDM and TFS methods agree with each other only 

qualitatively, and we discuss the differences in terms of the problem of frustrated 
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hopping69,72 that plagues most TFS calculations.  The dynamics of LiFH is also 

compared to that of NaFH and interpreted in terms of the features of the LiFH and NaFH 

coupled potential energy surfaces. 

 The calculations on NaFH employ an improved version of a set of coupled 

potential energy surfaces presented previously,10 and the calculations on LiFH employ a 

new set of coupled potential energy surfaces described briefly in Sec. II.A.  Section II.B 

presents the improved potential energy surfaces for NaFH.  Section III presents the 

dynamics calculations.  Sections IV and V contain the results and discussion, and Sec. V 

gives a brief summary. 

 

II.  LiFH and NaFH Potential Energy Surfaces 

II.A.  LiFH Potential Energy Surfaces 

We have performed high-level ab initio calculations for the two lowest-energy 

adiabatic states of LiFH.  The electronic structure calculations used in the present work 

are a subset of the calculations that will be presented in more detail in a future 

publication.73  For the present work, more than 4000 calculations were performed over a 

dense grid of nuclear geometries using the MRDCI variant of the multireference 

configuration interaction method.74–76  Specifically, the HF internuclear distance was 

varied from 1.2 – 7.0 bohr, and the LiF internuclear distance was varied from 2.0 to 15 

bohr.  This two-dimensional grid was repeated at five Li-F-H bond angles: 45, 70, 90, 

110, and 179.99o.  Additional points were calculated for other Li-F-H angles including 

0.01, 130 and 150o  The resulting dense grid of adiabatic energies was used to develop a 

coupled set of analytic potential energy surfaces for the two lowest-energy electronic 

states, as discussed next. 

Coupled potential energy surfaces may be expressed in either the adiabatic or the 

diabatic representation.  We fit the LiFH surfaces in the diabatic (more precisely, 

quasidiabatic77–89) representation, because the coupling between quasidiabatic states is 

scalar, whereas the coupling between adiabatic states is a vector quantity and hence 

requires more analytic functions to represent.  The quasidiabatic surfaces have the 

additional advantage that they are typically smoother functions of geometry than the 
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adiabatic surfaces, and therefore require less complicated functional forms.  The 

quasidiabatic potential energy matrix U consists of the potential energy surfaces U11 and 

U22 and their scalar coupling U12 = U21.  The matrix U can be diagonalized to recover 

the adiabatic surfaces V1 and V2, and we can also obtain the nonadiabatic coupling (i.e., 

the nuclear-momentum coupling that couples motion on the adiabatic surfaces) 

analytically from the quasidiabatic energies and their gradients.90 

The analytic matrix U was obtained by developing physically-motivated 

functional forms for the individual matrix elements, and flexibility in the fit was achieved 

by introducing more than 80 adjustable parameters.  These parameters were optimized 

using a genetic algorithm91 such that the RMS deviation of the adiabatic energies V1 and 

V2 from the ab initio data was minimized and such that U12 vanishes in all asymptotic 

regions (i.e., in regions where one atom is infinitely far from the other two).  Critical 

regions of the surface (e.g., the van der Waals well) were weighted more than less 

important regions (e.g., high-energy regions) to obtain the final values of the parameters.  

Details of the functional forms and parameters of the analytic LiFH fit are given in the 

supporting information.92  The geometries and energies of the stationary points of the 

analytic LiFH surfaces are shown in Table 1.  The potential energy surfaces along the 

minimum energy path of the ground-state reaction are plotted in Fig. 1. 

 

II.B.  NaFH Potential Energy Surfaces 

We have previously presented an analytic fit10 for the two lowest-energy 

electronic states of NaFH (which we will call surface set NaFH-A) based on high level ab 

initio (MRDCI) calculations.  The surface set was shown to be quantitatively accurate in 

the interaction region and was successfully used to reproduce the experimental 

photodepletion spectrum of the NaFH van der Waals system.7  In the current work we 

use an improved version of the previous fit which we will call surface set NaFH-B.  The 

new fit includes better representations of the experimental diatomic curves for HF and 

NaF in the asymptotic regions and features a localized diabatic coupling that vanishes in 

all asymptotic regions.  The NaFH-B fit was obtained by adding a correction function to 
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the diagonal quasidiabatic surfaces U11 and U22 and cutting off the scalar coupling 

U12.  Details of the functional forms of the new fit are given in the supporting 

information.92  The geometries and energies of the stationary points are shown in Table 

1.  The potential energy surfaces along the minimum energy path of the ground-state 

reaction for the surface set NaFH-B are shown in Fig. 2. 

 

III.  Semiclassical Trajectory Calculations 

 We performed a series of semiclassical trajectory calculations simulating the 

photodissociation processes (R1) and (R2) using the LiFH and NaFH-B quasidiabatic 

potential energy matrices.  The semiclassical trajectory calculations were carried out 

using version 6.4 of the NAT computer code.93  Each simulation included an ensemble of 

3000 trajectories.   

 The initial conditions for a given trajectory in each ensemble were selected 

according to the following prescription:  (1) The initial position and momentum of the 

trajectory were selected from a distribution that is similar to the non-rotating ground 

vibrational state in the electronically adiabatic ground-state van der Waals well.  

Specifically, the three Jacobi coordinates of the system (the HF stretch r, the M-[HF] 

stretch R, and the M-[HF] bend χ, where [HF] indicates the center of mass of HF) at the 

minimum of the van der Waals complex were assumed to be separable, and each 

trajectory was given the appropriate zero point energy (obtained from one-dimensional 

Morse fits to the potential energy along r and R) in the r and R stretching modes and a 

random phase.  The angle χ was selected randomly from 0 to 2π.  (2) After assigning the 

initial geometry R0 and momentum as described, the trajectories were immediately 

excited into the excited adiabatic state with an energy υh .  If the difference between 

adiabatic energy gap of the electronic states at R0 and the excitation energy υh  was not 

within some specified tolerance ε, the excitation was rejected, and step (1) was repeated.  

The tolerance ε used for all of the runs reported here was 0.01 eV.  Calculations were 

performed with excitation energies υh equal to 1.5, 1.6, 1.7, 1.8, and 1.9 eV.   
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 The energy of the ground vibrational state in the separable Jacobi 

approximation is 0.065 and 0.19 eV for Li… FH and Na… FH, respectively.  (These 

values were obtained by adding the zero point energies of 0.28 and 0.27 eV to well 

energies of –0.21 and –0.074 eV, respectively.)  Note that these energies differ from 

those reported in Table 1, because the values in Table 1 are estimated using separable 

normal modes (and are therefore our best estimate), whereas our semiclassical trajectory 

code requires the zero-point energy expressed in terms of separable r, R, and χ motions.  

The total energy of the semiclassical trajectories ranges from approximately 1.6 to 2.0 eV 

for LiFH and from approximately 1.7 to 2.1 eV for NaFH.  The zero of energy is defined 

as Li or Na infinitely far from HF at its equilibrium internuclear bond distance. 

 We used two different semiclassical trajectory methods for coupled-states 

dynamics: Tully’ s fewest-switches56 (TFS) method and the natural decay of mixing54 

(NDM) method.  The TFS method belongs to the general class of surface-hopping 

methods where each trajectory in the ensemble is propagated under the influence of a 

single potential energy surface and propagation is interrupted by instantaneous surface 

transitions according to a fewest-switches algorithm.  A corresponding kinetic energy 

adjustment is made along the nonadiabatic coupling vector such that the total energy is 

conserved.  For the calculations reported here, classically forbidden electronic transitions 

were ignored.  We performed TFS calculations in both the adiabatic (TFSa) and 

quasidiabatic representations (TFSd). 

 The NDM method54 is a modification of the Ehrenfest self-consistent potential 

method that incorporates decoherence into the equations for the electronic motion and 

thereby produces trajectories that finish the simulation in a pure electronic state.  When 

the surfaces are strongly coupled, NDM trajectories evolve on an average potential 

energy surface similar to the Ehrenfest potential energy surface.  As the coupling between 

the electronic surfaces decreases to zero, the electronic density matrix gradually collapses 

to the diagonal form that corresponds to propagation in a single electronic state.  We 

performed calculations in both the adiabatic (NDMa) and quasidiabatic (NDMd) 

representations.  The NDM method has previously only been discussed in terms of the 

diabatic representation; we discuss the NDMa method in the appendix. 
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 As discussed above, the initial conditions were selected using the adiabatic 

potential energy surfaces, independent of the representation used for propagation.  For 

NDMd runs, the initial electronic state was transformed from the adiabatic to the 

quasidiabatic representation before propagation as discussed previously.54  For the TFSd 

runs, the electronic representation transformation was performed as follows.  The excited 

adiabatic state may be expressed as a linear combination of the two quasidiabatic 

electronic states.  The initial quasidiabatic state for a TFSd run was selected randomly 

with a probability given by the square of the corresponding expansion coefficient.  In 

general, the state that is selected as the initial quasidiabatic state will not have the same 

potential energy as the initial adiabatic state.  In order to compensate for the change in the 

potential energy, the nuclear momentum was scaled such that the total energy was 

conserved and the direction of the nuclear momentum was unchanged. 

 Trajectories were propagated until the resulting products were dissociated by at 

least 15 bohr.  The product branching ratios were computed by counting the trajectories 

that finish in each of the two final product arrangements.  We refer to the M + FH 

product arrangement as the “ quenching”  process and the MF + H arrangement as the 

“ reactive”  process, although they may be more accurately described as nonreactive de-

excitation and reactive de-excitation, respectively.  These nonadiabatic probabilities are 

labeled PQ and PR, respectively.  Trajectories may also dissociate into reactants in an 

excited electronic state (M* + HF) at excitation energies υh  of 1.78 eV for the LiFH 

system and 1.91 eV for the NaFH system.  (These excitation energies correspond to 1.85 

and 2.10 eV for the Li � Li* and Na � Na* excitations, respectively.  Note that classical 

trajectories may dissociate without the required zero-point energy in HF.)  Even when 

energetically allowed, the probability of this process is small (much less than 0.01), and 

we will not consider unquenched trajectories in the present work. 

 For both quenching and reactive trajectories, we computed the final vibrational 

( v′  and v ′′ ) and rotational ( j′  and j ′′ ) moments (i.e., averages), where the single 

and double primes refer to reactive and quenching trajectories, respectively.  The 

moments were calculated using the energy-nonconserving histogram (ENH) method, as 

described elsewhere.94  We verified that using the energy-nonconserving quadratic- and 
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linear-smooth sampling schemes and the energy-conserving variants of all three 

sampling schemes give results that are within the uncertainties reported for the ENH 

results.  

 The lifetime of the exciplex was computed as follows:  The delay time Td for each 

trajectory in the ensemble was calculated from the total simulation time T, the final 

relative velocity )(TvR , and the final translational Jacobi atom-diatom distance )(TR : 

  )(/)(d TRTvTT R−= . (1) 

The second term in eq. (1) makes the result be independent of the arbitrary stopping time 

T.  Trajectories with the delay times greater than max
dT  or less than min

dT  were excluded, 

and the remaining delay times were binned.  The resulting curve, which represents the 

probability that the system has not dissociated from the exciplex as a function time, was 

fit to the exponential 

  ( )τ/exp)( dd TATP −= , (2) 

where τ is the lifetime of the exciplex and A is a fitting parameter.  The parameters max
dT  

and min
dT  were chosen such that ~20% of trajectories were excluded by each cut-off 

parameter, i.e., the middle 60% of delay times were considered.  The number of bins was 

typically 80–100.  The calculated lifetimes were found to vary only slightly with small 

changes in the number of bins and the cut-off parameters max
dT  and min

dT .   

 Note that one could also define the delay time for a photodissociation process as 

  )]0()(/[)(d RTRTvTT R −−= , (3) 

where )0(R  is the initial translational Jacobi distance.  We verified that the differences in 

the lifetimes obtained by using eqs. (1) and (3) were smaller than the estimated 

uncertainties, and we report only the lifetimes calculated with eq. (1). 
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IV.  Results 

Tables 2 and 3 present the lifetimes, product branching probabilities, and final 

vibrational and rotational moments for the NaFH and LiFH systems.  The observables are 

reported as a function of the excitation energy υh  for the both TFS and NDM 

semiclassical trajectory methods in both the adiabatic and quasidiabatic electronic 

representations.  The relative uncertainties in the reactive and quenching moments are 

typically 2% and 4%, respectively, and the uncertainty in the probabilities is typically 

0.01.  The dominant uncertainty in the lifetimes is due to the choice of the cut-off 

parameters max
dT  and min

dT , and we estimate the relative uncertainty in the lifetimes to 

be between 5% and 10%. 

The four semiclassical trajectory methods predict the same trends in the lifetimes, 

as shown in Fig. 3.  Specifically, the lifetime of the LiFH exciplex is shorter and less 

dependent on energy than that of the NaFH exciplex.  The lifetime of LiFH increases as a 

function of the excitation energy by a factor of 1.2 to 2.5 over the range of energies 

studied, whereas the lifetime of NaFH decreases.  The relative decrease in the lifetime of 

NaFH is greater for the adiabatic methods (factors of 34 and 13) than for the 

quasidiabatic methods (factors of 9.8 and 2.4).  The lifetimes of the LiFH exciplex 

calculated by the NDM method are relatively independent of the choice of electronic 

representation, whereas the TFSa method predicts lifetimes slightly greater than those of 

the NDM methods, and the TFSd method predicts shorter lifetimes by a factor of 2 to 4.  

The agreement between the adiabatic and diabatic methods is worse for the NaFH 

system, where the results vary, on average, by a factor of 16 for the NDM methods and 

21 for the TFS methods.  In all cases except one, the diabatic methods predict shorter 

lifetimes, and the agreement between the two electronic representations usually improves 

as the excitation energy decreases. 

Although the magnitudes vary significantly among the methods, the reactive 

quenching process is usually preferred, and the probability of reaction PR is usually 

greater for the LiFH system than for the NaFH system.  For the adiabatic methods, PR is 

generally constant as a function of energy for both the NaFH and LiFH systems.  There is 
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a greater variation of PR with energy in the diabatic results, especially for the NaFH 

system.  The magnitude of PR is usually in the range of 0.70 to 0.90 except for the 

diabatic results for the NaFH system, where PR is as low as 0.22 for TFSd and does not 

exceed 0.56 for NDMd. 

The final vibrational and rotational moments show no clear trend as a function of 

energy, and the magnitudes vary significantly between the semiclassical trajectory 

methods.  The NDMa and TFSa methods qualitatively agree with each other, whereas the 

NDMd and TFSd method exhibit a larger discrepancy. 

 

V.  Discussion 

The excitation energy of Li (1.85 eV) is lower than that of Na (2.10 eV) by 0.25 

eV.  This, combined with the fact that the product LiF + H valley is lower in energy than 

the NaF + H product valley, results in an adiabatic energy gap that is typically smaller in 

the LiFH system.  In Fig. 4, we show contour plots of the adiabatic energy gap (V2 – V1) 

for the collinear LiFH and NaFH systems.  Also shown is the exciplex well, the line of 

avoided crossings, and the location of the saddle point on the ground electronic surface at 

collinear geometries.  For LiFH, the smallest energetically accessible adiabatic energy 

gap for the excitation energies studied here is approximately 0.8 eV, and the line of 

smallest energy gap passes near to the minimum of the exciplex well.  Electronic 

transitions are promoted near the line of minimum energy gaps, and we therefore observe 

LiFH lifetimes that are short and relatively independent of the total energy of the system.  

The energetically accessible minimum energy gap for NaFH, on the other hand, varies 

from about 0.9 to 1.2 eV as a function of the excitation energy, and the line of avoided 

crossing is farther from the minimum of the exciplex well in the NaFH system than in the 

LiFH system.  We therefore observe NaFH complexes with long lifetimes that are 

strongly dependent on the excitation energy. 

We have previously introduced and discussed several criteria for estimating the 

most accurate electronic representation for surface-hopping.71  We concluded that the 

representation that minimizes the number of attempted hops (and is therefore the 

representation in which the states of the system are the least coupled) is the preferred 
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electronic representation for surface-hopping, and we call this the Calaveras Co. (CC) 

representation.  For both the LiFH and NaFH systems, the CC representation is the 

adiabatic representation.  The rationale for preferring the CC representation is closely 

related to the problem of frustrated hops.71  For the LiFH and NaFH systems, frustrated 

hopping occurs in nearly every one of the TFSd trajectories, whereas only 60% of TFSa 

trajectories experience a frustrated hop.  The breakdown of the TFS algorithm leads to a 

decrease in the lifetimes, and we observe that the TFSd method predicts smaller lifetimes 

than the TFSa method.  We can also assume that the TFSa method is predicting lifetimes 

that are too short due to the presence of frustrated hops in the adiabatic calculations. 

Frustrated hops destroy the self-consistency of the trajectories and the electronic 

density matrix, but these remain fully self-consistent in the NDM method.  It is 

encouraging that the NDM results are less sensitive to the choice of electronic 

representation than the TFS results are.  The lifetimes predicted by the NDM method are 

largely independent of electronic representation for the LiFH system, but there is some 

dependence for the NaFH system.  We note that when the decoherence time is infinitely 

large, the nuclear and electronic motion is independent of electronic representation, and 

that the NDM decoherence time is inversely proportional to the adiabatic energy gap for 

NDMa and the diabatic energy gap for NDMd.  As discussed above, the LiFH system has 

a smaller energy gap than the NaFH system, and we therefore expect the results for the 

LiFH system to be less dependent on the choice of electronic representation.  We also 

note that the definition of the decoherence time in the NDM method is somewhat 

arbitrary.  More sophisticated forms of the decoherence time could be introduced 

(perhaps the simplest of which would be to introduce a multiplicative prefactor that is 

greater than one) such that the dependence of the NDM results on the choice of electronic 

representation is reduced for large-gap systems. 

Physically, the line of avoided crossings (where U11 = U22) corresponds to a 

change in the valence-bond character of the adiabatic state and is in the center of the 

region where electronic transitions are most likely to occur.  From Fig. 4 we see that in 

the energetically accessible regions of the excited electronic state, the LiFH exciplex is 

more readily able to access the seam than is the NaFH exciplex.  We also note that in the 
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LiFH system, electronic transitions are likely to occur closer to the saddle point than 

for the NaFH system.  In fact, the well on the upper surface of the LiFH system stretches 

to a region of the saddle point on the ground-state surface.  This is not the case for NaFH.  

In addition, the height of the reaction barrier for LiFH is much smaller than for NaFH.  

Therefore, we expect LiF to form more readily than NaF for a given total energy, and this 

trend is observed in the results of the semiclassical trajectory calculations. 

 

VI.  Summary 

 We have performed a set of semiclassical trajectory calculations for the 

photodissociation of LiFH and NaFH.  The calculations were performed with two 

different methods for nonadiabatic dynamics and in both the adiabatic and diabatic 

representations.  Although the results are not in quantitative agreement with each other, 

several clear trends emerge.  Specifically, the lifetime of the NaFH complex decreases 

with increasing excitation energy and is strongly dependent on the excitation energy.  The 

lifetime of the LiFH complex, on the other hand, is shorter than the lifetime of the NaFH 

complex and is less dependent on the excitation energy.  The LiFH system is also found 

to be more reactive than the NaFH system at similar excitation energies.  We have 

explained these results by considering the features of the coupled potential energy 

surfaces of the LiFH and NaFH systems. 

Experiments on these systems are underway in the laboratory of Professor John 

Polanyi, and our calculations are stimulated by the hope that calculations such as those 

reported here can eventually be compared to experiment. 

 

Acknowledgments 

This work was supported in part by the National Science Foundation under grant 

no. CHE00-92019 and by the Michigan State University Intramural Research Grant 

Program.  The authors are grateful to Rudolph Burcl, Xaio Yan Chang, Andrew Hudson, 

Gil Katz, Ronnie Kosloff, Han-Bin Oh, John Polanyi, Vladimir Špirko, and Yehuda Zeiri 

for many helpful interactions.  Mike Hack, Arindam Chakraborty, and Piotr Piecuch 

contributed to this chapter. 



 78

 

Appendix:  Natural Decay of Mixing in the Adiabatic Representation 

 The NDM method was initially presented54 in the diabatic representation, and 

here we present the details of the NDMa method.  We will consider a two-state system 

where the electronic wave function is given by 

  2211 φφ cc +=Ψ , (4) 

kφ  are the adiabatic electronic basis functions, and kc  are the complex expansion 

coefficients 

  ( )kkk ipxc +=
2

1 . (5) 

The NDMa expressions for the rate of change of the real and imaginary parts of kc  are 
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where the superscript ‘E’  denotes the usual Ehrenfest55 electronic dynamics. The 

additional decoherence terms are given by 
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where K is the state towards which the system is decohering, 

  
vibT
E

VV ki
ik −

= �τ , (10) 

E is the total energy of the system, Vk is the adiabatic energy of state k, and Tvib is the 

vibrational energy, as described elsewhere.54  The decoherent state K, is selected using 

the fewest-switches criterion and the adiabatic electronic states.  See Ref. 54 for details. 

 We note that the Ehrenfest expressions that appear in eqs. (6) and (7) can in 

principle be integrated in either representation for the NDMa method, but the expressions 

are much easier to integrate in the diabatic representation.  In our implementation of the 
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NDMa method, the decoherence terms are calculated from eqs. (8) and (9) and 

transformed to the diabatic representation before being added to the diabatic Ehrenfest 

terms for propagation. 
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Table 1.  Geometries and energies of the adiabatic stationary points of LiFH and NaFH.  All bond lengths are in bohr, the M–F–H 
angle θ is in degrees, and the energies are in eV.    

 LiFH features rLiF rHF  rLiH θLiFH V1  V1 + ZPEa V2 V2 + ZPEa 

 Reactants   – 1.73 – – 0.000 0.251 (0.249) 1.848 2.099 (2.097) 
 Reactant vdW well of V1   3.56 1.75 4.48 110. –0.211 0.096 (0.094) 1.204 – 

 Saddle pointb of V1  3.16 2.43 3.37 72.3 0.352 0.402 (0.402) 2.798 – 

 Product vdW well of V1  2.99 3.33 4.67 69.7 0.214 0.287 (0.287) 5.441 – 

 Products   2.96 – – – 0.213 0.260 (0.260) c – 
 Exciplex of V2  3.33 1.82 4.70 129. –0.143   – 1.165 1.396 (1.394) 

 NaFH featuresd rNaF rHF  rNaH θNaFH V1  V1 + ZPEa V2 V2 + ZPEa 

 Reactants  – 1.73 – – 0.000 0.251 (0.249) 2.097 2.342 (2.346) 
 Reactant vdW well of V1   4.68 1.74 5.71 118. –0.074 0.351 (0.352) 2.031 – 

 Saddle pointe of V1  3.66 3.49 5.09 90.8 1.270 1.299 (1.299) 5.622 – 

 Products   3.64 – – – 1.182 1.218 (1.220) c – 
 Exciplex of V2  4.17 1.83 5.26 117. 0.020   – 1.600 1.911 (1.909) 

aThe zero point energy (ZPE) was calculated treating the normal modes as separable harmonic oscillators95 using the POLYRATE 
v. 8.5.1 software package.96  Values in parentheses were obtained by using the Morse I approximation97 to include 
anharmonicity in the stretches.  Zero point energy is included in one mode for reactants and products, in the two bound modes 
for the saddle points, and in three modes for the three-body local minima. 

bImaginary frequency: 1480i cm–1. 
cThe product arrangement is not bound on the excited-state surface V2.   
dThe NaFH surface does not support a product van der Waals well. 
eImaginary frequency: 1650i cm–1. 
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Table 2.  Lifetimes, branching ratios, and final vibrational and rotational moments for 

NaFH. 

Method υh (eV) τ (ps) PR <v'> <j'> PQ <v''> <j''> 

NDMa 1.5 21. 0.81 2.76 10.6 0.19 1.79 6.2 
 1.6 7.8 0.80 3.19 12.8 0.20 1.49 8.0 
 1.7 3.3 0.76 3.11 14.2 0.24 1.56 7.6 
 1.8 1.6 0.83 3.07 13.8 0.17 1.58 8.4 
 1.9 0.68 0.82 3.04 15.6 0.18 1.70 8.6 
         

TFSa 1.5 11. 0.96 2.74 11.9 0.04 1.63 8.6 
 1.6 4.8 0.90 2.93 11.5 0.11 1.61 9.5 
 1.7 3.0 0.88 3.50 12.5 0.12 1.47 10.6 
 1.8 1.6 0.90 3.79 13.3 0.10 1.59 11.8 
 1.9 0.88 0.88 4.67 14.0 0.11 1.67 12.0 
         

NDMd 1.5 0.57 0.37 1.93 10.3 0.63 1.17 5.2 
 1.6 0.40 0.33 2.39 12.9 0.67 0.91 8.7 
 1.7 0.32 0.34 2.99 15.0 0.66 0.88 8.6 
 1.8 0.26 0.55 3.75 14.5 0.45 0.92 9.1 
 1.9 0.24 0.56 4.11 18.3 0.44 1.25 9.2 
         

TFSd 1.5 0.26 0.22 0.63 13.4 0.79 2.34 2.5 
 1.6 0.19 0.51 0.80 13.7 0.49 2.04 4.3 
 1.7 0.17 0.63 1.54 14.1 0.38 1.84 5.6 
 1.8 0.10 0.81 3.09 14.7 0.19 1.86 5.9 
 1.9 0.027 0.87 4.93 14.6 0.12 1.81 8.5 
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Table 3.  Lifetimes, branching ratios, and final vibrational and rotational moments for 

LiFH. 

Method υh (eV) τ (ps) PR <v'> <j'> PQ <v''> <j''> 

NDMa 1.5 0.094 0.90 2.87 11.3 0.10 1.51 5.9 
 1.6 0.13 0.89 3.25 14.5 0.11 1.31 8.6 
 1.7 0.13 0.87 3.89 13.0 0.13 1.61 7.3 
 1.8 0.14 0.89 4.10 14.6 0.11 1.55 7.9 
 1.9 0.11 0.94 3.65 17.4 0.06 1.37 14.1 
         

TFSa 1.5 0.15 0.98 2.56 9.0 0.02 1.76 8.7 
 1.6 0.21 0.95 3.31 12.2 0.05 1.94 7.9 
 1.7 0.26 0.91 3.86 13.8 0.09 2.02 9.2 
 1.8 0.28 0.90 4.16 16.6 0.10 1.93 10.7 
 1.9 0.28 0.82 4.15 18.1 0.09 1.85 12.1 
         

NDMd 1.5 0.061 0.88 3.19 13.1 0.12 0.94 7.5 
 1.6 0.095 0.81 3.12 19.6 0.19 0.88 10.1 
 1.7 0.13 0.69 3.17 20.3 0.31 0.98 10.7 
 1.8 0.14 0.64 3.42 19.1 0.36 0.87 13.3 
 1.9 0.15 0.65 3.33 19.9 0.34 0.74 17.0 
         

TFSd 1.5 0.015 0.93 4.58 7.8 0.07 1.32 6.0 
 1.6 0.026 0.90 4.80 8.4 0.10 1.45 6.9 
 1.7 0.029 0.89 5.10 7.7 0.11 1.32 7.8 
 1.8 0.030 0.89 6.14 6.5 0.11 1.36 7.8 
 1.9 0.036 0.89 6.26 6.7 0.10 1.51 8.8 
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Figure captions 

Figure 1. Adiabatic (thick solid lines) and quasidiabatic (thin dashed lines) energies 

along the ground-state reaction coordinate s for Li + HF � LiF + H at a fixed 

bond angle of 72o. 

Figure 2. Adiabatic (thick solid lines) and quasidiabatic (thin dashed lines) energies 

along the ground-state reaction coordinate s for Na + HF � NaF + H at a fixed 

bond angle of 91o. 

Figure 3. Lifetime τ of the LiFH exciplex (dashed lines) and NaFH exciplex (solid line) 

as a function of excitation energy υh .  Solid squares represent the TFSa 

method, open squares represent the TFSd method, solid triangles represent the 

NDMa method, and open triangles represent the NDMd method.   Note that the 

ordinate axis is logarithmic. 

Figure 4. Adiabatic energy gap for a) the LiFH system and b) the NaFH system.  The 

bond angle is fixed at 180o.  The solid contours represent the adiabatic energy 

gap (V2 – V1), where the minimum contour is 0.6 eV for LiFH and 0.8 eV for 

NaFH, and the contour spacing is 0.2 eV.  The 1.0 eV contours are labeled in 

both cases.  The dashed contours show the exciplex wells, where the highest 

energy contour is 2.1 eV and the contour spacing is 0.1 eV.  The line of 

avoided crossings of V1 and V2 (where U11 and U22 cross) is shown as a thick 

solid line, and the saddle point on the ground electronic surface is indicated by 

the square. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Supporting Information 

S.1.  Functional Form of the Model LiFH Potential Energy Matrix 

S.1.1.  LiFH U11 Surface 

The lowest-energy quasidiabatic surface in the Li + FH arrangement is labeled 

U11 and is described by the sum of three diatomic terms, 

  e
HF3HF2111 )()()()( DSrSSU +++= RRR , (S-1) 

where the LiH diatomic )(1 RS  is a dressed state (i.e., it represents Li–H interactions in 

the close presence of F, not in isolation) that is taken as purely repulsive, the HF diatomic 

)( HF2 rS  is an attractive Morse-like curve, and the LiF diatomic )(3 RS  is another 

dressed state and is taken to be a shallow Morse curve.  This simple functional form is 

appropriate to describe U11 which is relatively devoid of features, having only a small 

van der Waals well and otherwise being repulsive along the Li + HF coordinate.  The use 

of dressed states for the Li–H and Li–F interactions is necessary because the LiH and LiF 

diatomic limits are energetically inaccessible for this quasidiabatic surface at the energies 

we are interested in studying. 

The LiH diatomic curve for the U11 matrix element is a combination of two 

repulsive curves and is given by 

  )()]()([)()( 1LiH
a
1LiH

c
1LiH

a
11 RR Φ−+= rSrSrSS , (S-2) 

  )](exp[)( 0
LiHLiH

a
1

a
1LiH

a
1 rrDrS −β−= , (S-3) 

  )](exp[)( 0
LiHLiH

c
1

c
1LiH

c
1 rrDrS −β−= , (S-4) 

where Φ1(R) is a switching function given by 

 )tanh(
2
1

2
1

)(
1

11
1 ∆

ρ−
−=Φ

r
R , (S-5) 

 r1 = rLiH – rLiF + α1rHF. (S-6) 
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The HF potential curve S2 was fit to experimental Rydberg-Klein-Rees (RKR) data for 

the HF molecule;1 the functional form is a Morse curve with a range parameter that 

depends on the HF bond length, 

  ]2)()[()( HF2HF2
e
HFHF2 −= rXrXDrS , (S-7) 

where  

  )])((exp[)( e
HFHFHF2HF2 rrrrX −β−= , (S-8) 

and 

  20
HFHF3

0
HFHF21HF2 )()()( rrbrrbbr −+−+=β . (S-9) 

The LiF diatomic curve for the U11 matrix element is a combination of two 

shallow Morse curves and is given by 

  )()()( 3
a
3

c
3

a
33 RR Φ−+= SSSS , (S-10) 

   ]2)()[()( LiF
a
3LiF

a
3

a
3LiF

a
3 −= rXrXDrS , (S-11) 

  ]2)()[()( LiF
c
3LiF

c
3

c
3LiF

c
3 −= rXrXDrS , (S-12) 

  )](exp[)( a
LiFLiF

a
3LiF

a
3 rrrX −β−= , (S-13) 

  )](exp[)( c
LiFLiF

c
3LiF

c
3 rrrX −β−= , (S-14) 
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∆
−

−=Φ
3

33
3 tanh

2
1

2
1

)(
ρr

R , (S-15) 

  r3 = rLiH – rLiF + α3 rHF. (S-16) 

The values of the parameters used in the U11 potential matrix element are given in Table 

S-1.   
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S.1.2.  LiFH U22 Surface 

The U22 potential energy matrix element was fit to a modified2 London-Eyring-

Polanyi-Sato (LEPS)3,4 form, 

  
, *)()(

)()()()(

Li
e
HF

2
2

1
32122

EDZW

JJJU

+++−

++=

RR

RRRR
  (S-17) 

where 

  
. ))()((

))()(())()(()(
2

23

2
31

2
12

RR

RRRRR

KK

KKKKW

−+

−+−=
. (S-18) 

The functions Jα and Kα (α = 1, 2, and 3) are given by 

  ))()(()(
2
1 RRR ααα TSJ += , (S-19) 

  ))()(()(
2
1 RRR ααα TSK −= , (S-20) 

and 

  )]()(exp[)( LiFLiHHFc2b2a2 rrrcWccZ ++−−= RR . (S-21) 

is a necessary to remove a cusp that would otherwise occur in eq. (S-17) when W(R) goes 

through zero.  The LEPS function eq. (S-17) allows the global potential energy surface 

for the triatomic system to be expressible as a function of diatomic terms, specifically, 

three singlet terms (S1, S2, and S3) and three triplet terms (T1, T2, and T3). 

The LiH singlet curve is a combination of two different curves, one of which is 

present at all geometries and one of which is turned on when the LiH diatom is 

interacting with the F atom,   

  )()()()( 1LiF
c
1LiF

a
11 RR Φ+= rSrSS , (S-22) 

  )()()( LiH12,1
2

LiH11,1LiH
a
1 rXcrXcrS SSSS += , (S-23) 

  )](exp[)( e
LiHLiH

a
1LiH1 rrrX SS −−= β , (S-24) 
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  )](exp[)( e
LiHLiH

c
1LiH

c
1 rrrS S −β−= , (S-25) 

 )1tanh(
2
1

2
1

)(
1

1
1 ∆

ρ−
−=Φ

r
R , (S-26) 

  r1 = rLiH – rLiF + α1 rHF. (S-27) 

The LiH triplet is a modified anti-Morse curve, 

  )()()( LiH12,1
2

LiH11,11 rXcrXcT TTTT +=R , (S-28) 

  )](exp[)( e
LiHLiH1LiH1 rrrX TT −β−= . (S-29) 

The HF singlet S2, is similar to the form used for the U11 potential matrix element, 

  ]2)()[()()( HF2HF2
mod

22 −= rXrXDS S RR , (S-30) 

where  
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∆
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−−−=
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2LiF
2
1c

2
e
HF

mod
2 tanh

2
1

2
1

)cos1()(
S

S
SS

r
DDD

ρχR . (S-31) 

which allows the depth of the Morse curve to vary as a function of χ for short LiF 

distances.  The function X2(rHF) is defined by eq. (S-8). 

 The HF triplet potential is a linear combination of two repulsive curves, 

  )cos1()()()(
2
1

HF
180
2HF

0
22 χ−+= rTrTT R , (S-32) 

   )()()( HF
0

22,2
2

HF
0

21,2HF
0
2 rXcrXcrT TTTT += , (S-33) 

  )()()( HF
180

24,2
2

HF
180

23,2HF
180
2 rXcrXcrT TTTT += , (S-34) 

  )])((exp[)( 0
2HFHF

0
2HF

0
2 TTT rrrrX −β−= , (S-35) 

  )])((exp[)( 0
2HFHF

180
2HF

180
2 TTT rrrrX −β−= . (S-36) 
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The LiF potential curve has a long-range tail arising from the contribution of 

the Li+ + F– state.  This long range character is not present in other parts of the potential 

surface, for example, in the Li + HF entrance channel.  Therefore, it is necessary to allow 

the singlet describing the LiF interaction to change as a function of the other two 

internuclear distances.  This is accomplished by defining the LiF singlet as 

 )()]()([)()( 3
c
3

a
3

c
33 RRRRR SSSSS Φ−+= . (S-37)  

The asymptotic term, )(a
3 RS , is given by 

  ]2)()[()()( a
3

a
3

*
LiLiF

a
3 −+= RRR SS

e XXEDS , (S-38) 

where  

 )])((exp[)( LiFLiFS3
a

3
e

S rrX −−= RR β , (S-39) 
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R
RR , (S-40) 

 ))()(()()( LiFLiF rGr iffif ββββ −+= RR , (S-41) 

 ( )χρ
cos1

2
1

tanh
2
1

2
1

)( HF +��
�

�
��
	




∆
−

−=
G

Gr
G R , (S-42) 

 
2
LiF43

LiF2
1LiF )(

rbb

rb
bri

+
+=β . (S-43) 

The somewhat complicated definition of the Morse range parameter defined by 

eqs. (S-40)–(S-42) stems from practical considerations.  We wish to use the LiFH surface 

in quantum mechanical calculations; these calculations are much easier to carry out when 

the diabatic coupling vanishes at all three dissociation limits.  It was found, however, that 
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when we caused the diabatic coupling to decay in the LiF + H channel, the analytical 

fit no longer qualitatively agreed with the ab initio data, owing to the diabatic coupling 

being involved in defining the shape of the excited adiabatic surface.  In order to 

somewhat alleviate this shortcoming, the adjustments defined in eqs. (S-37)–(S-43) above 

were introduced. 

The form of the LiF diatomic used in the Li + HF channel is given by 

 ]2)()[(])([)( c
3

c
3

*
Li

c
3

c
3 −+= RRRR SSS XXEDS , (S-44) 

 )cos1()()(
2
1

HF
c,180

3HF
c,0

3
c

3 χ−+= rDrDD SSS , (S-45) 

 )](exp[)( LiFLiF
c
3

c
3

e
SS rrX −−= βR , (S-46) 

 )cos1()()(
2
1

HF
c,180

3HF
c,0

3
c

3 χ−β+β=β rr SSS . (S-47) 

The asymptotic and close forms of the LiF singlet are joined together with a 

switching function, 
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)(
tanh

2
1

2
1

)(
S3

3 R
RR

∆
−=Φ g

S , (S-48) 

 )(sin))(()(cos)()( 3LiFS33HFHF RRRR SS
e rrrg θρθ −−−= , (S-49) 

 )cos1()()(
2
1

HF
180
S3

0
S3S3 χρρρ −+= rR , (S-50) 

)cos1()()(
2
1

HF
180
S3

0
S3S3 χθθθ −+= rR , (S-51) 

)cos1()()(
2
1

HF
180
S3

0
S3S3 χ−∆+∆=∆ rR . (S-52) 

The LiF triplet potential is a modified anti-Morse curve,  

  )cos1()()()(
2
1

HF
180
3HF

0
33 χ−+= rTrTT R , (S-53) 
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   )()()()()( LiF
0

3LiF2,3
2

LiF
0

3LiF1,3LiF
0

3 rXrcrXrcrT TTTT += , (S-54) 

  )()()()()( LiF
180

3LiF4.3
2

LiF
180

3LiF3,3LiF
180
3 rXrcrXrcrT TTTT += , (S-55) 

  )])((exp[)( LiFLiFLiF
0

3LiF
0

3
e

TT rrrrX −β−= , (S-56) 

  )])((exp[)( LiFHFHF
180

3HF
180

3
e

TT rrrrX −β−= . (S-57) 

The values of the parameters used in the U22 potential matrix element are given in Table 

S-2. 

 

S.1.3.  LiFH U12 Coupling Surface  

The off-diagonal electronic potential energy surface is described by 

 ��
�

�
��
	




∆
ρ−

−=
12

12HF0
1212 tanh
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where )(0
12 RU  is a physically motivated functional form that is caused to approach zero 

for large values of rHF where the excited-state potential energy surface becomes 

energetically inaccessible.  Nonadiabatic transitions in this regions are unimportant and 

eliminating the off-diagonal coupling in these regions greatly reduces the expense of 

accurate quantum mechanical dynamics calculations. 

Of the three diatomic asymptotes, there is only electronic coupling in the LiH and 

LiF arrangements.  The two electronic states that we treat arise from the Li(2s) and Li(2p) 

atomic orbitals, and the coupling between these vanishes as Li is separated from the HF 

diatom.  It is therefore natural to treat the diabatic coupling in the full system as arising 

from diatomic terms in the LiF and LiH bond distances, 
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grU . (S-60) 

These are functions which are zero when the diatomic distances are zero, increase in 

magnitude to a maximum of gi at rLiX = 0
LiXr  (X = H, F), and then decrease in magnitude 

at a rate determined by the power on the pre-exponential factor.     

We expect the magnitude of each of these terms to be reduced by the approach of 

the remaining atom to the diatom, and we use the following form to accomplish this: 

  
).()()(

)()()()(

LiHLiHHFHF,2LiFLiF

LiFLiFHFHF,1LiHLiH
0
12

rrrU

rrrUU

ΦΦ+

ΦΦ=R
 (S-61) 

The reduction functions ΦHF,1, ΦLiF, ΦHF,2, and ΦLiH are given by 
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HF1,HF tanh

2
1

2
1

)(
∆

ρ−
+=Φ

r
r , (S-62) 
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HF,2HF
HF2,HF tanh

2
1

2
1

)(
∆

ρ−
+=Φ

r
r , (S-64) 
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)(
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ρ−
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r
r . (S-65) 

The values of the parameters used in the U22 potential matrix element are given in Table 

S-3. 

 

S.2.  NaFH-B Potential Energy Surface 

 We have recently presented the details of an analytic two-state NaFH 

quasidiabatic energy matrix.5 The fit was successfully used to reproduce the 

experimentally observed photoabsorption spectrum of the Na...FH van der Waals 

complex,6 indicating that the fit is very accurate in the interaction region.  The NaFH fit 
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has two undesirable asymptotic features that we correct here:  1) the diabatic coupling 

U12 does not vanish in the NaF + H asymptote, and 2) the dissociation energy of the HF 

diatomic in the Na + HF asymptote is 0.35 eV below the experimental value.  In this 

Appendix, we present an improved NaFH fit (called NaFH-B) which has the desired 

asymptotic forms and is obtained by modifying the original NaFH fit (called NaFH-A).  

Specifically, the diabatic coupling is cut off for large HF internuclear bond distances, and 

an asymptotic correction function is added to each of the diagonal diabats. 

 

S.2.1.  NaFH U12 Coupling Surface 

 The coupling between the two lowest energy states of the NaFH system does not 

vanish in the NaF + H asymptote.  Asymptotic coupling complicates several aspects of 

our semiclassical and quantum mechanical simulations.  We note that this coupling is not 

important in determining the dynamics of the NaFH system at reasonable energies due to 

the high energy of the upper electronic state in this asymptote.  The functional form of 

the diabatic coupling surface for the improved NaFH-B fit, is given by 

  )( )()( HF12
A
12

B
12 rUU Φ= RR , (S-66) 

where A
12U  is the diabatic coupling function presented previously5 for the NaFH-A fit.  

)( HF12 RΦ  is a cutoff function in the HF bond direction and has the form 
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where r12 = 3.5 a0   and ∆12 = 0.5 a0.  The cutoff function does not significantly change 

the value of the diabatic coupling near the line of avoided crossings. 

 

S.2.2.  NaFH U11 and U22 Surfaces 

The diagonal diabats B
11U  and B

22U  for NaFH-B are obtained by adding correction 

functions to the original NaFH diabats, 

  )()()( AB RRR jjjjj FUU += , (S-68) 
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where j = 1 or 2 and A
jjU  are the surfaces presented previously.5  We require that the 

functions Fj correct the asymptotic diatomic energy curves, minimize the change to the 

interaction region, and smoothly introduce the correction into the surfaces.  A simple 

choice for Fj that satisfies these three requirements is the difference of two LEPS3 

functions 

  )()()( AB RRR jjj LLF −= , (S-69) 

where A
jL  is a LEPS function with asymptotic forms that are exactly equal to the 

asymptotic forms of the NaFH-A fit, and B
jL  is a LEPS function with the desired (i.e., 

experimental) asymptotic forms.  The LEPS function can be written 
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 (S-70) 

where  

  )],()([)( ,,2
1

, αααααα rTrSrQ x
j

x
j

x
j +=  (S-71) 

  )],()([)( ,,2
1

, αααααα rTrSrJ x
j

x
j

x
j −=  (S-72) 

x = ‘A’  or ‘B’ , the summations run over α = HF, NaF, or NaH, and x
eD HF,  sets the zero 

of energy.   

 The functional forms and parameters used for the singlets A
,iSα  are equal to the 

singlets that appear in the NaFH-A fit.5  The U11 diabat in the NaF + H and NaH + F 

asymptotes and the U22 diabat in the NaH + F asymptote are not corrected, i.e., B
,iSα  = 

A
,iSα  for (α,i) = (NaH,1), (NaH,2), and (NaF,1).  (Note that because the diabatic coupling 

is cut off in the HF bond direction, the lower diabatic surface in the NaF + H asymptote 
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(U22) must be re-fit, such that the lower adiabat is left unchanged asymptotically.)  

The remaining singlets required for B
iL  are B

HF,1S , B
HF,2S , and B

NaF,2S .  These singlets 

have the following functional forms: 

  ( ) B
HF,

2B
HFHFHF

B
HF

B
HF,HF

B
HF,1 )])((exp[1)( ee,e DrrrDrS −−−−= β , (S-73) 

  ( )( )B
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B
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1
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B
HF,2 )()(1)( psErSrrS →+Θ−= , (S-74) 

  ( ) B
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2B
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B
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B
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B
NaF,2 )])((exp[1)( eae,e DrrrDrS −−−−= β ,(S-75) 

where 
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  ( )])([tanh)( B
HF

B
HF,1

B
HFHF

B
HF,2 psErSr →−=Θ κ . (S-78) 

The parameters for these functions are given in Table S-4.  The HF singlet fit is based on 

experimental RKR data.1 Experimental data for the NaF curve7 is available up to ~0.5 

eV.  During the fitting procedure for the NaF curve, the dissociation energy was not 

allowed to vary, and the electronic structure data used in the original fit were included 

above 0.5 eV to make sure that the corrected NaF curve was qualitatively correct above 

0.5 eV. 

 The triplet functions in eqs. (S-71) and (S-72) do not affect the asymptotic forms 

of the LEPS equations, but they are important in determining the character of the 

interaction region.  In order to provide the correction functions Fj with flexibility, we 

introduced adjustable parameters into the triplet functions.  For F1, one adjustable 

parameter xw 1,α  was introduced which weights the entire triplet by a constant, i.e., 
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  )()( 1,1,1, ααααα rtwrT xx = , (S-79) 

where the set of xw 1,α  are listed in Table S-5.  (Note that weighting the triplet functions 

by a single parameter is exactly equivalent to introducing Sato parameters2 in the LEPS 

equation.)  The form of xtHF,1  is an anti-Morse curve with a constant range parameter, 

 ( ))](2exp[)](exp[2)( t
HFe,HF

t
HFe,

t
HFe,HF

t
HFe,

t
HFe,2

1
HF1,HF rrrrDrt −−−−−= ββ ,(S-80) 

where t
HFe,D , t

HFe,r , and t
HFe,β  are listed in Table S-5.  The functional forms of the 

collinear geometry triplets that appear in the previous fit5 were used for 1NaF,t  and 

1NaH,t . 

 For F2, the xT 2NaH,  triplets were not parameterized and were set equal to the 

collinear triplets that appear previously.5  The functional forms of the xT 2HF,  and xT 2NaF,  

triplets are anti-Morse curves with two adjustable parameters, i.e.,  

 ( ))](2exp[)](exp[ 2)( t
e,

t,2
2,

t
e,

t,1
2,

t
e,2

1
2, ααααααααααα ββ rrwrrwDrT xxx −−−−−=  (S-81) 

where the set of xkw ,
2,α  (k = 1,2) and the anti-Morse curve parameters are given in Table 

S-5. 

 The values of the adjustable parameters xw 1,α , xw ,1
2,α , and xw ,2

2,α  were obtained 

using a genetic algorithm8 such that the magnitudes of F1 and F2 were minimized in the 

interaction region.  From Table S-6, we see that the correction functions do not 

significantly change the properties of the NaFH surface at the minima of the van der 

Waals and exciplex wells.  Note that the mean unsigned deviation from the electronic 

structure data for the original fit is 0.02–0.03 eV. 
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Table S-1.  Values of the parameters used in the LiFH U11 potential energy function. 

Parameter Value Parameter Value 

a
1D  12.90323 eV   0

HFr  2.1042 a0 

c
1D  7.09677 eV  a

3D  0.14286 eV 

a
1β  1.73333 1

0a −   c
3D  0.25 eV 

c
1β  1.36 1

0a −  a
3β  1.22667 1

0a −  

0
LiHr  1.53333 a0 c

3β  1.92857 1
0a −  

 ρ1 1.07143 a0    a
LiFr  3.66667 a0 

 ∆1 0.6 a0    
c
LiFr  2.48571 a0 

 α1 0.4  ρ3 0.4 a0 

 b1 1.1622 1
0a −  ∆3 0.89333 a0 

 b2 –0.025647 2
0a −  α3 0.7333 

 b3 0.059062 3
0a −   e

HFr  1.733 a0 

e
HFD  6.122 eV 
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Table S-2.  Values of the parameters used in the LiFH U22 potential energy function. 
Parameter Value Parameter Value 

c2a 3.5 eV 
erLiF  2.9553 a0 

c2b 0.27362 eV–2  βff 0.25333 1
0a −  

c2c 0.15 1
0a −

 γ 3.87097 n/11
0a +

 
cS1,1 4.32258 eV n 8 
cS1,2 7.06452 eV ρG 1.41935 a0 

a
1Sβ  1.36 1

0a −  ∆G 3.77419 a0 
c

1Sβ  0.90667 1
0a −  b1 0.064076 1

0a −  
erLiH  1.2 a0 b2 103.57    

ρ1  0.72 a0 b3 4.6498 2
0a −

 
∆1  0.5 a0 b4 7.0489 

α1  1.0 erHF  1.733 a0 

cT1,1 1.64516 eV 
0,

S3
cD  5.25806 eV 

cT1,2 10.38710 eV 
180,

S3
cD  2.58065 eV 

βT1 2.10667 1
0a −

 
0,

S3
cβ  0.91613 1

0a −
 

eDHF  6.122 eV 
180,

S3
cβ  0.95484 1

0a −  
cDS2  0.26 eV 0

S3ρ  0.51613 a0 

ρS2 2.38095 a0 
180
S3ρ  1.33333 a0 

∆S2 0.5 a0 
0
S3θ  0.09333 rad. 

cT2,1 1.26667 eV 
180
S3θ  0.18 rad. 

cT2,2 16.06667 eV 
0
S3∆  0.49032 a0 

cT2,3 11.61290 eV 180
S3∆  0.31613 a0 

cT2,4 15.51613 eV  cT3,1 0.38710 eV 
0

2Tβ  2.10667 1
0a −   cT3,2 1.80645 eV 

180
2Tβ  1.73333 1

0a −
  cT3,3 0.51613 eV 

eDLiF  5.909 eV  cT3,4 0.51613 eV 

ELi* 1.848 eV 
0
T3β  0.89333 1

0a −
 

   180
T3β  0.80 1

0a −  
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Table S-3.  Values of the parameters used in the LiFH U12 potential energy function. 

Parameter Value Parameter Value 

 ρ12 3.87097 a0 ρHF,2 1.45161 a0 

 ∆12 0.45806 a0 ∆HF,1 1.75806 a0 

 g1 1.27742 eV ∆HF,2 0.98387 a0 

 g3 0.48 eV ρLiF 2.17742 a0 

 0
LiHr  2.5873 a0 ∆LiF 0.56452 a0 

 0
LiFr  3.47619 a0 ρLiH 4.27097 a0 

 ρHF,1 1.15484 a0 ∆LiH 2.5 a0 
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Table S-4.  Singlet correction function parameters for NaFH-B. 

Parameter     Value  Parameter     Value 

B
HF,eD    6.122 eV  B

NaF,eD    4.94 eV 

B
HF,er    1.733 a0  B

NaF,er    3.6395 a0 

B
HF1,c    1.1622 1

0a −   B
NaF1,c    0.32453 1

0a −  

B
HF2,c  –0.025647 2

0a −   B
NaF2,c    1.5102 

B
HF3,c    0.059062 3

0a −   B
NaF3,c    3.0938 0a  

B
HF4,c    2.1042 0a   B

NaF4,c    1.7107 

B
psE →    2.097338 eV  κHF 15. 1

0a −  
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Table S-5.  Triplet correction function parameters for NaFH-B. 

Parameter      Value  Parameter     Value 

t
HFe,D  5.77096 eV  B

NaH,1w     3.5875 

t
HFe,r  1.733 a0  A

NaH,1w     3.5875 

t
HFe,β  1.2669 1

0a −   B1,
HF,2w     5.54   

t
NaFe,D  4.49 eV  B2,

HF,2w     4.15 

t
NaFe,r  3.6395 a0  A1,

HF,2w     5.125 

t
NaFe,β  0.696141 1

0a −   A2,
HF,2w     5.125 

B
HF,1w  2.913  B1,

NaF,2w     9.01 

A
HF,1w  3.1183  B2,

NaF,2w     1.92 

B
NaF,1w  2.0626  A1,

NaF,2w     8.8 

A
NaF,1w  2.0528  A2,

NaF,2w     1.62 
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Table S-6.  Location and energy of the van der Waals and exciplex wells for the 

previous (A) and improved (B) NaFH fits. 

  vdW well  exciplex 

  NaFH-A NaFH-B  NaFH-A NaFH-B 

 rHF (a0)   1.738  1.739   1.795  1.827 

 RNaF (a0)   4.671  4.684   4.304  4.167 

 χ (deg)   117.8  117.8   115.1  116.9 

 V1 (eV)   -0.0761  -0.0737   -0.0312  0.0172 

 V2 (eV)   1.624  1.684   1.571  1.600 

 V2-V1 (eV)   1.700  1.758   1.602  1.583 
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Chapter Four 

4 
Fewest-Switches with Time Uncertainty:   

A Modified Trajectory Surface Hopping Algorithm with Better 

Accuracy for Classically Forbidden Electronic Transitions 

 

 

 

I.  Introduction 

 Semiclassical trajectory simulations1–11 have proven useful for modeling 

electronically nonadiabatic dynamics for a wide variety of chemical systems,11–23 and 

we have recently engaged in a systematic set of studies designed to test and improve 

these methods.11–23  Semiclassical trajectory methods are especially interesting because 

they are readily applicable to large systems (e.g., bacteriorhodopsin) for which a full 

quantum dynamical treatment is likely to remain prohibitively computationally expensive 

for some time.  Before applying semiclassical methods to large systems, it is advisable to 

validate them by studying smaller systems where benchmarks are available or can be 

calculated.  Fortunately, the increased availability of converged quantum mechanical 

calculations for fully three-dimensional atom-diatom systems12–14,16–19,23,24 has 

provided a useful set of benchmark test cases for judging the accuracy of several 

semiclassical trajectory methods11–14,16,17,19–23,25–31 that have been proposed.  The set 

of test cases, if carefully designed, also provides a means of systematically improving the 

semiclassical trajectory approach by identifying the dominant errors and developing 

methods that reduce these errors. 

Although many of the existing and newly designed semiclassical trajectory 

methods show promise, the fewest-switches8,27,32 surface 

hopping1,2,5,6,8,9,11,12,14,16−18,23,26,27,30−41 algorithm of Tully (called here TFS and 
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elsewhere molecular dynamics with quantum transitions or MDQT) has proved to be 

surprisingly robust despite its simple formulation.11−14,16−23  Trajectory surface hopping 

methods assume that the nuclear dynamics of the system may be approximately described 

by an ensemble of noninteracting trajectories, and that each trajectory evolves classically 

under the influence of a potential energy surface that corresponds locally to a single 

electronic state.  Electronic transitions are incorporated into the classical nuclear 

dynamics by interrupting the single electronic surface propagation with a series of 

hopping decisions.  At a hopping decision, a surface switch (or hop) from the occupied 

electronic state i to some target electronic state j occurs with a probability ijPh , where ijPh  

is usually some function of the quantum mechanical electronic state probability density 

integrated along the classical trajectory.  The TFS algorithm defines ijPh  such that 

hopping is minimized in the sense that trajectories hop only when there is a net flow of 

electronic state probability density out of the occupied state during the time interval 

between hopping decisions.  In general, the target state and the occupied state may have 

different potential energies at a surface hop, and when a trajectory hops successfully the 

nuclear momentum is adjusted along some hopping vector h (usually the nonadiabatic 

coupling vector1,8) such that total energy is conserved. 

As mentioned above, the TFS method has been applied with success to a wide 

variety of chemical systems.  However, some limitations and ambiguities in the TFS 

method (and surface hopping methods in general) were pointed out in the original 

formulation27 and have also been discussed more recently.23,31,41  Here we focus 

attention on the problem of frustrated hopping.16–18,23,30,31,41–44  The TFS algorithm 

may give a nonzero value of ijPh  (and therefore may call for a surface hop) at a geometry 

along the trajectory where the energy gap between the occupied and the target electronic 

state is greater than the maximum classically allowed nuclear energy adjustment that is 

achievable by adjusting the momentum in the direction of h, i.e., a hop may be called for 

when the nuclear momentum cannot be adjusted along h such that total energy is 

conserved.  Hopping attempts of this type are said to be “ classically forbidden”  or 

“ frustrated” .  The presence of frustrated hopping ruins the self-consistency built into the 
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TFS method and can therefore lead to an incorrect final electronic state distribution of 

trajectories. 

Recently, we have systematically tested23 several variants of the TFS method that 

have been proposed to deal with the problem of frustrated hopping.  Unfortunately, none 

of the methods tested were completely satisfactory.  In general, we found that the loss of 

self-consistency that results from frustrated hopping causes the TFS method to 

significantly overestimate the total probability of nonadiabatic quenching for weakly 

coupled systems.  Conversely, by artificially allowing all trajectories that experience 

classically forbidden hopping attempts to switch electronic surfaces (simulating a fully 

self-consistent result), the total probability of nonadiabatic quenching is significantly 

underestimated.  This numerical result motivates the search for a modification of the TFS 

method that allows some but not all hops that are frustrated to somehow switch electronic 

states, and in the present paper we describe such a method. 

One can identify two limitations of the TFS semiclassical trajectory approach that 

lead to frustrated hopping:  (1) The TFS semiclassical trajectory approach algorithm does 

not allow tunneling into a new electronic state, and (2) the TFS hopping probability does 

not properly treat electronic state decoherence (also called dephasing).  The first 

consideration (1) is a consequence of the classical trajectory approach.  The quantum 

mechanical nuclear wavefunction of a dynamical system may have a finite probability 

amplitude in a region where classical trajectories are forbidden by energy conservation.  

These quantum mechanical “ tails”  may induce physically meaningful electronic 

transitions in regions where surface hops are classically energetically forbidden, and this 

is a manifestation of tunneling.  Within the classical trajectory approach these meaningful 

electronic state tunneling transitions result in frustrated hops.  The second consideration 

(2) is a result of the formulation of the TFS hopping probability.  Specifically, the TFS 

method gives the fully self-consistent electronic state populations at all times only for 

systems with degenerate electronic states, i.e., only when the ensembles of trajectories 

that occupy different electronic states do not separate in phase space.  Of course, realistic 

chemical systems feature nondegenerate electronic states, often with greatly disparate 

potential energy topographies.  Nondegenerate potential energy surfaces lead to 
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decoherent ensembles of trajectories in each electronic state,20,21,45 and this decoherence 

results in a decreased probability of electronic transition.  The TFS formulation does not 

properly treat electronic state decoherence, and therefore the TFS method over-predicts 

electronic transitions, especially in classically forbidden regions where classical 

trajectories cannot exist in the target electronic state. 

The frustrated hops associated with (1) above are considered physically 

meaningful in the fewest-switches surface hopping context and should be allowed to 

switch electronic states.  The frustrated hops resulting from (2) above are not physically 

meaningful and should be ignored.  These two considerations provide a reasonable means 

of interpreting the numerical result obtained in our previous study23 that was discussed 

above.  The present paper describes a modification of the TFS algorithm that first 

identifies if a frustrated hop is physically meaningful and is a result of electronic state 

tunneling (consideration 1) or if a frustrated hop is not physically meaningful and is a 

result of the improper treatment of electronic state decoherence (consideration 2).  The 

method then allows trajectories that experience a physically meaningful frustrated hops to 

tunnel to a nearby classically allowed geometry and switch electronic states.  The new 

semiclassical trajectory method is called the fewest-switches with time uncertainty 

(FSTU) method and is identical to the TFS method for classically allowed surface hops. 

We tested the FSTU method against the TFS method on a family of weakly 

coupled systems23 that were designed to be very sensitive to the treatment of classically 

forbidden hops.  The results of these tests show that the nonlocal hopping (as in the 

FSTU method) is necessary for properly modeling electronic transitions and accurately 

predicting the total nonadiabatic quenching probability and the product branching ratio. 

The modification of the TFS method proposed here is similar in its aims to a 

recent attempt to modify the surface hopping method that was proposed by Zhu et 

al.,43,44 although we each arrived at our starting point and out modifications 

independently by separate routes.  Both methods remove frustrated hopping by allowing 

nonlocal surface hops, and the two methods will be compared in more detail in the 

Discussion section. 
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 This paper is organized as follows:  Section II summarizes the important features 

of the model surfaces.  The semiclassical calculations, including the details of the FSTU 

method, are described in Sec. III, and the results are presented in Sec. IV.  The results are 

discussed and summarized in Secs. V and VI, respectively. 

II.  Model Potential Energy Matrices 

 The YRH family23 of three-body potential energy matrices (PEMs) used to test 

the FSTU method models the nonadiabatic scattering process of an electronically excited 

model Y atom and a diatomic molecule RH:  

(R1b)
(R1a)

                                         
, ),(YH R
),(RHY

),(RH *Y
�
�
�

′′+
′′′′+

→+
jv

jv
jv  

where the asterisk indicates electronic excitation, and the primes on the vibrational v and 

rotational j quantum numbers indicate that these quantities are not necessarily conserved.  

The mass combination for the model atoms was chosen to be 10 and 6 amu for the Y and 

R atoms, respectively.  The H atom has the mass of hydrogen, i.e., 1.00783 amu.  Details 

of the family of YRH surfaces are presented in an earlier work.23  Briefly, the family of 

YRH surfaces is made up of four members, and each member differs from the others only 

in the magnitude of the diabatic coupling.  The maximum diabatic coupling for the four 

potential matrices discussed in the present work are max
12U  = 0.20, 0.10, 0.03, and 0.01 

eV.   

 As discussed below, the semiclassical trajectory calculations were carried out in 

the adiabatic representation.  The adiabatic potential energy surfaces were obtained by 

diagonalizing the diabatic PEM.  The adiabatic surfaces are coupled by the scalar product 

of the velocity and the nonadiabatic coupling vector d.1,8  As discussed elsewhere,18 one 

can calculate d without approximation from the diabatic matrix elements and their 

gradients. 

The initial scattering conditions will be labeled by the shorthand (E/eV, j) where 

E/eV is the total energy in eV, and j is the initial rotational quantum number of the RH 

diatom.  The initial vibrational quantum number of the RH diatom is zero, and the total 



119 

angular momentum is also zero.  We consider a total of twelve test cases; for each of the 

four PEMs discussed above, we consider three sets of initial conditions:  (1.10, 0), 

(1.10, 6), and (1.02, 0). 

III.  Semiclassical Trajectory Calculations and Time-Uncertainty Switching 

Algorithm 

 Semiclassical trajectory surface hopping calculations were carried out using 

version 6.6 of the NAT computer code.46  Details of our implementation of the 

semiclassical trajectory algorithm including the selection of the initial conditions, the 

propagation of the classical trajectories, the implementation of the fewest-switches 

algorithm, and the final-state analysis may be found elsewhere.2,14,23  Briefly, all of the  

calculations reported here were carried out in the adiabatic representation, and the 

hopping vector h was taken to be a unit vector in the direction of the nonadiabatic 

coupling vector d.1,8  This choice for h has been justified theoretically34,37,47 and 

numerically.12,14 

The fewest-switches with time uncertainty (FSTU) method is a modification of 

the TFS method that incorporates nonlocal hopping such that some (but not all) frustrated 

hops are allowed to switch electronic states.  The FSTU method is identical to the TFS 

method except when a trajectory experiences a frustrated hop.  Specifically, the quantum 

mechanical electronic state population density Pi(t) is obtained by integrating the solution 

of the time-dependent Schrödinger equation along the classical trajectory R(t) and is 

given by (in the adiabatic representation for a two-state system)1,8,27 

  ])( )(Re[2)( * dR ⋅−= ttatP iji
�� , (1) 

where the overdot indicates a time derivative, i � j, aij is the cross term of the electronic 

state density matrix (e.g., Pi = aii), R�  is the velocity of the classical trajectory, d is the 

nonadiabatic coupling vector between states i and j, and i = 1 for the ground electronic 

state and i = 2 for the excited electronic state.  The fewest-switches8,27 hopping 

probability ijPh  is computed from Pi(t) 
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where the system is currently occupying state i, and δt is the time interval between 

hopping decisions.  If the fraction of trajectories in each electronic state Fi(t) is equal to 

the quantum mechanical electronic state density Pi(t) (for all i) at the start of the 

simulation, trajectories switch surfaces according to eq. (2), and all surface hops are 

allowed then Fi(t) and Pi(t) will be equal for all t.  (Of course, Fi(t) and Pi(t) will not be 

exactly equal due to the finite number of trajectories in the computational ensemble.)  If a 

surface hop is called for by eq. (2) and the hop is frustrated, this self-consistency will no 

longer be maintained.  We note that the presence of frustrated hops results in a “ fewer-

than-fewest-switches”  method, and we will comment on this at the end of Section V. 

The FSTU treatment of a frustrated hop is discussed next.  The time-energy 

version of the uncertainty principle48 

 �≈∆∆ tE . (3) 

may be interpreted as the system borrowing some energy ∆E for some time ∆t.  We 

incorporate this feature in the semiclassical theory by allowing a trajectory R(t) that 

experiences a frustrated hop to tunnel and hop successfully at some nearby geometry 

along R(t) that it is classically allowed and where the time that the trajectory tunnels is 

within the time interval ∆t given by eq. (3).  Specifically, if a hop at time t0 is classically 

forbidden, the trajectory is assumed to hop at some time th (if any such time exists) that 

minimizes |t0 – th| subject to the following two criteria:  (1) a hop is classically allowed at 

R(th), and (2) the difference between t0 and th satisfies 

  Ett ∆≤− 2/h0 � , (4) 

where the factor of ½ introduced into eq. (4) ensures that the distribution of nonlocal 

hops around t0 will have a maximum width of ∆t given by eq. (3).  In eq. (4), ∆E is the 

difference between the potential energy gap at R(t0) and the available kinetic energy 

along the hopping vector at time t0, i.e., ∆E is the energy that the trajectory would need to 

“ borrow”  in order to hop at t0.  Notice that the trajectory may hop nonlocally both 
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forward and backward in time.  For some frustrated hops these criteria cannot be 

satisfied, and these frustrated hops are thought to be caused by the improper treatment of 

decoherence effects (as discussed in Secs. I and V) and are ignored. 

 Our development of the FSTU method is a culmination of a series of studies11–23 

in which we have systematically examined and tested several possible options and 

variations in the surface hopping approach.  This includes comparing the original fewest-

switches criterion for invoking a surface hopping decision to the Blais-Truhlar12–16 and 

generalized Blais-Truhlar16 criteria, comparing diabatic and adiabatic representations for 

the electronic probability amplitude and trajectory propagation,11,18–22 testing the effect 

of symmetrizing the speed or coupling in computing the hopping probability,11,23 

comparing various choices for the hopping vector,13,15,17 and testing the effect of 

rotating the hopping vector when the momentum component along the hopping vector is 

too small to allow a hop,11,17,18,23 testing various combinations of reflecting or ignoring 

hops when they are frustrated,23 comparing energy conserving to energy non-conserving 

methods for assigning final discrete quantum numbers on the basis of the continuous final 

trajectory variables,11,14,16,23 and comparing histogram methods to smooth sampling for 

assigning final discrete quantum numbers.11,14,16,17,23  Consideration of what we learned 

in those studies11–23 and from related work30,49,50 not only motivated the present 

suggestion of an improved fewest-switches algorithm but also—very significantly—gives 

us confidence that the improved performance (see below) of the FSTU scheme is not 

simply the result of an unphysical cancellation of errors resulting from poor 

methodological decisions for the other aspects of the surface hopping scheme.  Our final 

recommendations for the best way to carry out surface hopping calculations can be 

summarized as follows:  (1) Choose hopping decision locations on the basis of the 

fewest-switches with time uncertainty algorithm.  (2) Choose the electronic state 

representation (adiabatic or diabatic) by the Calaveras County11 criterion.  (3) Do not 

employ symmetrization schemes.  (4) Choose the hopping vector along the nonadiabatic 

coupling vector without rotation.  (5) If hops are frustrated, ignore them.  (6) Assign 

electronic states according to the surface that a trajectory finishes on, and assign final 
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vibrational and rotational quantum numbers by either the energy non-conserving 

histogram (ENH) method,14,16,17 which gives a well defined error estimate,2 or the 

energy non-conserving quadratic smooth sampling (ENQSS) method,14,17,48 which may 

be significantly more accurate or give better statistics (but without a well-defined error 

estimate), with the possibility in reserve that a more sophisticated final-state algorithm 

may be needed when one is near an energy threshold for a final state of interest.  The 

combination of all these choices defines the standard FSTU algorithm.  In the present 

paper, all reported results were obtained by the ENH scheme, but the ENQSS results are 

very similar. 

 All calculations in the present paper were carried out using the adaptive 

integration algorithm that we designed for fewest-switches surface hopping calculations 

in a previous paper.17  This algorithm uses a Bulirsch-Stoer integrator with polynomial 

extrapolation,12,51 and is specifically modified to prohibit the integrator from stepping 

over peaks and local minima in the electronic probabilities.17  For the present 

calculations the parameters17 were given the following values:  εBS = 10–12 Eh 

(1 Eh = 27.211 eV) and hmin = 10–4 a.u. (1 a.u. = 2.4189 x 10–2 fs), which gives 

convergence for the TFS results.  For the FSTU results, another consideration arises.  In 

particular, we found that in typical cases E∆2/�  is only a few times larger than the step 

size required to converge the integration of the coupled differential equations.  Thus one 

may require smaller a step size for the integration to the final value of th than for the rest 

of the propagation.  In the present application we selected th from a set of discrete times 

obtained by integrating the classical trajectories numerically, and we checked that the 

FSTU results are well converged with respect to step size. 

IV.  Results  

 We tested the FSTU method on the four YRH systems using the three sets of 

initial conditions described in Sec. II, for a total of twelve test cases.  Table 1 shows the 

mean unsigned relative error (MURE) of the vibrational v and rotational j moments for 

the reactive (single primes) and non-reactive electronically quenched (double primes) 
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products, the probability of reaction PR, the probability of nonreactive electronic 

quenching PQ, the total nonadiabatic quenching probability PN = PR + PQ, and the 

product branching ratio FR = PR/PN, obtained by averaging the unsigned relative errors 

(UREs) for the twelve test cases.  Also shown is the MURE for the TFS method.  The 

TFS semiclassical trajectory results and the fully-converged quantum mechanical results 

used to compute the UREs were taken from Ref. 23.  Note that of the several variants of 

the TFS method discussed in Ref. 23, we used the data for the TFS variant where all 

frustrated hopping attempts were ignored [called TFS-(+,+) in Ref. 23].  Table 1 shows 

that nonlocal hopping (as in the FSTU method) reduces the error in the reaction 

probability by a factor of 1.9, the error in the quenching probability by a factor of 1.5, the 

error in the product branching ratio by a factor of 1.4, and the error in the total 

nonadiabatic probability by a factor of 2, where all errors are MUREs.  The MUREs in 

the reactive moments are similar for the FSTU and TFS methods, whereas the FSTU 

method is less accurate by a factor of 1.5 for the quenching moments. 

 Table 2 shows the UREs for the total nonadiabatic probability PN and the product 

branching ratio FR for each of the twelve test cases.  For PN, the FSTU method is less 

accurate than the TFS method for only two of the twelve test cases, and in these two 

cases both the FSTU and the TFS method have small UREs.  For the other ten test cases, 

the FSTU method is more accurate than the TFS method for PN; the URE for the FSTU 

method is smaller than the URE for the TFS method by a factor of ~2 for six cases, a 

factor of ~4 for two cases, and factors of 5.8 and 9.3 for the remaining two cases.  For the 

product branching ratio FR, the FSTU method is slightly less accurate than the TFS 

method for four of the twelve cases (by an average factor in the UREs of 1.1).  For the 

remaining eight cases, the FSTU method is more accurate than the TFS method in 

predicting FR; the URE in FR is smaller for the FSTU method by factors of 1.4 – 2.0 for 

six cases, and factors of 3.0 and 4.9 for the remaining two cases.  

 Shown in Table 3 is the average final value of the quantum mechanical ground 

electronic-state probability density [i.e., P1(t = �) averaged over all the trajectories in the 

ensemble] for each of the twelve test cases and for both the FSTU and TFS methods.  
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Also shown is the fraction of trajectories that finished the simulation in the ground 

electronic state [note that PN � F1(t = �)].  The FSTU method retains more self-

consistency in the fewest-switches algorithm than the TFS method (i.e., PN is closer to 

<P1(t = �)> for the FSTU method).  Also shown in Table 3 is the probability (f) that a 

trajectory experienced a frustrated hop and finished the simulation in the ground 

electronic state.  The FSTU method (by design) has less frustrated hopping than the TFS 

method by an average factor of 1.5. 

 The product of PN and (1 – f) (where 1 – f is the probability that a trajectory 

finished the simulation in the ground electronic state and did not experience a frustrated 

hop) is tabulated in Table 3 and gives a rough estimate of the fully self-consistent fewest-

switches result.  These values agree very well with <P1(t = �)>, but do not agree with 

the accurate quantum mechanical values of the total nonadiabatic quenching probability 

QM
NP , also shown in Table 3. 

V.  Discussion 

 The TFS method is formulated such that surface hops are minimized, and this 

“ fewest-switches”  formulation is accomplished by allowing surface hops only when there 

is a net flow of electronic state probability density out of the currently occupied 

electronic state during the interval between hopping decisions.  The presence of 

classically forbidden electronic transitions destroys the self-consistency built into the TFS 

method, and results in a “ fewer-than-fewest-switches”  method.  We note, however, that a 

fully self-consistent fewest-switches algorithm [i.e., PN � <P1(t = �)> in Table 3] would 

greatly underestimate the accurate total nonadiabatic quenching probability QM
NP .  The 

fact that QM
NP ≈/  <P1(t = �)> points out the serious problem in the semiclassical 

trajectory formalism that was mentioned earlier.  Namely, the electronic state population 

density Pi(t) given by eq. (1) does not properly include electronic state decoherence 

effects.  A proper treatment of decoherence within the semiclassical trajectory approach 

would require that the electronic state density coherence aij depend on all of the 
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trajectories in the ensemble, and thus would require simultaneous propagation of the 

entire ensemble of trajectories.22,52  This would increase the computational complexity 

and cost of the surface hopping algorithm, and we therefore restrict our attention to the 

independent trajectory approach.   

 One effect of the lack of proper treatment of the electronic state decoherence in 

the semiclassical trajectory approach is that the electronic state coherence term aij 

computed for each independent trajectory does not properly go to zero when the 

ensembles of trajectories in the two electronic states i and j separate in phase space.  If for 

some fully decoherent trajectory aij is nonzero, there will be a flow of electronic state 

density (hopping) between electronic states, whereas an accurate treatment of aij would 

give aij = 0 and would damp out these (often frustrated) electronic transitions, as can be 

seen from eqs. (1) and (2).  The improper treatment of decoherence can have serious 

effects anywhere along the classical trajectory, but we note that a dramatic example of 

this problem occurs when the unoccupied electronic state is too high in energy to be 

occupied by any classical trajectories.  When this is the case, there will be no trajectories 

directly “ above”  the ensemble of ground-state trajectories, and aij should therefore be 

nearly zero.  As mentioned above, the independent semiclassical trajectory value of aij 

may not be zero, and a trajectory on the lower potential energy surface may therefore 

experience a frustrated hop in this region where a proper treatment of the decoherence 

would have predicted no hops at all. 

 From these considerations alone, one may be motivated to ignore all frustrated 

hopping as being caused by the lack of the proper treatment of the decoherence of 

divergent trajectories.  We have shown, however, that ignoring all frustrated hopping (as 

in the TFS method) leads to systematic errors in the total nonadiabatic quenching 

probability.23  The FSTU method, by allowing some frustrated hopping attempts to 

become successful nonlocal hops, greatly reduces these errors, as shown in Sec. IV.  The 

FSTU method may be justified by noting that a quantum mechanical nuclear 

wavefunction will have tails that extend into regions that are inaccessible to classical 

trajectories.  These tails lead to electronic state population transfer in classically 
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forbidden regions and therefore may induce frustrated hopping in the TFS algorithm, 

whereas this kind of hop is allowed by the FSTU method by incorporating nonlocal 

hopping into the fewest-switches formalism.  The maximum “ nonlocality”  of a hop in the 

FSTU method corresponds to the approximate extension of the quantum mechanical tails 

into the classically forbidden regions as estimated by eq. (4). 

 Ideally, one would develop a method that incorporates the proper treatment of 

decoherence into the independent semiclassical trajectory scheme by modifying the 

equations for calculating aij along the classical trajectory.  Such a scheme, however, 

would still feature classically frustrated hopping as a result of the electronic state 

tunneling discussed above.  The FSTU is a desirable practical alternative to an explicit 

treatment of decoherence effects because it is a simple extension of the TFS method.  Its 

usefulness is further justified numerically in the present study, as it is shown to greatly 

improve the accuracy of the fewest-switches method. 

 The present formulation of the FSTU method is simple and straightforward, but it 

is not unique.  For example, the uncertainty relation in eq. (3) is strictly an inequality, and 

we can therefore write the FSTU nonlocal hopping criterion in eq. (4) as 

  Extt ∆≤− 2/h0 � , (5) 

where x is some number greater than or equal to one.  It is natural to take x = 1 (as in the 

FSTU method), but we also tested several variants of the FSTU method with different 

values of x, namely x = 2, 4, 10, and � (where x = 0 is, of course, the TFS method).  We 

found that the value of x = 1 gives the best agreement with the accurate quantum 

mechanical results. 

 For some systems, it may be necessary to devise more complicated schemes for 

introducing nonlocal hopping into the fewest-switches algorithm such as alternate 

definitions of ∆E or allowing trajectories to tunnel in some direction other than along the 

classical trajectory (say, along the nonadiabatic coupling vector).  The FSTU method 

performs well without greatly increasing the complexity of the surface hopping 

algorithm, and we did not test the more complicated schemes mentioned above.  We did 

consider allowing trajectories to hop at any time (not just the closest time to t0) that 

satisfies the FSTU nonlocal hopping criteria in Sec. III by choosing between each time 
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that satisfies these criteria with some probability.  We found, however, that this 

modification had no significant effect on the values of the observables, and we can 

explain this by noting that the average value of E∆2/�  is much less than the 

characteristic time scales of the system.  Therefore, resolving the hopping time within the 

E∆2/�  interval has little effect on the overall dynamics. 

It is interesting to note that the problem of frustrated hopping has been addressed 

recently43,44 using nonlocal hopping within the Landau-Zener trajectory surface hopping 

scheme.  The Landau-Zener trajectory surface hopping scheme allows electronic 

transitions whenever a classical trajectory crosses some predefined hopping seam, and the 

hopping probability is computed from the electronic-state energies at the seam and the 

component of the nuclear momentum perpendicular to the hopping seam.  Zhu et al. have 

proposed an elegant method43,44 (which we will call the ZNN method) that incorporates 

nonlocal hopping into the Landau-Zener surface hopping formalism.  Specifically, 

frustrated hops are removed by allowing trajectories to tunnel perpendicular to the 

hopping seam.  The ZNN method was shown to greatly improve the semiclassical 

trajectory results for the cases to which is was applied. 

We note that the ZNN method differs from the FSTU method in several important 

ways.  First, a FSTU trajectory, like a TFS trajectory, may experience a hopping attempt 

anywhere along the classical trajectory and not only at a predefined hopping seam.  We 

consider this to be essential for modeling many kinds of nonadiabatic systems, and hence 

we are only interested in the further development of methods with this generality.  

Second, the FSTU hopping probabilities are determined by integrating the time-

dependent Schrödinger equation along the classical trajectory, whereas the ZNN hopping 

probabilities are based on information at the hopping seam.  The ZNN hopping 

probabilities therefore do not suffer from the decoherence problem discussed here for the 

TFS method, at least when the assumptions underlying the Landau-Zener-type treatment 

are satisfied.  Third, FSTU trajectories tunnel along the classical trajectory in time for 

some time that is no greater than that allowed by the uncertainty principle, whereas the 

ZNN trajectories tunnel in space perpendicular to the hopping seam and are not limited in 

their tunneling distance. 
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Other methods that delocalize the intersurface transitions are the full multiple 

spawning method,22,29 which is based on the semiclassical propagation of Gaussian wave 

packets,53,54 and methods based on a self-consistent or mean-field 

potential,11,14,16,19−21,25,28 such as the semiclassical Ehrenfest method,11,14,16,25,28 

continuous surface-switching,11,19,20 and natural decay of mixing.21  Our view is that 

there are three kinds of semiclassical molecular dynamics methods for non-Born-

Oppenheimer systems, namely, trajectory surface hopping methods, self-consistent 

potential methods, and wave packet propagation methods, and it is useful to find the best 

general method in each category as well as to compare different kinds of methods.  We 

have previously presented arguments that the natural decay of mixing21 is the best 

method of the self-consistent potential type, and the present paper indicates that the 

FSTU method appears to be a culmination of our efforts to find a best general method of 

the trajectory surface hopping type.  The systematic testing of standardized semiclassical 

wave packet methods is more in its infancy, but the FMS-M method has been proposed as 

a standardized validated method.22  Comparing method between categories, we can 

summarize our previous studies11,14–16,18–23 without repeating all the details by saying 

that the natural decay of mixing algorithm has the strong advantages that it avoids 

discontinuities (hops) and is independent of choosing an adiabatic of diabatic 

representation in strong interaction regions, whereas surface hopping methods have an 

important advantage of simplicity of computer coding, and the Calaveras County 

criterion11,20–22 provides a general prescription for choosing a representation.  Both of 

these kinds of methods have the advantage over wave packet propagation methods that 

they are less expensive (at least with currently available computer programs45,55), and 

hence they facilitate a more thorough sampling of the space of the initial conditions, 

making realistic simulations more feasible. 

 It has been noted above that the FSTU method has more surface switches than the 

TFS method.  This should not be seen as a violation of the “ fewest-switches”  

formulation.  As discussed above the presence of frustrated hops in the TFS method 

results in a “ fewer-than-fewest-switches”  method.  Only in the limit of a fully self-

consistent surface hopping method does the number of hops increase such that the 
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method becomes the “ fewest-switches”  method as it was originally formulated.  The 

FSTU method is, in fact, closer than the TFS method to the “ fewest-switches”  fully-self 

consistent result. 

VI.  Conclusions 

We have described a new method for treating classically forbidden electronic 

transitions in trajectory surface hopping calculations called the fewest-switches with time 

uncertainty (FSTU) algorithm.  The FSTU method improves the self-consistency of the 

fewest-switches algorithm.  We tested the FSTU method using a set of twelve three-body, 

two-state test cases that were designed to provide sensitive tests of methods for treating 

weakly coupled highly quantal systems, and hence the provide a challenging test of 

methods for correcting the problem of frustrated hopping.  We found that the new 

formalism greatly increases the accuracy of the total nonadiabatic quenching probability 

and the product branching ratio. 
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Table 1.  Mean unsigned relative errors (MUREs) for the TFS and FSTU methods averaged over twelve test cases. 

Method PR < v′ > < j′ > PQ <v ′′ > < j ′′ > PN FR Prob.a Mom.b Allc 

TFSd 1.36 0.12 0.14 0.29 0.23 0.67 0.32 0.93 0.73 0.29 0.51 

FSTU 1.25 0.14 0.15 0.21 0.27 0.79 0.19 1.12 0.69 0.34 0.51 

 

aAverage MURE for the probabilities PR, PQ, FR, and PN. 

aAverage MURE for the moments < v′ >, < j′ >, < v ′′ >, and < j ′′ >. 

cAverage MURE for all eight observables. 

dThe MUREs for the TFS method were computed from the TFS-(+,+) data in Ref. 23. 
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Table 2.  Unsigned relative errors (UREs) for the TFS and FSTU methods for the twelve 

test cases. 

PN  FR 
I. C.a max

12U / eV 
TFS FSTU  TFS FSTU 

(1.10, 0) 0.20 0.75 0.31  0.64 0.33 

 0.10 0.18 0.05  0.48 0.28 

 0.03 0.49 0.08  0.31 0.10 

 0.01 0.43 0.24  0.14 0.15 

(1.10, 6) 0.20 0.15 0.06  0.47 0.33 

 0.10 0.41 0.26  0.61 0.66 

 0.03 0.05 0.10  0.39 0.49 

 0.01 0.05 0.09  0.41 0.49 

(1.02, 0) 0.20 0.91 0.58  0.32 0.07 

 0.10 0.11 0.06  3.23 2.32 

 0.03 0.21 0.06  1.93 1.30 

 0.01 0.16 0.02  2.25 1.51 

Meanb 0.32 0.16  0.93 0.67 

aInitial conditions are specified in Sec. II. 

bAverage of twelve cases. 
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Table 3.  The quantum mechanical total nonadiabatic quenching probability QM
NP , final ground electronic state probability density 

averaged over the ensemble of classical trajectories <P1 (t = �)>, and the total nonadiabatic quenching probability PN and frustrated 

hopping probability f for the TFS and FSTU methods. 

  TFS  FSTU 
I. C.a max

12U / eV 
 

QM
NP b <P1 (t = �)>c 

 PN f (1 – f) PN  PN f (1 – f) PN 

(1.10, 0) 0.20    5.74(2)d 3.48(2)  9.87(2) 0.73 2.67(2)  7.51(2) 0.64 2.67(2) 

 0.10  3.99(2) 1.80(2)  4.87(2) 0.65 1.72(2)  3.80(2) 0.55 1.72(2) 

 0.03  4.10(3) 1.21(3)  5.71(3) 0.60 2.26(3)  4.44(3) 0.49 2.26(3) 

 0.01  4.34(4) 2.79(4)  6.93(4) 0.59 2.87(4)  5.40(4) 0.47 2.87(4) 

(1.10, 6) 0.20  1.62(1) 1.59(1)  1.97(1) 0.39 1.20(1)  1.73(1) 0.31 1.20(1) 

 0.10  9.07(2) 1.11(1)  1.27(1) 0.29 9.05(2)  1.15(1) 0.21 9.05(2) 

 0.03  1.59(2) 1.32(2)  1.57(2) 0.28 1.14(2)  1.42(2) 0.20 1.14(2) 

 0.01  1.83(3) 1.48(3)  1.87(3) 0.27 1.37(3)  1.66(3) 0.18 1.37(3) 

(1.02, 0) 0.20  4.97(2) 5.08(2)  9.66(2) 0.64 3.51(2)  7.84(2) 0.55 3.51(2) 

 0.10  3.44(2) 1.99(2)  3.98(2) 0.60 1.61(2)  3.24(2) 0.50 1.61(2) 

 0.03  3.71(3) 2.93(3)  4.21(3) 0.56 1.86(3)  3.49(3) 0.47 1.86(3) 

 0.01  4.21(4) 2.79(4)  5.04(4) 0.55 2.26(4)  4.14(4) 0.45 2.26(4) 

aInitial conditions are specified in Sec. II. 
bAccurate quantum mechanical PN; these values are taken from Ref. 23. 
cAverage value of the ground-state electronic probability density, averaged over all the trajectories in the ensemble.  This value is 
found to be the same for the TFS and FSTU methods to the number of figures presented. 
dNote that 5.74(2) � 5.74 x 10–2. 
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Chapter Five 

5 
Coupled Quasidiabatic Potential Energy Surfaces for LiFH 

 

 

 

I.  Introduction 

The LiFH system is ideal for detailed theoretical study because it is relatively 

simple yet features an interesting potential energy surface topography.  The ground-state 

LiFH potential energy surface1–13 and the dynamics of the electronically adiabatic 

Li + HF � LiF + H reaction10–25 have been widely studied.  The excited states8,26,27 and 

electronically nonadiabatic dynamics26,28 of LiFH have attracted attention only recently.  

The ground-state potential energy surface has a relatively deep van der Waals well in the 

Li(2s) + HF entrance valley and a barrier in the LiF + H exit valley.  A strongly bound 

excited-state complex (exciplex) is present in the first excited-state at a geometry similar 

to (but tighter than) the geometry of the ground-state van der Waals well.  The ground 

and first-excited states of the LiFH system are coupled nonadiabatically, forming a seam 

of avoided crossing at larger Li–F and H–F separations.   

The features of the coupled LiFH potential energy surfaces allow for interesting 

dynamical processes.  For example, the ground-state van der Waals molecules (Li… FH) 

may be excited into the exciplex [(Li… FH)*].  These excited-state complexes are 

relatively long-lived and may undergo electronically nonadiabatic dissociation26,28 which 

can proceed either reactively to form LiF + H or non-reactively to form electronically 

quenched Li(2s) + HF: 

  ( )
�
�
�

+
+

→⋅⋅⋅→⋅⋅⋅
HF.)Li(2
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This type of reaction is of particular importance as a means of probing the transition 

state region of the excited-state Li(2p) + HF reaction.  For sufficiently large excitation 

energies hυ, another dissociation pathway is accessible where the (Li… FH)* exciplexes 

dissociate in an electronically excited state and form the Li(2p) + HF product.   

In order to facilitate the detailed theoretical study of the LiFH system, we present 

high-level ab initio calculations for a dense grid of nuclear geometries for the ground 

state and first five excited states of LiFH.  Some of the features on the ground- and 

excited-state adiabatic potential surfaces are the result of the interaction of covalent and 

ionic valence bond configurations, and a multiconfigurational treatment is necessary to 

accurately describe these features.  Ab initio calculations were performed with the multi-

reference configuration interaction (MRCI) method employing relatively large reference 

spaces and a large one-electron basis set.  Although in this work we focus mainly on the 

potential energy surfaces of the ground and first-excited states of the LiFH system, we 

also present less extensive results for other low-lying states of LiFH, including all states 

that correlate with the Li(2s 2S) + HF(X 1Σ+) and Li(2p 2P) + HF(X 1Σ+) limits. 

The energies obtained from the ab initio calculations were used to construct a 

three-dimensional analytic fit for the two lowest-energy quasidiabatic29–44 states of LiFH 

and their electronic coupling.  In a previous work,26 we have presented semiclassical 

trajectory photodissociation calculations using analytic fits for the NaFH and LiFH 

systems.  The LiFH fit used in the previous study (which may be called surface fit H) was 

based on a limited set of ab initio data.  In the current work, we described an improved 

LiFH fit called surface fit J that is based on the larger set of ab initio data presented here.  

Care has also been taken to explicitly include accurate long-range interactions, which 

were not included in the preliminary fit.  The newly presented LiFH quasidiabatic 

potential energy matrix is global and can be used to describe ground-state or nonadiabatic 

bimolecular scattering processes as well as the photodissociation processes shown in eqs. 

(R1a) and (R1b) for both quantum mechanical and semiclassical dynamics simulations. 

In Section II we present the details of the ab initio calculations for the LiFH 

system.  Section III describes the procedure we used to obtain an analytic fit of the ab 
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initio data.  Section IV discusses the fit and compares it to several ground-state LiFH 

fits and one excited-state LiFH fit that have appeared previously in the 

literature.4,5,8,11−13 

 

II.  Ab Initio Electronic Structure Calculations 

Ab initio calculations were performed using the MRDCI variant45 of the multi-

reference configuration interaction (MRCI) method. In this approach, a series of 

variational CI calculations is carried out using sets of spin- and symmetry-adapted 

configuration state functions (CSFs) that are selected from all possible CSFs generated by 

single and double substitutions in reference configurations.  For multi-reference 

calculations, the reference space contains those CSFs that are believed to be essential for 

the description of the nondynamical correlation in the electronic states of interest as well 

as some of the leading configurations needed for dynamical correlation.  In each CI 

calculation, the selection of excited CSFs is made based on their importance in the CI 

wave function expansions, as determined by a selection threshold T (usually, a few µEh 

or a fraction of one µEh).  The selection of excited CSFs is based on the estimated energy 

lowering effect of each added CSF on the desired eigenvalues of the Hamiltonian matrix 

involving reference CSFs, as explained elsewhere.45  The CI eigenvalue problem then is 

solved several times for different values of selection threshold T, and the resulting 

energies are extrapolated to the T = 0 limit.  This limit corresponds to the complete 

MRCISD (MRCI singles and doubles) eigenvalue problem.45  The final MRDCI energy 

of a given electronic state is obtained by adding the simplified quasidegenerate Davidson 

correction46 to the extrapolated MRCISD energy.  In each of the three types of the 

MRDCI calculations reported in this work (referred to as Strategies A–C and fully 

described below), the extrapolated energies were obtained using three threshold values T, 

as described below. 

Although in this study we were mainly interested in the two lowest states of 2A' 

symmetry, we also wanted to understand the topography of the potential energy surfaces 

characterizing other low-lying states of the LiFH system.  Thus, along with the ground 
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state ( X
~  2A') and the first excited state ( A

~
 2A'), we calculated the potential energy 

surfaces of four other states, including two more states of the 2A' symmetry (the C
~

 2A' 

and D
~  2A' states) and the two lowest states of 2A" symmetry (the B

~   2A" and E
~   2A" 

states).  The calculated states correlate with the six doublet states corresponding to the 

lowest-energy noninteracting-atom limit [i.e., the Li(2s 2S) + F(2p5 2P) + H(1s 2S) 

asymptote].  These states include the Li(2s 2S, 2p 2P, 3s 2S) + HF(X 1Σ+ ) states of the 

reactants and the LiF(X 1Σ+, A 1Π, B 3Π, C 3Σ+, D 1Σ+ ) + H(1s 2S) states of products.  In 

choosing the reference spaces and basis sets for our MRDCI calculations, we obtain a 

balanced description of the four lowest 2A' and two lowest 2A" states.  We also obtain a 

very accurate description of the lowest two 2A' states, and this was used to construct a 

2 x 2 quasidiabatic fit described in Sections III and IV. 

The basis set used in the MRDCI calculations consisted of the standard 

6-311G(3d2f,3p2d) basis set,47 augmented by several diffuse functions whose exponents 

were optimized to accurately reproduce selected properties of the Li, H, and F atoms 

(excitation energies of Li, ionization potential of Li, and electron affinities of H and F) 

and basic properties of the HF, LiF, and LiH diatomic fragments (the equilibrium bond 

lengths, vibrational term values, dissociation energies, dipole moments, and low-lying 

excited states).  The following diffuse functions were used to augment the 

6-311G(3d2f,3p2d) basis set (exponents in parentheses): s(0.0052) and p(0.0097) 

functions centered on Li, s(0.089), s(0.00001), and p(0.083) functions centered on F, and 

s(0.037), s(0.012), and p(0.055) functions centered on H. Cartesian representations of the 

d and f functions were employed throughout, so that the total number of contracted 

Gaussian functions in the basis set was 140.  The high accuracy of our basis set can be 

judged by the results of the MRDCI calculations for the Li, H, and F atoms and HF, LiF, 

and LiH molecules, as shown in Tables 1-6.  The total absolute energies for the diatomic 

calculations at the minimum energy bond length are −100.353263, −107.298414, and 

−8.043992 Eh, for the HF, LiF, and LiH diatomics, respectively. 

 The MRDCI calculations reported in this work were performed using ground-

state restricted open-shell Hartree-Fock (ROHF) orbitals, and the lowest a′1  molecular 
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orbital was kept frozen. All ROHF and correlated calculations were performed using 

the Cs symmetry common to all LiFH nuclear configurations.  The use of Cs symmetry 

in our calculations prompts a few remarks.  When collinear arrangements of the Li, F, 

and H atoms are approached (i.e., at Li-F-H angles of 180o or 0o), the symmetry of the 

LiFH electronic Hamiltonian increases from Cs to C�v, so that the A′  and A ′′  states 

classify as Σ, Π, etc. states (similarly, the ROHF orbitals that for the bent configurations 

classify as a′  and a ′′  orbitals become σ, π, etc. orbitals for the collinear arrangements of 

the Li, F, and H atoms).  The incomplete reference spaces and the CSF selection 

procedures that are used in MRDCI calculations give results that are not unitarily 

invariant with respect to general orbital rotations within the core, active, and virtual 

blocks.  In particular, the results for the collinear geometries may depend on whether we 

use Cs or C�v symmetry-adapted orbitals and CSFs. For this reason, we never used the 

C�v symmetry (or its C2v Abelian subgroup) in our calculations, as this would result in a 

nonsmooth behavior of our calculated potential energy surfaces for Li–F–H angles 

approaching 180o and 0o.  To mimic the collinear arrangements of the Li, F, and H 

atoms, while retaining the Cs symmetry for all geometries, we included Li–F–H angles 

of 179.99o and 0.01o in our grids. 

The MRDCI calculations for the 2A' states are based on 62 symmetry-adapted 

reference configurations (as defined by the orbital occupation numbers) or, equivalently, 

99 spin- and symmetry-adapted CSFs.  The 2A" states were described by 24 reference 

configurations or 39 CSFs.  These configurations were chosen so as to provide an 

accurate and well balanced zero-order description of the four lowest 2A' and two lowest 

2A" states in the 6-root calculations with thresholds T = 4, 6, and 8 µEh referred to as 

Strategy A (see the discussion below for further details), over a wide range of nuclear 

geometries, including:  the Li + HF and LiF + H dissociation channels, the vdW well on 

the ground-state potential energy surface, the excited-state well, the region of the avoided 

crossing between ground and excited-state potential energy surfaces, and the transition-

state region for the ground-state Li + HF � LiF + H reaction.   
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In the language appropriate for the Li + HF limit, the reference CSFs defining 

the 2A' CI subproblem included the ground-state ROHF determinant, the 2s � 2p, 3s, 3p, 

3d, 4s, 4p, etc. single excitations in Li (important to describe excited states of the Li… FH 

complex), the valence σ � σ* single and double excitations in HF (important to describe 

the bond breaking in HF), the valence π � σ* as well as the Rydberg σ, π � σ, π mono- 

and biexcitations in HF, the 2s(Li) � σ*(HF), σ(HF) � 2s, 2p, 3s, 3p, 3d, 4s, 4p(Li), 

etc. and π(HF) � 2s, 2p, 3s, 3p, 3d, 4s, 4p(Li), etc. monoexcitations between Li and HF, 

and various “ product”  double excitations, such as σ2(HF) � 2s12p1,2s13s1(Li), σ2(HF) 

� 2s1(Li)(σ*)1(HF), π2(HF) � 2s12p1,2s13s1(Li), and π2(HF) � 2s1(Li)(σ*)1(HF).  

Thus, along with the ground-state ROHF determinant 

 1222)0( )6()1()5()4}(core{ aaaa ′′′′′=Φ , (1) 

where {core} = 222 )3()2()1( aaa ′′′ , in which the lowest a′1  molecular orbital (~ 1s 

orbital on fluorine) was kept frozen, the CSFs of the following types were chosen as 

reference configurations: 

 1222)1( )()1()5()4}(core{ anaaan ′′′′′=Φ , (2) 

 11221)2( )()6()1()5()4}(core{ anaaaan ′′′′′′=Φ , (3) 

 11212)3( )()6()1()5()4}(core{ anaaaan ′′′′′′=Φ , (4) 

where 207 ≤≤ n , 

  2221)4( )6()1()5()4}(core{ aaaa ′′′′′=Φ , (5) 

  2212)5( )6()1()5()4}(core{ aaaa ′′′′′=Φ , (6) 

  2122)6( )()6()1()5}(core{ anaaan ′′′′′=Φ , (7) 

  1222)7( )()6()1()5}(core{ anaaan ′′′′′=Φ , (8) 

  2122)8( )()6()1()4}(core{ anaaan ′′′′′=Φ , (9) 
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  1222)9( )()6()1()4}(core{ anaaan ′′′′′=Φ , (10) 

where 97 ≤≤ n , and 

  11122)10( )2()6()1()5()4}(core{ aaaaa ′′′′′′′=Φ , (11) 

  )32 31(     ,)()7()6()1()5()4}(core{ 111211)11( ,nanaaaaan =′′′′′′′=Φ , (12) 

  111121)12( )12()7()6()1()5()4}(core{ aaaaaa ′′′′′′′′=Φ , (13) 

  111112)13( )12()7()6()1()5()4}(core{ aaaaaa ′′′′′′′′=Φ . (14) 

Two CSFs were particularly important for the description of the two lowest 2A' states, 

namely, the ROHF configuration )0(Φ , eq. (1), and the monoexcited configuration )1(
7Φ , 

eq. (2).  These two configurations correlate with the Li(2s 2S) + HF(X 1Σ+) and the 

Li(2p 2P) + HF(X 1Σ+) limits of reactants.  In this case, the a′6  and a′7  orbitals 

represent, respectively, the 2s and 2p orbitals of Li.  As the Li–F distance decreases and 

the H–F distance increases, the a′7  orbital evolves into an antibonding orbital of HF 

having a significant admixture of diffuse atomic orbitals centered on Li, allowing us to 

describe an ionic intermediate Li+–(F–H)–, which plays an important role in the electron 

transfer between the excited lithium atom and the HF fragment in (LiFH)*, ultimately 

allowing for nonadiabatic dissociation of (LiFH)* into the reaction products, eq. (R1a).  

At the same time, the a′6  orbital becomes a 1s orbital of hydrogen, so that when the H-F 

bond finally breaks, the ROHF configuration )0(Φ , eq. (1), describes the ionic product 

channel, i.e., LiF(X 1Σ+) + H(1s 2S).  The presence of the carefully optimized diffuse 

functions in the basis set was essential for obtaining an accurate description of the X
~  2A' 

and A
~

 2A' potential energy surfaces in the region of nuclear geometries where the 

nonadiabatic transitions and a significant rearrangement in the electronic structure of the 

excited Li… FH complex (from the covalent to largely ionic Li+–(F–H)– intermediate), 

which are responsible for the photoinduced charge transfer in Li… FH, take place.   
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 A similar set of references, including the 2s � 2p, 3p, 3d, 4p, etc. single 

excitations in Li, the σ � π and π � σ*, σ, π single excitations in HF, and the σ(HF) � 

2p, 3p, 3d, 4p(Li), π(HF) � 2s, 2p, 3s, 3p, 3d, 4s, 4p(Li), σ2(HF) � 2s12p1(Li), and 

π2(HF) � 2s12p1(Li) intersystem excitations, was defined for the 2A" states.  Thus, 

along with the 

  1222)1( )()1()5()4{core}(~ anaaan ′′′′′′=Φ , (15) 

  11221)2( )()6()1()5()4{core}(~ anaaaan ′′′′′′′=Φ , (16) 

and 

  11212)3( )()6()1()5()4{core}(~ anaaaan ′′′′′′′=Φ  (17) 

configurations, where n = 2 – 7, we included in the reference space the 

  11122)4( )()6()1()5()4{core}(~ anaaaan ′′′′′′=Φ  (18) 

configurations with n = 7 – 9, and the 

  2122)5( )6()1()5()4{core}(~ aaaa ′′′′′=Φ , (19) 

  1222)6( )2()6()1()4{core}(~ aaaa ′′′′′′=Φ , (20) 

and 

  1222)7( )2()6()1()5{core}(~ aaaa ′′′′′′=Φ , (20) 

configurations. 

The above reference spaces do not represent complete model spaces.  The fact 

that we did not use a complete active space approach, which would considerably increase 

the cost of our calculations, was compensated for by a careful choice of reference 

configurations.  These reference configurations were selected in such a way that they 

rotate into one another when the nuclear geometry varies.  The appropriateness of our 

selection of references can be best illustrated by the size of the sum of the squared 

magnitudes of the coefficients of the above reference CSFs in the final CI wave function 

expansions of the four lowest 2A' and two lowest 2A" states defining Strategy A, the two 
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lowest 2A' states defining strategy B, and the lowest 2A' state defining Strategy C (for 

the precise definitions of these strategies, see the next paragraph).  For the majority of 

geometries considered in this study, these sums were greater than 0.95, and they were 

greater than 0.90 for all nuclear geometries and all computational strategies considered 

here. 

 As in our earlier study of the potential energy surfaces of the NaFH system,34 the 

MRDCI calculations for LiFH were performed in three stages, with each successive stage 

employing a set of smaller selection thresholds T and a subset of geometries used in the 

earlier stage.  Thus, the entire potential energy surfaces for the four lowest 2A' and two 

lowest 2A" states were first explored using the threshold values T = 4, 6, and 8 µEh.  This 

initial 6-root calculation is referred to as Strategy A.  The exploratory calculations 

constituting Strategy A were followed by more accurate calculations for the X
~  2A' and 

A
~

 2A'  states, and this 2-root calculation is referred to as Strategy B.  In these 

calculations, we used the smaller threshold values T = 1, 2, and 3 µEh.  This set of 

calculations focused on the regions of potential energy surfaces critical for the dynamics 

of the nonadiabatic dissociation of the excited LiFH system, including the geometries 

along the Li + HF � LiF + H reaction path, the regions of the van der Waals minima on 

the X
~  2A' and A

~
 2A' potential energy surfaces, the saddle point region on the ground-

state potential energy surface, and the region of the avoided crossing of the X
~  2A' and 

A
~

 2A' states.   

The final set of calculations, denoted as Strategy C, employed the smallest 

selection thresholds, namely, T = 0.15, 0.30, and 0.45 µEh.   In these most accurate 

calculations, performed only for the ground state, we focused on H–F distances not 

exceeding 2.6 a0, i.e., on the shallow van der Waals minimum, the entire reactant valley, 

and the product valley up to the barrier for the Li + HF � LiF + H reaction.  Strategy C 

was important for improving the description of the van der Waals well and the saddle 

point region on the ground-state potential energy surface, which have also been examined 

by one of us with highly accurate coupled-cluster calculations.13  In fact, we used the 
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results of these coupled-cluster calculations to choose the optimum values of T for the 

MRDCI calculations defining Strategies B and C.   

As pointed out in our earlier study of the NaFH system,34 the use of very small 

thresholds T, such as those defining Strategy C, is essential to obtain the correct 

description of shallow minima on potential energy surfaces with the MRDCI method.  

For example, the estimated error of extrapolation to the T = 0 limit of the complete 

MRCISD problem characterizing Strategy C was 0.001–0.006 eV, which is a reasonable 

accuracy for the ground-state potential energy surface in that it is characterized by a van 

der Waals minimum located ~0.24 eV below the Li + HF asymptote.  The other regions 

of the X
~  2A' and A

~
 2A'  potential energy surfaces are accurately described with Strategy 

B, which has estimated extrapolation errors of 0.01–0.03 eV for all nuclear geometries 

included in the calculations.  The least expensive set of calculations, defining Strategy A, 

has extrapolation errors of 0.02–0.09 eV; this accuracy level was sufficient to provide 

information about the global topography of the potential energy surface of the four lowest 

2A' and two lowest 2A" states, and information obtained in the 6-root Strategy A 

calculation was useful for choosing the functional form for our analytic fit of the potential 

energy surfaces of the X
~  2A' and A

~
 2A'  states described in Sections III and IV.  The use 

of the above selection thresholds allowed us to substantially reduce the original 

dimension of the 2A' MRCISD problem, from 23,616,292 CSFs for all single and double 

excitations to less than ~70,000 CSFs in the T = 4, 6, 8 µEh case, to less than ~100,000 

CSFs in the T = 1, 2, 3 µEh case, and to less than ~200,000 CSFs in the T = 0.15, 0.30, 

0.45 µEh case.  The use of the three-step approach (Strategies A–C) allowed us to reduce 

the cost of our calculations further, since we used more expensive Strategies B and C 

primarily in the regions important for the dynamics.  The regions of the LiFH potential 

energy surfaces (for example, regions characterized by very high energies) which cannot 

be accessed during the nonadiabatic dissociation of the excited Li… FH complex do not 

have to be treated as accurately as regions critical for the dynamics of this process.  The 

use of Strategies A–C and the use of the MRDCI scheme, which is based on selecting 

relatively small sets of CSFs out of large sets of CSFs corresponding to a complete MRCI 



 146

problem, allowed us to cut down the cost of our calculations so much that the 

otherwise expensive MRCI calculations could be performed on dense grids of nuclear 

geometries involving several thousands of points in a reasonable amount of time.  The 

results of the MRDCI calculations for each of the three Strategies A–C for a wide range 

of nuclear geometries is available as supplementary information.48  The ab initio energies 

are reported in the supplementary material relative to the zero of energy defined as the 

energy of the ground electronic state at rLiF = 15.0 a0, rHF = 1.7325 a0, and θ = 179.99o.  

The total absolute energies for the ground electronic state at this geometry are –

107.803247, –107.804286, and –107.804580 Eh for Strategies A, B, and C, respectively.   

The ab initio calculations were performed on different nuclear geometry grids for 

each set of calculations (i.e., for each Strategy A–C), and the grids are described in detail 

in the supporting information.48  Briefly, the 3,380 Strategy A geometries were designed 

to be global and cover the range:  rLiF = 2.0 – 15 a0, rHF = 1.2 – 7.0 a0, and θ = 45 – 

179.99o, where rAB is the A–B internuclear distance and θ is the Li–F–H bond angle.  

The 2,232 Strategy B geometries covered a more limited range: rLiF = 2.0 – 15 a0, rHF = 

1.4 – 3.0 a0, and θ = 45 – 179.99o.  The 1,362 Strategy C geometries covered the range: 

rLiF = 2.5 – 15 a0, rHF = 1.4 – 2.6 a0, and θ = 45 – 179.99o.  Each of these grids was 

augmented by several additional calculations to improve the quality of the final fit.  

The construction of the final quasidiabatic fit for the MRDCI potential energy 

surfaces of the X
~  2A' and A

~
 2A' states, based on the sequence of three sets of MRDCI 

calculations described above (Strategies A–C), is discussed in Sec. III.  In addition to 

using MRDCI to calculate the adiabatic potential energy surfaces of the LiFH system, the 

MRDCI method was also used to determine the asymptotic form of the off-diagonal 

matrix elements of the diabatic Hamiltonian.  As explained in Section III, the diabatic 

coupling term U12 for the LiFH system is constructed using the following two pieces of 

information:  the minimum energy gaps between the adiabatic potential energy surfaces 

of the X
~  2A' and A

~
 2A' states, extracted from the MRDCI calculations for these states as 
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described above, and the magnitude of the coupling between the lowest two 1Σ+ 

states of the LiF and LiH diatomic fragments.   

It is much easier to calculate the diabatic coupling for a diatomic than for a 

triatomic system, and several methods for calculating a diabatic Hamiltonian for a 

diatomic molecule have been proposed.38,49–54  In this work, we used the method 

proposed by Werner and Meyer,49 in which information about the off-diagonal matrix 

element of the diabatic Hamiltonian is determined from the adiabatic states that are to be 

coupled and the transition dipole moments between them (in our case, the lowest two 1Σ+ 

states of LiF and LiH).  In order to be consistent, we used the MRDCI approach in these 

additional calculations.  The basis sets for LiF and LiH were obtained using the basis sets 

for the Li, F, and H atoms employed in the calculations for the LiFH system.  We 

performed two kinds of calculations.  In the first set of calculations, we used three 

threshold values (0.2, 0.4, and 0.6 µEh for LiF and 0.001, 0.002, and 0.003 µEh for LiH) 

and extrapolated the resulting energies to the T = 0 limit, as we did in the calculations for 

LiFH.  This gave us information about the entire ground- and excited-state potential 

energy curves of the LiF and LiH molecules (the X 1Σ+, A 1Π, B 3Π, C 3Σ+, and D 1Σ+ 

states of LiF and the X 1Σ+, A 3Σ+, B 1Σ+, C 3Π, D 1Π, E 3Σ+ states of LiH).  Information 

about the ground and first-excited states was useful in designing the correct asymptotic 

form of our quasidiabatic fit in the LiF + H and LiH + F channels.  The corresponding 

vertical excitation energies can be found in Tables 5 and 6.   

In the second set of calculations, we used the nonextrapolated MRDCI energies 

for the lowest two 1Σ+ states, obtained in the calculations with T = 0.2 µEh for LiF and 

T = 0.001 µEh for LiH, and the corresponding dipole moment functions, i.e., the adiabatic 

dipole moments in the lowest two 1Σ+ states and the transition dipole moment between 

these states, to construct matrix elements U11, U22, and U12 of the diabatic Hamiltonians 

for LiF and LiH as functions of the internuclear separations.  The relevant adiabatic 

energies and dipole moments were obtained on dense grids of points consisting of 45 

Li−F distances, ranging between 1.7 and 31.0 a0, for LiF, and 41 Li–H distances, ranging 

between 1.5 and 15.0 a0, for LiH.  The reference spaces included 96 references (128 
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CSFs) for the LiF molecule and 82 references (82 CSFs) for LiH.  In order to improve 

the accuracy of our description of the U11, U22, and U12 diabatic potentials for LiF, for 

which the coupling is stronger, we uniformly shifted the ionic diabat U11 to reproduce the 

difference between the ionic and covalent diabats, U11 – U22, at the Li–F separation of 

31.0 a0, that results from the classical Rittner model,55 i.e.,  

  )2/(/1EA(F)IP(Li) 4
LiFLiF2211 RRUU α−−−=−  (22) 

where α equals the sum of the polarizabilities of Li+ and F– (we used the polarizability 

values reported in Refs. 56 and 57).  The resulting diabatic potentials U11, U22, and U12 

for LiF and the corresponding diabatic potentials for LiH were used to design the U12 

coupling term of the LiFH system (see Sec. III).  The high quality of the diabatic states of 

LiF, obtained in this work with the Werner-Meyer scheme49 and by the subsequent 

shifting of the ionic diabat according to eq. (22) can be seen by analyzing the results 

listed in Table 7.  The Li–F distance at which the U11 and U22 diabats cross (the crossing 

radius Rc), and the separation ∆E(Rc) between the adiabatic energies of the lowest two 

1Σ+ states of LiF, obtained by rediagonalizing the diabatic Hamiltonian at RLiF = Rc, 

compare very well with the empirical estimates of Rc and ∆E(Rc) provided in Ref. 50. 

 

III.  Fit of the Lowest Two Potential Energy Surfaces 

Fitting the adiabatic ab initio energies obtained as described in Sec. II directly 

would involve fitting the complicated features of the avoided crossing, the saddle point 

and the ground-state van der Waals well to a single functional form.  In addition, we 

would have to calculate the nonadiabatic vector coupling term 

  AAAX ′∇′= 22  
~

 ~)( qqd , (23) 

where q is the relevant set of nuclear coordinates, on the dense grid of nuclear geometries 

used in the calculations for the X
~  2A' and A

~
 2A' states.  This would considerably 

increase the cost and complexity of our calculations.  Thus, instead of fitting the adiabatic 
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potential energy surfaces and nonadiabatic coupling term d, we fit the surfaces 

quasidiabatically.35–44,58–60   

 The quasidiabatic electronic states, which formally result from a 2 x 2 unitary 

transformation of the adiabatic states, are essentially the covalent and ionic states of a 

valence-bond model, and their energies are relatively smoothly varying functions of 

geometry.  The quasidiabatic potential energy matrix is written as 

  ��
�

�
��
�
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qq
qq
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UU

UU
, (24) 

where U11 are U22 are the lower- and higher-energy diabatic surfaces, respectively, in the 

Li + HF asymptotic valley and the higher- and lower-energy diabatic surfaces, 

respectively, in the LiF + H valley (the quasidiabatic surfaces cross when all three atoms 

are interacting).  The quasidiabatic surfaces are coupled by a single scalar coupling term 

U12, which is a function of three internal coordinates of LiFH.  By defining the set of 

coupled surfaces using the quasidiabatic surfaces as in eq. (24), we also define the 

adiabatic surfaces and their nonadiabatic coupling d.  The adiabatic energies are obtained 

without approximation by diagonalizing eq. (24), i.e., 

  [ ] [ ] )(4)()()()()( 2
12

2
11222

1
22112

1
)2(1 qqqqqq UUUUUV +−+= � , (25) 

where V1 and V2 are the adiabatic X
~  2A' and A

~
 2A' states, respectively.  The 

nonadiabatic coupling d in eq. (23) may also be obtained without approximation from the 

quasidiabatic energies and their gradients.61 

One disadvantage of using the quasidiabatic representation is that it is not unique.  

A strict diabatic representation would be one in which all of the components of the vector 

coupling d are zero,51,54 but such a representation does not exist in general41,42,58–60 

(except for the trivial, nonphysical solution of a basis that is independent of nuclear 

geometry).  Nevertheless, useful approximate diabatic representations (i.e., quasidiabatic 

representations that are expected to contain the essentially correct physics for most 

practical dynamics calculations even when the momentum coupling is neglected) may 

often be defined, either based on smoothness and the incorporation of the geometrical 

dependencies expected on the basis of an underlying valence bond picture of the 



 150

electronic structure29–33,35–40 or based on more mathematical arguments.41–44,62  In 

the present work we use the former approach. 

As mentioned above, we fit the two lowest-energy adiabatic potential energy 

surfaces of LiFH to a 2 x 2 quasidiabatic potential energy matrix, eq. (24).  The details of 

the functional form and parameters used in the 2 x 2 LiFH fit are presented in the 

supporting information.48  Briefly, our first step towards obtaining an analytic global 

potential energy surface was to obtain one-dimensional analytic fits for the asymptotic 

potential energy curves for the diatomic potentials of HF and LiF, in each case with the 

third atom far away.  (Note that the LiH diatomic is not accessible at energies for which 

the current fit was designed to be useful.  We therefore did not include the accurate LiH 

curve explicitly in the present fit.)  The HF curve used in fitting the Li + HF asymptotic 

potentials was based on the RKR experimental data presented in Ref. 63.  The LiF curves 

for the two lowest states of LiF used to fit the LiF + H asymptotic potential, were based 

on the diatomic ab initio calculations for LiF discussed in Sec. II.  Figures 1 and 2 show 

the fitted Li + HF and H + LiF curves, respectively.  Also shown are the experimental 

and ab initio diatomic curves upon which the HF and LiF fits (with the third atom far 

away) were based, respectively, as well as the Strategy A data for these asymptotes (see 

Sec. II) upon which the global fit for LiFH is based.  As seen from Figs. 1 and 2 and as 

discussed in Sec. II, the global data agrees well with the experimental and high-level ab 

initio data. 

Also shown in Figs. 1 and 2 are the excited-state ab initio data and fits for HF and 

LiF, respectively, again with the third atom far away.  For small rHF, the excited-state fit 

for the HF curve is equal to the ground-state HF curve shifted to higher energy by the 

excitation energy of Li (1.848 eV).  The full three-body fitting procedure is facilitated 

when both electronic states go to the same energy when all three atoms are fully 

separated, and therefore the excited-state HF asymptotic potential was cut off around 

rHF = 3.0 a0.  The HF asymptotic curves and the ground-state LiF asymptotic curves 

were not allowed to vary during the remainder of the fitting procedure.  The excited-state 

LiF asymptotic curve is purely repulsive and was allowed to vary during the next step of 

the fitting procedure. 
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After determining the asymptotic H + LiF and Li + HF potentials, we 

developed highly-parameterized functional forms for the three-dimensional diabats and 

the diabatic coupling surface.  These functional forms were modeled on our previous fits 

of the NaFH and NaH2 systems,28,33,34 with additional functionality added as demanded 

by the LiFH ab initio data.  The U11 diabat is relatively featureless and contains only the 

van der Waals well and the Li(2s) + HF asymptote.  We therefore used a simple sum of 

diatomic terms to describe U11.  The HF potential curve was taken as our fit to the 

accurate experimental63 data as discussed above, and two parameterized repulsive curves 

were used to describe the LiF and LiH diatomic interactions.  Flexibility was added to the 

HF curve in the interaction region.  The U22 diabat is more complicated since it has two 

open arrangements, Li(2p) + HF and LiF + H, as well as a saddle point and a product van 

der Waals well.  We used a highly parameterized generalized LEPS64–67 function to 

describe the U22 surface.  Considerable flexibility in the fit was obtained by using highly 

modified triplet functions as well as switching functions to add functionality to the singlet 

curves.  See the supporting information48 for details. 

Proper treatment of long-range interactions68,69 can have a significant impact on 

observables such as the reaction cross section, as discussed elsewhere.33  Here we 

explicitly include the long-range dispersion and permanent multipole interactions in the 

U11 and U22 surfaces.  (Note that here we may include the long-range interactions in the 

quasidiabatic states because the diabatic coupling is nonzero only in the strong interaction 

region.  The quasidiabatic states are therefore equal to the adiabatic states in the regions 

where the long-range forces are important.)  Dispersion and dipole-induced-dipole forces 

were included in the U11 surface for the Li(2s) – HF interaction and in the U22 surface 

for the Li(2p) – HF and H – LiF interactions.  These interactions are asymptotic to 

6
BCA,

−Q for the interaction A − BC, where BCA,Q is the distance from the separated atom 

A to the center of mass of the diatom BC.  The Li(2p) atom has a permanent quadrupole 

moment, and the U22 surface also includes the quadrupole-quadrupole and dipole-

quadrupole forces for the Li(2p) – HF interaction.  The dipole-quadrupole and 
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quadrupole-quadrupole interactions are asymptotic to 4
HFLi,

−Q  and 5
HFLi,

−Q , 

respectively.  See the supporting information48 for further details of the long-range 

interactions. 

The accuracy of the U12 surface is critical for obtaining the correct nonadiabatic 

dynamics, but the adiabatic ab initio energies alone do not provide any direct information 

about the strength of the coupling in the three-body interaction region.  We used the 

following procedure to obtain a reasonable coupling surface.  We selected a functional 

form for U12 that behaves asymptotically like the ab initio LiF and LiH diabatic coupling 

curves that we obtained as discussed in Sec. II.  We assume that in the interaction region 

the diabatic coupling will behave similarly to the asymptotic coupling, but the magnitude 

may be different.  The magnitude of the diabatic coupling in the interaction region was 

estimated from the adiabatic energies near the line of avoided crossing.  As seen from eq. 

(25), when U11 = U22, the diabatic coupling U12 is given by (V2 – V1)/2.  We identified 

the approximate geometries of the diabatic crossing (U11 = U22) by using the dense grid 

of ab initio data and locating the line of minimum adiabatic energy gaps at each Li–F–H 

bond angle.  We then estimated the diabatic coupling along this line to be half the 

adiabatic energy gap and adjusted the functional form of the diabatic coupling to have, as 

well as possible, the estimated magnitude along the line of avoided crossing at each bond 

angle.  Once the functional form for U12 was obtained, cutoff functions were added such 

that U12 vanishes in all asymptotes.  This feature does not significantly affect the 

dynamics, but it greatly simplifies dynamics calculations. 

The more than 80 adjustable parameters in the U11, U22, and U12 surfaces were 

optimized simultaneously during the coupled-state triatomic fitting procedure.  We used a 

genetic algorithm70 to simultaneously fit the parameters of all three surfaces by 

diagonalizing the quasidiabatic potential energy matrix to obtain the adiabatic energies V1 

and V2.  The parameters were optimized by minimizing the unfitness function f–1, where 

 


= =

− −=
2

1 1

1 )(
i

N

j
jiijij

i

VEwf R , (26) 
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Ni is the number of ab initio data points for surface i, Vi(Rj) is the value of adiabatic 

potential i for a given set of parameters at geometry Rj, and Eij is the ab initio energy of 

the ith adiabatic surface at geometry Rj.  The weights wij were selected such that the more 

critical areas (the saddle point, the van der Waals well, the exciplex well, and the seam of 

avoided crossing) were weighted more heavily than less critical areas (e.g., the high-

energy repulsive walls where two atoms are strongly repelling one another). 

We determined the final values of the parameters in two stages.  We first obtained 

the set of parameters which best fit the least accurate global Strategy A data.  As 

mentioned in Section II, the Strategy A data is available over the largest range of 

geometries (3,380 data points).  This stage also allowed us to add flexibility to our 

functional forms as needed.  We further refined our fit by allowing subsets of the 

parameters to vary as we fit V1 and V2 to the more accurate Strategy B data (2,232 data 

points) for the V2 surface and the Strategy C data (1,362 data points) for the V1 surface.  

A comparison of the fitted values of V1 and V2 for a wide range of nuclear geometries is 

available as supporting information.48 

 The discussion so far has centered on our most accurate global fit which we will 

call surface fit J when we need to distinguish it from the preliminary fit of Ref. 26, which 

can be called fit H.  In some cases one would like to perform dynamics calculations 

without the added complication of long-range forces (which require longer integration 

times or longer-ranged grids in dynamics calculations).  We therefore also created 

another surface set, which can be called surface fit JS, that is almost as accurate as 

surface fit J in the regions where we have ab initio data, but has truncated long-range 

forces.  This is fully described in the supporting information.48  In the rest of the article, 

all discussion refers to surface fit J. 

 

IV.  Discussion of the LiFH Surfaces 

IV.A.  Two Lowest-Energy States 

The mean unsigned error of the fit is tabulated as a function of energy in Table 8.  

For energies relative to the dynamics calculations of most interest to us (less than 2.5 eV) 
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the fit agrees with the ab initio data to within 0.06 eV (~1.4 kcal/mol) and is even 

more accurate for lower energies.  This is a very good agreement, especially since the ab 

initio data varies over a wide range, as illustrated by the spread of the data, as measured 

by its unsigned deviation from its mean.  The energy of the ground-state van der Waals 

well is extremely accurate and agrees with the ab initio data to within 0.01 eV 

(0.2 kcal/mol). 

Figures 3 and 4 show contour plots of the LiFH ground-state surface at θ = 107o 

(the angle of the minimum of the ground-state van der Waals complex) and 72.8o (the 

angle of the ground-state saddle point), respectively, where θ is the Li–F–H bond angle.  

Figure 5 shows a contour plot of the LiFH first excited-state surface at θ = 122o (the 

angle of the minimum energy of the exciplex well).  The quasidiabatic states U11, U22, 

and U12 are shown in Fig. 6 for the 107o bond angle.  Figure 7 shows the adiabatic and 

diabatic energies along steepest-descent paths from the saddle point for the ground-state 

Li(2s) + HF � LiF + H reaction at a fixed Li–F–H bond angle of θ = 72.8o.  Table 9 

shows the geometries and the energies of the stationary points, as well as calculations in 

which the zero point energy was included by the Morse I approximation71,72 using the 

POLYRATE software package.73 

Table 10 compares the geometries and energies of stationary points of the fitted 

adiabatic potential surfaces to those for several other surfaces4,5,8,11–13 that have 

appeared in the literature.  The critical points of the previous ground-state surfaces agree 

reasonably well with the fit presented here, and the present fit has the additional 

advantage over all but one8 of the previous fits that it also includes the first excited state 

and over all previous fits that it also includes the electronic state coupling.  The excited-

state properties of the current fit do not agree well with those reported for the ASP-ALPR 

fit,8 as shown in Table 10.  Specifically the Li–F–H bond angle of the minimum-energy 

geometry in the exciplex well for the current fit (θ = 122o) differs from the result reported 

by ASP-ALPR (θ = 180o), and the depth of the exciplex well with respect to the 

Li(2p) + HF asymptote also differs significantly; we report the an exciplex well depth of 

0.68 eV, whereas the APS fit reports a well-depth of ~0.9 eV. 
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IV.B.  Other Excited States 

 For completeness, we also include contour plots of the ab initio data for the 

second-excited ( B
~  2A") and third-excited (C

~
 2A') states as Figs. 8 and 9, respectively.  

Both figures show the ab initio data for θ = 110o.  These two states are degenerate with 

the A
~

 2A' state in the Li + HF limit (the A
~

 2A', B
~  2A", and C

~
 2A' states correspond to 

the three-fold degenerate 2p 2P state of the Li atom in the Li + HF limit).  To further 

illustrate the role that these states may play in the dynamics of electronically excited 

LiFH, Figs. 10 and 11 show cuts through the ground-state van der Waals well for 

θ = 110o and fixed values of rHF and rLiF, respectively.  The analytic fit for the ground-

state and first-excited states are shown as solid lines and the ab initio data are connected 

with dashed lines for the excited-states that are not included in the analytic fit.  The 

symbols represent the ab initio data. 

 

V.  Summary 

We have presented the results of accurate high-level ab initio calculations for the 

first six states of the LiFH system at a large range of geometries.  We have used these 

data to construct a highly accurate 2 x 2 quasidiabatic analytic fit to the first two adiabatic 

potential energy surfaces.  The fit explicitly includes long-range interactions and the 

electronic state coupling.  The geometries and energies of the stationary points (the 

ground-state reactant van der Waals well, the ground-state saddle point, the ground-state 

product van der Waals well, and the exciplex well) agree well with other (less complete) 

fits that have been presented in the literature.  The surface set presented in this paper 

should be useful for dynamical modeling of the global electronically nonadiabatic 

dynamics in both reactive and nonreactive processes. 
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Table 1.  Calculated (MRDCI) and experimental (Expt) excitation energies and 

ionization potentials (IP) of Li (in eV). 

 MRDCI Expta 

2s 2S � 2p 2P 1.837 1.848 

2s 2S � 3s 2S 3.373 3.373 

2s 2S � 3p 2P 3.833 3.834 

IP 5.372 5.392 

aReference 74. 
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Table 2.  Calculated (MRDCI) and experimental (Expt) electron affinities of F and H 

(in eV). 

 MRDCI Expta 

F 3.31 3.40 

H 0.74 0.75 

aReference 72. 
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Table 3.  Ground-state properties of HF, LiF, and LiH.  A comparison of the calculated (MRDCI) and experimental (Expt) data. 

 re / Åa  ωe / cm–1 b  D0 / eVc  µ / Dd  ∆E / eVe 

Diatom MRDCI Exptf MRDCI Exptf MRDCI Exptf MRDCI Exptf,g MRDCI Expth 

HF 0.9165 0.9168 4147.7 4138.3 5.68 5.87 1.819 1.826 0.00 0.00 

LiF 1.5645 1.5639 903.7 910.3 5.67 5.91 6.358 6.325 0.21 0.17 

LiH 1.5946 1.5957 1402.0 1405.7 2.44 2.43 5.851 5.882 3.37 3.60 

aThe equilibrium bond length. 

bThe harmonic vibrational frequency. 

cThe dissociation energy.  The MRDCI value of D0 was calculated from De – ωe/2, where De is a difference between the asymptotic (r 

= 7.5 a0 for HF, r = 31 a0 for LiF, and r = 15 a0 for LiH) and equilibrium values of the MRDCI ground-state energies. 

dThe dipole moment. 

eThe difference between the energy of the diatom at its equilibrium bond length and the energy of the Li + HF asymptote at the HF 

equilibrium bond length. 

fReference 75. 

gAverage value for the ground vibrational state. 

hComputed from D0 and ωe. 
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Table 4.  Vertical excitation energies (in eV) from the X 1Σ+ state of HF at the 

experimental equilibrium distance re = 0.917 Å.a 

Stateb MRDCIc MRDCId 

3Π 10.060 10.06 

1Π 10.417 10.41 

3Σ+ 13.442 13.59 

aContinuous absorption starting at 60600 cm–1 (7.51 eV) has been attributed to the X 1Σ+ 

� 1Π transition (Ref. 75 and references therein). 

bLowest excited state for each symmetry. 

cPresent work, [5s4p3d2f/5s4p2d] basis set. 

dReference 76, [7s5p2d/3s1p] basis set. 
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Table 5. Vertical excitation energies (in eV) from the X 1Σ+ = 1 1Σ+ state of LiF at the 

experimental equilibrium distance re = 1.564 Å.a 

State MRDCIb 

1 3Π 6.58 

1 1Π 6.57 

1 3Σ+ 6.96 

2 1Σ+ 6.98 

aPeaks in the electron energy loss spectrum are at 6.6, 8.7, 10.9, 62.0 eV (Ref. 75). 

bPresent work, [5s4p3d2f/5s4p3d2f] basis set. 
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Table 6. Vertical excitation energies (in eV) from the X 1Σ+ = 1 1Σ+ state of LiH at the 

experimental equilibrium distance re = 1.595 Å. 

State MRDCIa 

1 3Σ+ 3.27 

2 1Σ+ 3.62b 

1 3Π 4.25c 

1 1Π 4.26d 

aPresent work, [5s4p3d2f/5s4p2d] basis set. 

bThe Te (minimum to minimum) excitation energy is 3.29 eV.  The experimental value of 

Te is 3.29 eV (Ref. 75). 

cThe lowest stable 3Π state is located at ~1700 cm–1 or 0.21 eV below the lowest stable 

1Π state. 

dThe Te (minimum to minimum) excitation energy is 4.32 eV.  The experimental value of 

Te is 4.33 eV (Ref. 75). 
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Table 7.  The crossing radius Rc and the separation ∆E(Rc) between the two lowest 

adiabatic 1Σ+ states of LiF at the Li–F separation equal to Rc. 

 MRDCIa Empiricalb 

Rc / a0 13.98 13.72 

∆E(Rc), eV 0.024 0.021 

aThe nonextrapolated MRDCI calculation without the quasi-degenerate Davidson 

correction.46  The crossing radius Rc was obtained by diabatizing the MRDCI adiabatic 

states using the method of Ref. 49.  The separation ∆E(Rc) was obtained by adjusting the 

U11 (ionic) diabat at RLiF = 31 a0 to the classical Rittner potential [cf. eq. (22) and Ref. 

55] and rediagonalizing the diabatic Hamiltonian to obtain adiabatic energies.  The 

required values of the ionization potential of Li and electron affinity of F were taken from 

Ref. 74.  The required values of the polarizabilities of Li+ and F– were taken from Refs. 

56 and 57, respectively. 

bReference 50.  
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Table 8.  Mean unsigned error (MUE) in eV of the fitted energies Vi(Rj) and mean 

unsigned deviation (MUD) in eV of the ab initio data Eij from their mean value for 

several energy ranges.a 

Surface  Energy range Ngeom MUE MUD MUE / MUD 

 V1 E1i < 2.5 eV 1390 0.059 0.543 0.11 

  E1i < 2.0 eV 1323 0.055 0.488 0.11 

  E1i < 1.0 eV 886 0.039 0.275 0.14 

  E1i < 0.0 eV 98 0.017 0.060 0.29 

 V2 E2i < 2.5 eV 1037 0.063 0.294 0.21 

  E2i < 2.0 eV 640 0.044 0.188 0.24 

  E2i < 1.8 eV 436 0.042 0.138 0.31 

aThe mean errors were calculated with unit weight on every point.  Ngeom is the number 

of geometries for the state indicated that lie within the energy range given in each row. 
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Table 9.  Geometries and energies of the adiabatic stationary points of LiFH as calculated from the global fit.  All bond lengths are in 

bohrs, the Li–F–H angle θ is in degrees, and the energies are in eV.    

 Feature rLiF rHF  rLiH θ V1  V1 + ZPEa V2 V2 + ZPEa 

 Reactants   – 1.73 – – 0.000 0.255 1.848 2.099 

 Reactant vdW well of V1   3.56 1.76 4.42 107. –0.241 0.033 1.244 – 

 Saddle pointb of V1  3.10 2.62 3.42 72.8 0.247 0.352 3.227 – 

 Product vdW well of V1  2.98 3.90 3.94 68.4 0.150 0.242 5.567 – 

 Products   2.96 – – – 0.175 0.232 c – 

 Exciplex of V2  3.34 1.82 4.57 122. –0.166   – 1.214 1.438 

aThe zero point energy (ZPE) was calculated by treating the normal modes as separable Morse I oscillators71,72 

using the POLYRATE v. 8.5.1 software package.73  Zero point energy is included in one mode for reactants and 

products, in two modes for the saddle points, and in three modes for the local three-body minima. 

bImaginary frequency: 505i cm–1. 

cThe product arrangement is not bound on the excited-state surface V2.  
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Table 10. Comparisons of the geometries and energies of the stationary points on the adiabatic potential 
surfaces for several fitted LiFH potential energy surfaces. 
   Present CSa CMb ASP-ALPRc PLCPd APLRe BPSBf 
Reactants 
  rHF (a0) 1.73 1.76 1.73 1.74 1.73 1.74 – 
  V1 (eV) 0.0 0.0 0.0 0.0 0.0 0.0 – 
  V2 (eV) 1.85 – – 2.05 – – – 
Van der Waals well  
  rLiF (a0) 3.56 3.68 3.59 3.65 – 3.55 3.60 
  rHF (a0) 1.76 1.78 1.76 1.76 – 1.77 1.76 
  θ (deg) 107. 109. 114. 106. – 107. 109. 
  V1 (eV) –0.24 –0.20 –0.26 –0.29 –0.30 –0.28 –0.25 
Saddle point  
  rLiF (a0) 3.10 3.21 3.12 3.20 – 3.20 3.14 
  rHF (a0) 2.62 2.44 2.48 2.46 – 2.46 2.42 
  θ (deg) 72.8 71. 74. 73. 74. 71.4 71.2 
  V1 (eV) 0.25 0.43 0.34 0.25 0.18 0.23 0.25 
Products  
  rLiF (a0) 2.96 3.03 2.95 3.00 2.96 3.00 – 
  V1 (eV) 0.18 0.13 0.17 0.10 0.15 0.08 – 
Exciplex well  
  rLiF (a0) 3.34 – – 3.18 – – – 
  rHF (a0) 1.82 – – 1.95 – – – 
  θ (deg) 122. – – 180. – – – 
  V2 (eV) 1.21 – – 1.16 – – – 
aReference 4. 
bReference 5. 
cReference 8. 
dReference 11. 
eReference 12. 
fReference 13. 



173 

 

Figure captions 

Figure 1. Asymptotic potential energy curves of LiFH in the Li + HF limit.  The 

analytic fits used in the global fit are shown as solid lines, the solid circles 

represent the experimental data for HF from Ref. 61 used to obtain the 

ground-state fit, and the open symbols represent the Strategy A ab initio data 

for the ground state (triangles) and excited state (squares) of the LiFH system 

in the Li + HF limit. 

Figure 2. Asymptotic potential energy curves of LiFH in the H + LiF limit.  The 

analytic fits used in the global fit for LiFH are shown as solid lines, the solid 

circles represent the highly accurate MRDCI data for the ground-state of LiF 

used to obtain the ground-state fit, and the open symbols represent the 

Strategy A ab initio data for the ground state (triangles) and excited state 

(squares) of the LiFH system in the H + LiF limit. 

Figure 3. Contour plot of the fitted ground-state adiabatic surface (V1) at a Li–F–H 

bond angle of 107o (the bond angle of the minimum energy of the van der 

Waals well).  The contour spacing is 0.1 eV for energies less than 1.0 eV and 

1.0 eV for energies above 1.0 eV.  The contour corresponding to 0.0 eV is 

shown as a thick solid line.  Note: the zero of energy for all contour plots in 

this paper is Li(2s) infinitely far from HF at its classical equilibrium 

separation. 

Figure 4. Contour plot of the fitted ground-state adiabatic surface (V1) at a Li−F−H 

bond angle of 72.8o (the bond angle of the saddle point). The contour spacing 

is 0.1 eV for energies less than 1.0 eV and 1.0 eV for energies above 1.0 eV.  

The contour corresponding to 0.0 eV is shown as a thick solid line. 
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Figure 5. Contour plot of the fitted first excited-state adiabatic surface (V2) at a Li−F−H 

bond angle of 122o (the bond angle of the minimum energy of the exciplex 

well). The contour spacing is 0.1 eV for energies less than 2.0 eV and 1.0 eV 

for energies above 2.0 eV.  The contour corresponding to 1.9 eV is shown as a 

thick solid line. 

Figure 6. Contour plots of the a) U11, b) U22, and c) U12 quasidiabatic surfaces at a 

Li−F−H bond angle of 107o.  For panels a) and b), the contour spacing is 0.1 

eV for energies less than 1.0 eV and 1.0 eV for energies above 1.0 eV.  For 

panel c), the contours are labeled in eV. 

Figure 7. Adiabatic (thick solid lines) and quasidiabatic (thin dashed lines) energies 

along the steepest descent path from the saddle point in unscaled rectilinear 

coordinates (rLiF and rHF) for the ground-state reaction Li(2s) + HF � LiF + 

H at a fixed bond angle of θ = 72.8o.  The distance along the path is the 

reaction coordinate s. 

Figure 8. Contour plot of the ab initio data for the second-excited state ( B
~  2A") at a 

Li−F−H bond angle of 110o. The contour spacing is 0.1 eV for energies less 

than 2.0 eV and 1.0 eV for energies above 2.0 eV.  The contour corresponding 

to 1.9 eV is shown as a thick solid line. 

Figure 9. Contour plot of the ab initio data for the third-excited state ( C
~

 2A') at a Li–F–

H bond angle of 110o.  The contour spacing is 0.1 eV for energies less than 

2.0 eV and 1.0 eV for energies greater than 2.0 eV.  The contour 

corresponding to 1.9 eV is shown as a thick solid line. 
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Figure 10. Cut along rLiF through the minimum of the ground-state van der Waals well at 

a fixed Li–F–H bond angle of 110o with rHF fixed at 1.73 a0.  The analytic fits 

for the two lowest-energy states are shown as solid lines.  The ab initio data 

are shown as symbols, where the circles represent the X
~  2A' state, triangles 

represent the A
~

 2A' state, diamonds represent the B
~  2A" state, squares 

represent the C
~

 2A' state, ‘x’  represent the D
~  2A state, and ‘+’  represent the 

E
~  2A" state.  The symbols are connected by dashed lines for the states not 

included in the analytic fits. 

Figure 11. Cut along rHF through the minimum of the ground-state van der Waals well at 

a fixed Li–F–H bond angle of 110o with rLiF fixed at 2.96 a0.  The analytic 

fits for the two lowest-energy states are shown as solid lines.  The ab initio 

data are shown as open symbols, where the circles represent the X
~  2A' state, 

triangles represent the A
~

 2A' state, diamonds represent the B
~  2A" state, 

squares represent the C
~

 2A' state, ‘x’  represent the D
~  2A state, and ‘+’  

represent the E
~  2A" state.  The symbols are connected by dashed lines for the 

states not included in the analytic fits. 
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Supporting Information 

S.1.  Nuclear Geometry Grids for the Ab Initio Calculations 

S.1.1.  Strategy A Data 

The 6-root MRDCI calculations employing the largest thresholds T, i.e., T = 4, 6, 

and 8 µEh, (Strategy A) consisted of 3,380 geometries.  In specifying grids we will use a 

shorthand notation that, for example, 2.5(0.1)2.8 denotes 2.5, 2.6, 2.7, and 2.8.  The main 

grid included 27 Li–F distances: rLiF = 2.0, 2.25, 2.5,2.7(0.1)2.9, 2.9553, 3.0(0.1)4.0, 

4.25, 4.5, 5.0(1.0)7.0, and 9.0(2.0)15.0 a0; 24 H–F distances: rHF = 1.2(0.2)1.6, 1.7, 

1.7325, 1.8(0.1)3.0, 3.25(0.25)4.0, 5.0, and 7.0 a0; and five values of the Li–F–H angle: θ  

= 45, 70(20)110, and 179.99 degrees.  Notice the presence of the equilibrium bond 

lengths for LiF (rLiF = 2.9553 a0) and HF (rHF = 1.7325 a0) among the values of rLiF and 

rHF, respectively.  This grid of 3,240 points was augmented by calculations for θ = 0.01 

degrees, rLiF = 3.0(2.0)7.0, 11.0, and 15.0 a0, and rHF = 1.2, 1.4(0.1)1.8, and 2.0(0.2)2.4 

a0, and by calculations for rHF = 3.8 a0, rLiF = 2.25, 2.5, 2.7(0.1)2.9, 2.9553, 3.0(0.1)4.0, 

4.25, and 4.5 a0, and θ = 45, 70(20)110, and 179.99 degrees. 

 

S.1.2.  Strategy B Data 

For the 2-root MRDCI calculations employing the intermediate thresholds T, i.e., 

T = 1, 2, and 3 µEh (Strategy B), the main grid consisted of 27 Li–F distances and five 

values of the Li–F–H angle identical to those described above, and of up to 18 H–F 

distances, covering the intervals 1.4–3.0 a0 for θ = 45 degree, 1.4–2.7 a0 for θ = 70, 90, 

and 110 degrees, and 1.4–2.5 a0 for θ = 179.99 degrees.  This grid of 2,052 geometries 

was augmented by two sets of extra calculations.  In the first set of extra calculations, we 

added 45 points for θ = 0.01 degrees, using the following grid:  rLiF = 3.0(2.0)7.0, 11.0, 

and 15.0 a0, and rHF = 1.2, 1.4(0.1)1.8, and 2.0(0.2)2.4 a0.  In the second set of extra 

calculations, which played an important role in fine tuning the final fit, we added 135 

nuclear geometries obtained by combining the 27 Li–F distances from the main grid with 
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the following values of rHF and θ:  rHF = 2.7 a0 and θ = 179.99 degrees, and rHF = 3.0 a0 

and θ = 70, 90, 110, and 179.99 degrees.  The total number of Strategy B geometries is 

2,232, and these geometries form a subset of the Strategy A geometries.  

 

S.1.3.  Strategy C Data 

Finally, the most accurate, 1-root calculations using the smallest selection 

thresholds T = 0.15, 0.30, and 0.45 µEh (Strategy C) were performed on a grid of 15 Li–F 

distances:  rLiF = 2.5, 2.8, 2.9553, 3.0(0.2)4.0, 4.25, 4.5, 5.0, and 7.0(4.0)15.0 a0, ten H–F 

distances:  rHF = 1.4, 1.6, 1.7, 1.7325, 1.8, 2.0, 2.1, and 2.2(0.2)2.6 a0, and seven values 

of the Li–F–H angle: θ = 45, 70(20)150, and 179.99 degrees.  This grid of 1,050 points 

was augmented by 24 extra points for θ = 0.01 degrees, rLiF = 5.0 and 7.0(4.0)15.0 a0, 

and rHF = 1.5(0.1)1.8, 2.0, and 2.2 a0 (to improve the description of the θ = 0 region) and 

by adding 11 values of θ for rLiF = 3.6 a0 and rHF = 1.763 a0, i.e., θ = 10(10)60, 

80(30)140, 160, and 170 degrees, to improve the description of the θ-dependence.  To 

further improve the description of the saddle point region and obtain a highly accurate 

description of the product channel (including the shallow minimum in the product valley 

and the LiF + H asymptote), we added 90 points corresponding to rHF = 2.5, 2.9553, 3.2, 

3.4, and 3.8 a0, rHF = 2.8, 3.0, 3.25, 3.5, 4.0, and 5.0 a0, and θ = 45, 70, and 90 degrees, 

140 points corresponding to rLiF = 2.5, 2.9553, 3.2, 3.4, and 3.8 a0, rHF = 6.0, 

7.0(2.0)15.0, and 20.0 a0, and θ = 45, 70, 90, and 179.99 degrees, and 47 points 

corresponding to rHF = 3.8 a0, rLiF = 2.25 – 5.0 a0, and θ = 45, 70(20)110, and 179.99 

degrees.  The total number of points used in the MRDCI calculations for the ground state 

with Strategy C calculations was 1,362. 

 

S.1.4.  Additional Calculations  

 An additional 45 calculations were performed using the Strategy B thresholds 

(i.e., T = 1, 2, and 3 µEh) for the six lowest-energy states of LiFH.  The calculations were 
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performed along three one-dimensional cuts through the minimum of the ground state 

van der Waals well:  qHF = 1.76327 a0, QLi,HF = 2.5(0.2)3.3, 3.59757, 3.7, 4.0(0.5)5.0, 

6.0, 8.0, 11.0, 15.0 a0, and χLi,HF = 70.01 degrees; qHF = 1.76327 a0, QLi,HF = 3.59757 

a0, and χLi,HF = 1, 10(10)60, 70.01, 80(10)170, 179 degrees; and qHF = 1.3(0.1)1.7, 

1.76327, 1.9(0.1)2.4, 2.7, 3.0 a0, QLi,HF = 3.59757 a0, and χLi,HF = 70.01 degrees, where 

qHF is the magnitude of the vector from H to F (qHF), QLi,HF is the magnitude of the 

vector from Li to the center-of-mass of HF (QLi,HF), and χLi,HF and is angle between 

QLi,HF and qHF. 

 

S.2.  Quasidiabatic Potential Energy Matrix for LiFH:  Surface fit J 

S.2.1.  LiFH U11 Surface 

The U11 potential energy surface explicitly contains long-range interactions in the 

Li(2s) + HF asymptote as a correction to the interaction potential 

  )()()( LR
11

I
1111 RRR UUU += , (S-1) 

where R = (rLiH, rHF, rLiF), and rAB is the A–B internuclear distance.  The long-range 

forces LR
11U  are described in Sec. S.2.4.  The interaction potential I

11U  contains only the 

Li + HF asymptote and the product van der Waals well.  It is relatively simple and may 

be described by the sum of three diatomic terms, 

  e
HFLiFLiFHFLiH

I
11 )()()()( DrSSSU +++= RRR , (S-2) 

where SAB represents the AB diatomic interaction, and e
HFD  sets the zero of energy.   

 The LiH diatomic does not represent the isolated Li–H interaction.  It represents 

Li–H interactions in the close presence of F and is purely repulsive,  
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  )](exp[)( 0
LiHLiH

a
LiH

a
LiHLiH

a
LiH rrDrS −−= β , (S-4) 
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where ΦLiH is a switching function given by 
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  x
LiHr  = rLiH – rLiF + γLiHrHF. (S-7) 

The HF potential curve SHF was fit to experimental Rydberg-Klein-Rees (RKR) data for 

the HF molecule.2  The functional form is a Morse curve with a range parameter that 

depends on the HF bond length, 
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where  
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Additional flexibility was added in the interaction region such that 
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and χLi,HF is the Jacobi angle, i.e., the angle between the vector from the Li atom to the 

center of mass of HF (QLi,HF) and the vector from H to F (qHF).  The Jacobi vector 
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QLi,HF depends on the masses of the H and F nuclei, and these masses (along with the 

mass of Li as discussed below) are therefore parameters of the fit.  The masses are taken 

as those of the most abundant isotopes and are listed in Table S-1. 

 The LiF diatomic )( LiFLiF rS  is a shallow Morse curve, 

  ]2)()[()( LiFLiFLiFLiFLiFLiFLiF −= rXrXDrS , (S-16) 

  )](exp[)( 0
LiFLiFLiFLiFLiF rrrX −−= β . (S-17) 

 The values of the parameters used in the U11 potential matrix element are given in 

Table S-1. 

 

S.2.2.  LiFH U12 Coupling Surface  

 The diabatic scalar coupling U12 is described by 

  )()()( HF12
0
1212 rUU Φ= RR , (S-18) 

where )(0
12 RU  is a physically motivated functional form that is cut off for large values of 

rHF where the excited-state potential energy surface becomes energetically inaccessible, 

i.e., 

  ]/)tanh[(
2
1

2
1

)( 1212HFHF12 ∆−−=Φ ρrr . (S-19) 

Nonadiabatic transitions in this regions are unimportant and eliminating the off-diagonal 

coupling in these regions greatly reduces the expense of accurate quantum mechanical 

dynamics calculations. 

 As discussed in Secs. II and III of the main paper, we calculated the diabatic 

coupling for the isolated LiH and LiF diatoms.  The coupling between the two states 

considered here vanishes for the isolated HF diatom.  We therefore treat the diabatic 

coupling in the full system as arising from diatomic terms in the LiF and LiH bond 

distances, 
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  )]1/(8exp[)/()( 0
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These are functions which are zero when the diatomic distances rLiX (X = H, F) are zero, 

and increase in magnitude to a maximum of gLiX at rLiX = 0
LiXr  as rLiX increases.  For 

larger values of rLiX the functions decrease in magnitude at a rate determined by 

exponential. 

 The magnitudes of isolated diatomic coupling terms are reduced by the approach 

of the remaining atom, 
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The functions ΦHF,1, ΦLiF, ΦHF,2, and ΦLiH are given by 
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The values of the parameters used in the U12 potential matrix element are given in 

Table S-2. 

 

S.2.3.  LiFH U22 Surface 

The U22 potential energy surface explicitly contains long-range interactions in the 

Li(2p) + HF and LiF + H asymptotes as a correction to the interaction potential, 
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The long-range forces LR
22U  are described in Sec. S.2.4.  The interaction potential I

22U  is 

a modified3 London-Eyring-Polanyi-Sato (LEPS)4–6 form, 
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The functions Jα and Kα (α = LiH, HF, and LiF) are functions of diatomic singlet Sα and 

triplet Tα functions 
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The expression 

  )]()(exp[)( LiFLiHHFc2b2a2 rrrcWccZ ++−−= RR  (S-32) 

is a necessary to remove a cusp that would otherwise occur in eq. (28) when W(R) goes 

to zero. 

The LiH singlet curve is the sum of two repulsive curves, one of which is present 

only when the LiH diatom is interacting with F,   
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  )R(x
LiHr  = rLiH – rLiF + γLiH rHF. (S-38) 

The LiH triplet is a modified anti-Morse curve, 
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 The asymptotic HF singlet is similar to the form used for the U11 potential matrix 

element but shifted upwards by the excitation energy of Li.  The singlet is cut off such 

that the U11 and U22 surfaces are equal at large rHF, 
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Additional flexibility was added to the HF singlet in the interaction region 
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where 
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and θLiFH is the Li–F–H bond angle. 

 The HF triplet contains angular dependence, 
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where 
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The LiF singlet curve is given by 

 )()]()([)()( LiF
c
LiF

a
LiF

c
LiFLiF RRRRR Φ−+= SSSS . (S-58)  

The asymptotic term is based on the RKR data of Ref. 7 and on the ab initio data 

presented in Sec. II of the main paper, and it is given by 
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where  
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The form of the LiF singlet in the presence of H is 
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The asymptotic and close forms of the LiF singlet are joined together with a switching 

function that incorporates angular dependence 
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The LiF triplet potential is a modified anti-Morse curve, 

  )cos1()()cos1()()( LiFH2
1

LiF
180
LiFLiFH2

1
LiF

0
LiFLiF θθ −++= rTrTT R , (S-76) 

  )()()( LiF
t,0
LiF

t1,0
LiF

2
LiF

t,0
LiF

t2,0
LiFLiF

0
LiF rXDrXDrT += , (S-77) 

  )()()( LiF
t,180
LiF

t1,180
LiF

2
LiF

t,180
LiF

t2,180
LiFLiF

180
LiF rXDrXDrT += , (S-78) 

  )](exp[)( e
LiFLiF

t,0
LiFLiF

t,0
LiF rrrX −−= β , (S-79) 

  )](exp[)( e
LiFLiF

t,180
LiFLiF

t,180
LiF rrrX −−= β , (S-80) 

The values of the parameters used in the U22 potential matrix element are given in 

Table S-3. 

 

S.2.4.  Long-Range Forces 

 Long-range interactions8–10 were explicitly included in the U11 and U22 surfaces 

as shown in eqs. (1) and (27).  The U11 surface contains the dipole-induced-dipole and 

dispersion interactions in the Li(2s) + HF arrangement, 

  )()()( did
HF11,

disp
HF11,

LR
11 RRR UUU += , (S-81) 

where the dispersion interactions are given by the London equation,8,9 
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where IA is the ionization potential for species A, αA is the polarizability of species A, 

QLi,HF is the magnitude of the translational Jacobi coordinate, i.e., QLi,HF = |QLi,HF|, 

where QLi,HF is the vector from Li to the center of mass of HF.  The polarizability of HF 

includes angular dependence, 

  HFLi,
2||

HFHFLi,
2

HFHF cossin)( χαχαα += ⊥R , (S-83) 

where χLi,HF is Jacobi angle, i.e., the angle between the translational Jacobi vector 

QLi,HF and the diatomic Jacobi vector from H to F.  The angular dependence is cut off in 

the interaction region, 
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The dipole-induced-dipole interaction is given by 
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where the angular dependence is cut off in the interaction region, 

  ( ) ])/(exp[1)]1cos3(2/5[1)( 4
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and the dipole moment of HF, µHF, is taken from Ref. 11.  Both long-range interactions 

are cut off for large values of rHF, 
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2
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)( HF11,
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HF11,HFHFHF11, ∆−−= rrrK . (S-87) 

 The U22 surface contains the dipole-quadrupole, quadrupole-quadrupole, dipole-

induced-dipole, and dispersion interactions in the Li(2p) + HF arrangement, and the 

dipole-induced-dipole and dispersion interactions in the LiF + H arrangement, 
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The dipole-quadrupole interaction is given by 
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where AΘ  is the quadrupole moment of species A.  The angular dependence of the 

dipole-quadrupole interaction is cut off in the interaction region, 
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The quadrupole-quadrupole interaction is given by 

  

),()(

)cos73()(
4
3

)(

HFHF22,
qq

HF22,

6
HF22,

6
HFLi,

HFLi,
HFLi,

2
)Li(2HFHF

qq
HF22,

rK

SQ

Q
rU p

R

R

Φ×

+
−ΘΘ= χ

 (S-91) 

where the quadrupole moment of HF is dependent on rHF and is taken from Ref. 12.  The 

angular dependence of the dipole-quadrupole interaction is cut off in the interaction 

region, 
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The dispersion interaction is given by the London equation, 
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The polarizability of Li(2p) includes angular dependence, 
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The angular dependence is cut off in the interaction region, 
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The dipole-induced-dipole interaction is given by 
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where the angular dependence is cut off in the interaction region, 
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The Li(2p) + HF long-range interactions are cut off for large values of rHF, 
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 The dispersion interaction in the LiF + H arrangement is given by the London 

equation, 
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where QH,LiF is the magnitude of the translational Jacobi coordinate in the LiF + H 

arrangement, i.e., QH,LiF is the magnitude of the vector from H to the center of mass of 

LiF.  The masses of Li and F are therefore parameters of the fit are given in Table S-1.  

The dipole-induced-dipole interaction is given by 
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where χH,LiF is Jacobi angle in the LiF + H arrangement, i.e., the angle between the 

translational Jacobi vector QH,LiF and the diatomic Jacobi vector from Li to F.  The 

dipole moment of LiF is based on the data in Ref. 13 and is given by 
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The angular dependence is cut off in the interaction region, 

  ( ) ].)/(exp[1)]1cos3/(5[1)( 4
LiF22,LiFH,LiFH,

2did
LiF22, SQ−−++=Φ χR (S-104) 

The LiF + H long-range interactions are cut off for large values of rLiF, 
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The parameters used for the long-range interactions are given in Table S-4. 

 

S.3.  Quasidiabatic Potential Energy Matrix for LiFH:  Surface Fit JS 

 The surface fit described in Sec. S.2 (surface fit J) is our most accurate fit to the 

LiFH ab initio data.  Surface fit J contains long-range interactions that are based on 

physically motivated functional forms and that depend on physical properties such as the 

polarizabilities and multipole moments of the H and Li atoms and of the HF and LiF 

molecules.  We believe that surface fit J is extremely accurate; however, the presence of 

long-range forces may increase the computational effort required to obtain converged 

nuclear dynamics for both quantum mechanical and semiclassical simulations.  We 

therefore present as a complement to surface fit J, surface fit JS, which features cut-off 

long-range forces.  The long-range forces were cut off in such a way as to minimize the 

change to the interaction region, as discussed below.  We also carefully cut off the 

diabatic coupling U12 in surface fit JS.  The diabatic coupling is cut off in a region where 

the coupling is not expected to play a significant role in the dynamics, and this feature 

also decreases the difficulty of dynamics calculations. 

 The diagonal quasidiabatic matrix elements of surface fit JS ( JS
11U  and JS

22U ) are 

identical to those of surface fit J, except that the long-range terms are cut off, 
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where i = 1 and 2, QA,BC is the magnitude of the translational Jacobi coordinate in the 

A + BC molecular arrangement, and the interaction potential )(I RiiU  and the long-range 

forces are the same as those that were given for surface fit J in Sec. S.2.  The cut off 

functions are 
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where “ A,BC”  is “ Li,HF”  or “ H,LiF” .  Note that the cut off function in eq. (109) goes 

exactly to zero at ΩQ  and has an infinite number of continuous derivatives for all 

BCA,Q .  The values for the cut off parameters are ΩQ  = 10.0 a0 and Ω∆  = 0.2 a0.  

These values were optimized such that surface fit JS remained smooth and the mean 

unsigned errors calculated for surface fit JS were no more than 0.001 eV greater than 

those reported for surface fit J in Table 8 of the main paper. 

 The diabatic coupling ( JS
12U ) was also cut off in surface fit JS, 

  )()()( HF12
JS
12 rUU Ξ= RR , (S-110) 

where U12 is the diabatic coupling of surface fit J and is given in Sec. S.2, and 
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)( HFHF ΞΞ ∆−−=Ξ rrr . (S-111) 

The parameters for the cut off function are Ξr  = 5.5 a0 and Ξ∆  = 0.2 a0.  This cut off 

function does not significantly effect the mean unsigned errors for surface fit JS. 
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Table S-1.  Values of the parameters used in the LiFH U11 potential energy function. 

 Parameter Value Parameter Value 

 a
LiHD  12.93744 eV 0

HFr  2.1042 a0 

 c
LiHD  11.09130 eV c

HFr  1.6739 a0 

 a
LiHβ  1.80587 1

0a −  c
HFβ  0.74633 1

0a −  

 c
LiHβ  1.21114 1

0a −  cc
HFD  0.86608 eV 

 0
LiHr  1.34321 a0 chi

HFD  0.34457 eV 

 ρLiH 1.07143 a0 ρHF 1.63 a0 

 ∆LiH 0.6 a0 ∆HF 2.9941 a0 

 γLiH 0.4 LiFD  0.17427 eV  

 e
HFD  6.122 eV LiFβ  1.49062 1

0a −  

 e
HFr  1.733 a0 0

LiFr  3.6 a0 

 0
HFb  1.1622 1

0a −  mLi 7.016003 amua 

 1
HFb  –0.025647 2

0a −  mF 18.998403 amu 

 2
HFb  0.059062 3

0a −  mH 1.007825 amu 

a1 amu = 1822.887 me. 
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Table S-2.  Values of the parameters used in the LiFH U12 potential energy function. 

 Parameter Value Parameter Value 

 ρ12 4.87097 a0 ρHF,2 1.45161 a0 

 ∆12 2.0 a0 ∆HF,1 1.75806 a0 

 gLiH 1.27742 eV ∆HF,2 0.98387 a0 

 gLiF 0.48 eV ρLiF 2.00098 a0 

 0
LiHr  3.00489 a0 ∆LiF 0.90626 a0 

 0
LiFr  3.49756 a0 ρLiH 4.98436 a0 

 ρHF,1 1.15484 a0 ∆LiH 2.08993 a0 
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Table S-3.  Values of the parameters used in the LiFH U22 potential energy 

function. 

 Parameter Value Parameter Value 

  c2a 3.5 eV t1,180
HFD  4.56304985 eV 

  c2b 0.27362 eV–2  t,0
HFβ  2.4105572 1

0a −  

  c2c 0.15 1
0a −  t,180

HFβ  1.4046921 1
0a −  

 a2
LiHD  4.32258 eV t

HFr  1.61329423 a0 

 a1
LiHD  7.06452 eV e

LiFD  5.947 eV 

 a
LiHβ  1.36 1

0a −  e
LiFr  2.9553 a0 

 c
LiHD  14.74194 eV a

LiFρ  13.0 a0 

 c
LiHβ  0.90667 1

0a −  a
LiF∆  0.5 a0 

 0
LiHr  1.2 a0 

aa
LiFd  1.0243998 

  ρLiH 0.72 a0 
aa
LiFρ  3.340762 a0 

  ∆LiH 0.5 a0 
aa
LiF∆  0.56353861 a0 

  γLiH 1.0  γLiF 4.6304985 LiF/11
0a n+

 

 t2
LiHD  1.1935483 eV nLiF 8.0 

 t1
LiHD  13.548387 eV d

LiFβ  0.13225806 1
0a −

 

 t
LiHβ  2.41319648 1

0a −  b
LiFρ  3.382209 a0 

 t
LiHr  1.203323 a0 

b
LiF∆  0.4947214 1

0a −
 

 e
HFD  6.122 eV e1

LiFb  0.064076 1
0a −  
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Table S-3(continued).  Values of the parameters used in the LiFH U22 potential 

energy function. 

 Parameter Value Parameter Value 

  ELi(2p) 1.848 eV e2
LiFb  103.57 

 e
HFr  1.733 a0 

e3
LiFb  4.6498 2

0a  

 0
HFb  1.1622 1

0a −  e4
LiFb  7.0489 a0 

 1
HFb  –0.025647 2

0a −  c,0
LiFD  5.5904203 eV 

 2
HFb  0.059062 3

0a −  c,180
LiFD  2.352884 eV 

 0
HFr  2.1042 a0 

c,0
LiFβ  0.7795699 1

0a −  

 aa
HFD  2.3841642 eV c,180

LiFβ  0.8196480 1
0a −  

 aa
HFβ  1.799609 1

0a −  0
LiFρ  0.2017595 a0 

 aa
HFr  1.60215 a0 

180
LiFρ  2.0 a0 

 a
HFρ  3.0 a0 

0
LiFφ  0.12463343 rad 

 a
HF∆  0.5 a0 

180
LiFφ  0.14907135 rad 

 cc
HFD  0.72629521 eV 0

LiF∆  0.51710655 1
0a −  

 chi
HFD  0.0486803519 eV 180

LiF∆  0.43695014 1
0a −  

 c
HFρ  2.2 a0 

t2,0
LiFD  –0.0552298 eV 

 c
HF∆  0.5 a0 

t1,0
LiFD  1.8729228 eV 

 HFρ  1.00293 a0 
t2,180
LiFD  0.94662756 eV 

 HF∆  4.0899 a0 
t1,180
LiFD  0.2994134 eV 

 t2,0
HFD  1.4242424 eV t,0

LiFβ  0.9519061 1
0a −  

 t1,0
HFD  14.203323 eV t,180

LiFβ  0.4531769 1
0a −  

 t2,180
HFD  6.15835777 eV  
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Table S-4.  Values of the parameters used in the long-range interactions. 

 Parameter Value Parameter Value 

 )Li(2sI  5.392 eVa HF22,∆  2.0 a0 

 HFI  16.044 eVa LiFI  11.3 eV a 

 )Li(2sα  165.0 3
0a b HI  13.598 eV a 

 HF11,S  6.0 a0 LiFα  72.9 3
0a a 

 ⊥
HFα  4.59 3

0a  c Hα  4.4997 3
0a a 

 ||
HFα  5.10 3

0a  c LiF22,S   7.0 a0 

 0
HF11,r  3.0 a0 D

LiFµ  9.30039 e a0 

 HF11,∆  2.0 a0 r
LiFµ  10.4994 a0 

 )2(Li pΘ  11.1 e 2
0a b 0

LiF
αµ  0.02435 1

0a −  

 HF22,S   6.0 a0 1
LiF
αµ  0.015999 2

0a −  

 )Li(2 pI  3.544 eVa 8
LiF
αµ  9.9355 x 10–8 9

0a −  

 ⊥
)Li(2 pα  129.0 3

0a  b 0
LiFm  4.471959 a0 

 ||
)Li(2 pα  131.0 3

0a  b 0
LiF22,r  4.5 a0 

 0
HF22,r  3.0 a0 LiF22,∆  2.0 a0 

aReference 14. 

bReference 15. 

cReference 16. 
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Chapter Six 

6 
Improved Treatment of Momentum at Classically Forbidden 

Electronic Transitions in Trajectory Surface Hopping Calculations 

 

 

 

I.  Introduction 

 Electronically nonadiabatic chemical dynamics (e.g., nonadiabatic charge 

transfer, ultraviolet photodissociation, chemiluminescence, etc.) is described by coupled 

potential energy surfaces, and the applicability of fully-converged quantum mechanical 

calculations is limited by computational considerations to systems with two atoms or 

three atoms and a few electronic states.  It is desirable, therefore, to develop and validate 

the accuracy of approximate methods that may be applied to the large class of chemically 

interesting electronically nonadiabatic systems for which quantum mechanical 

calculations are not currently computationally feasible. 

 We have recently undertaken a program of developing realistic coupled potential 

energy surfaces for model three-atom reactive systems, performing fully three-

dimensional accurate quantum calculations on the model systems, and systematically 

testing semiclassical methods against the accurate quantum calculations.1–7  We have 

focused on semiclassical methods that are well defined so that they are systematically 

testable, computationally straightforward to implement, and readily applicable to large 

systems.  Specifically, we have focused on methods that are based on what may be called 

the “ trajectory ensemble”  or TE approach,8 where the nuclear wave packet is 

approximated as an ensemble of noninteracting classical trajectories.   

 Of course, classical trajectories do not exhibit quantum effects (such as transitions 

between electronic states, tunneling, etc.), and when these effects are important, they 
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must be explicitly added to the TE simulation.  The key quantum effect for electronically 

nonadiabatic processes is the nonadiabatic transition itself, and a careful treatment of 

quantum transitions between electronic states is crucial in accurately modeling the 

dynamics of electronically nonadiabatic systems.  The trajectory surface hopping1–15 

(TSH) approach starts from the TE formalism and includes nonadiabatic dynamics by 

allowing the trajectories in the ensemble to suddenly switch (i.e., to hop between) 

electronic states.  The present paper is primarily concerned with the treatment of the 

nuclear momentum at so-called frustrated hopping points along the classical trajectory in 

the TSH method. 
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II.  Theory 

 Briefly, the TSH method is implemented as follows.  One first chooses an 

electronic representation with which to express the electronic energies and the electronic-

state coupling.  The potential energy surfaces for a nonadiabatic chemical system may be 

chosen either as the unique set of adiabatic potential energy surfaces, coupled by the 

nuclear momentum and nuclear kinetic energy operators and corresponding to electronic 

wave functions that are eigenfunctions of the electronic Hamiltonian, or as a nonunique 

set of diabatic potential energy surfaces, for which the nuclear momentum coupling and 

nuclear kinetic energy coupling is small compared to a scalar (potential energy) coupling 

introduced by the adiabatic-diabatic transformation.  (Sometimes diabatic states are 

called “ quasidiabatic”  to emphasize that, in general, except for the trivial case of frozen 

electronic wave functions, a diabatic representation whose nuclear momentum couplings 

are exactly zero does not exist for real chemical systems.8,16,17)  Quantum mechanically, 

diabatic representations and the adiabatic representations obtained by diagonalizing the 

potential energy result in identical dynamics.  TSH simulations, however, are sensitive to 

the choice of electronic representation, and we have determined5 that the best 

representation to use is the one with the least amount of nonadiabatic coupling as 

measured by the number of attempted surface hops.  This best representation (called the 

Calaveras County or CC representation) may be estimated from a small batch of TSH 

trajectories run in both representations. 

 Once an electronic representation is chosen, each trajectory in the ensemble is 

assigned an initial electronic state that corresponds to the initial conditions of the 

simulation.  For example, if the quenching of an excited electronic state is being 

modeled, all of the trajectories start in the excited electronic state.  The initial coordinates 

and momenta of each trajectory are selected randomly from a quasiclassical 

distribution,18 such that the initial ensemble of positions and momenta mimics the initial 

quantum mechanical wave packet.  Each trajectory is then propagated classically (i.e., 

using Hamilton’ s equations of motion) under the influence of the potential energy surface 

that corresponds to the initial electronic state. 
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 At arbitrarily small time intervals (such as the time step of the integrator), an 

electronic transition (or hopping) probability gij from the currently occupied electronic 

state i to some other target electronic state j is computed according to Tully’ s fewest-

switches (TFS) algorithm.12,15  The fewest-switches hopping probability is a function of 

the quantum mechanical electronic state populations, which are obtained by integrating 

the electronic Schrödinger equation along the classical trajectory.  When this particular 

choice for the hopping probability is used, the TSH method is called the TFS method.  A 

random number is generated and compared with gij to determine if a surface hop occurs.  

If a surface hop does not occur, the trajectory remains in the currently occupied electronic 

state.  If a hop is called for, an electronic state change occurs, and the trajectory is 

propagated under the influence of the potential energy surface corresponding to the new 

electronic state. 

 Each trajectory in the ensemble may be thought of as an energy-conserving gas-

phase event.  When a surface hop occurs, the potential energy, in general, changes 

discontinuously, and the total energy of the system is conserved by adjusting the nuclear 

momentum.  It has been suggested on the basis of semiclassical arguments11,13 and 

confirmed with numerical tests against accurate quantum dynamics1,2 that the best way to 

conserve energy is to adjust the nuclear momentum component in the direction of the 

hopping vector h, where h is a unit vector in the direction of the nuclear momentum 

coupling vector d.  Whether or not a hop occurs, the trajectory is propagated forward one 

time step where another hopping decision is made, etc… , and the process is continued 

until the trajectory is deemed “ finished”  by some criterion (usually the separation of the 

products). 

 Occasionally, a surface hop to a higher-energy electronic state is called for at a 

point along the trajectory where the energy gap between the occupied and the target 

electronic states is greater than the kinetic energy associated with the momentum along h.  

When this occurs, the momentum cannot be adjusted along h in such a way as to 

conserve total energy, and these failed hopping attempts are called “ frustrated”  or 

“ classically forbidden”  surface hops.6,7 
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 Previous treatments for frustrated hopping include ignoring the frustrated hop14 or 

reflecting the nuclear momentum along h as though the trajectory hits a barrier as it tries 

to hop, and we will denote these two approaches with a ‘+’  and a ‘–’ , respectively (e.g., 

the TFS+ and TFS– methods employ the same surface hopping algorithm, but differ in 

their treatment of frustrated hopping).  In both cases, the trajectory continues without 

changing electronic states, which violates the self-consistency argument originally used 

to justify the TFS algorithm.12  Numerical studies6,7 of these methods have shown that 

the resulting electronic-state distribution of trajectories results in increased errors.  (We 

note that Tully’ s original implementation of the TFS method was the TFS– method.19  

We also note that in some work both criteria have been used depending on other details 

of the frustrated hop,3,10 or the momentum was changed along directions other than 

h,3,4,6 but we have found3,4,6 that such methods do not improve the accuracy compared 

to the simple + and – prescriptions.) 

 We have recently developed7 a new implementation of the TSH method called the 

fewest switches with time uncertainty (FSTU) method which allows a trajectory that 

experiences a frustrated hop to hop nonlocally to a geometry along the trajectory where a 

hop is classically allowed so long as the nonlocal hopping point is within a time interval 

obtained from the time-energy Heisenberg uncertainty relations.  (In other respects, the 

FSTU method is the same as the TFS algorithm.)  By introducing nonlocal hopping, the 

FSTU method improves the electronic-state distribution of trajectories, and the FSTU 

method was found7 to be more accurate than the TFS method.  Although the FSTU 

method has less frustrated hopping than the TFS method, not all frustrated hops are 

removed, and therefore we have previously considered7 two implementations of the 

FSTU method, namely FSTU+ and FSTU–. 

 From numerical studies,6,7 we found that, in general, the TFS+ and FSTU+ 

methods are more accurate in predicting the average rotational and vibrational quantum 

numbers than are the TFS– and FSTU– methods, respectively, whereas the TFS– and 

FSTU– methods predict more accurate nonadiabatic transition probabilities and 

branching ratios.  It is therefore reasonable to attempt to combine these two approaches.  

We note that a previous attempt10 to combine the + and – approaches was unsuccessful 
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because it relied on a nonphysical criterion for discriminating between the + and – 

treatments.  In particular, the criterion was based on the amount of energy in modes 

orthogonal to h at a frustrated hop. 

 A new physically-motivated prescription, called the �V prescription, is presented 

here that combines the desirable features of the + and – treatments in a more physically 

motivated fashion while retaining the simple implementation of the TSH method.  Using 

the �V prescription, the dynamics at a frustrated hopping event is determined by allowing 

the trajectory to instantaneously feel the target electronic state.  Specifically, when a 

frustrated hop is encountered, the following quantities are computed: 

  hph ⋅=p  (1) 

  ,  hh ⋅−∇= jVF  (2) 

where p is the nuclear momentum of the trajectory and �Vj is the gradient of the target 

electronic state j.  Equations (1) and (2) are the projection of the nuclear momentum and 

the force of the target electronic state along the hopping vector h, respectively.  If these 

two quantities have the same sign, the target electronic state can be thought of as 

instantaneously accelerating the trajectory along h, whereas if the two quantities have 

opposite signs, the target electronic state instantly retards the trajectory along h.  We 

therefore use the following criterion for frustrated hopping 

  
used. is  treatment the
used is  treatment the

   
0
0

 If
−
+

�
�
�

<
≥

hh Fp  (3) 

The �V criterion has several desirable features:  it contains both + and – treatments, it is 

simple to implement, it requires only information that is readily available in surface 

hopping computer codes, it is physical as it depends only on the components of the 

momentum along the hopping vector h to determine the nonadiabatic dynamics, and it 

incorporates a knowledge of the character of the excited surface to differentiate whether 

the + or – treatment is used. 
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III.  Calculations 

 We tested the FSTU�V, FSTU+, and FSTU– methods against accurate quantum 

mechanical results for a total of 21 test cases involving fully three-dimensional collisions 

of systems with realistic potential energy surfaces.  Four parameterizations of the YRH 

system6 with three different sets of initial conditions for the Y* + RH collision partners 

and three parameterizations of the MXH system20 with three different sets of initial 

conditions for the M* + XH collision partners were included in the test set.  In both cases, 

an asterisk denotes electronic excitation.  Descriptions of the surfaces, the initial 

conditions, and the quantum mechanical calculations for the YRH and MXH surfaces 

have appeared previously.6,20  The entire set of 21 test cases is qualitatively diverse and 

use of such a diverse set of test cases ensures against fortuitous agreement between the 

semiclassical and quantum mechanical results.  The CC electronic representation was 

used for all of the semiclassical calculations.   

 Unsigned relative errors (UREs) were computed for eight observables:  the 

reactive de-excitation probability PR to produce R + YH or H + MX, the nonreactive de-

excitation (quenching) probability PQ to produce Y + RH or M + XH, the total de-

excitation probability PN = PR + PQ, the product branching fraction FR = PR/PN, the 

averages (first moments) of the final reactive vibrational and rotational quantum numbers 

v' and j', and the averages (first moments) of the final quenching vibrational and 

rotational quantum numbers v" and j".  Note that all reactive events are electronically 

nonadiabatic; electronically excited channels of R + YH or H + MX are not energetically 

accessible. 

 

IV.  Results and Discussion 

 For each of the eight observables, the UREs were averaged over all 12 YRH 

cases, all 9 MXH cases, and all 21 cases, and the resulting mean unsigned relative errors 

(MUREs) are summarized in Table 1.  The average MURE for the four moments, the 

four probabilities, and all eight observables are also shown for each method in the last 

three columns of Table 1.  The method with the lowest MURE is shown in bold for each 

case.  Uncertainties in the MUREs were computed using the Monte Carlo uncertainties in 
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the calculated observables (these uncertainties result from finite sampling of initial 

collision variables such as vibrational phase and rotational orientation).  If another 

method has an MURE that is statistically indistinguishable (within a 1σ range) from the 

method with the lowest MURE, that method is also listed in bold, and all bold entries are 

considered as “ statistically significant winners” .  Table 1 shows that treatment of the 

nuclear momentum at frustrated hops has a significant effect on the reactive probability 

PR and the product branching fraction FR.  For both the YRH and MXH systems, the 

FSTU�V method is more accurate than the FSTU+ and FSTU– methods for PR and FR.  

For PQ and PN, all three methods are statistically indistinguishable for both the YRH and 

MXH cases.  The three methods predict all four MXH moments and three of the four 

YRH moments equally well.  In the case of the quenching vibrational moment, the 

FSTU+ and FSTU�V methods are statistically preferred over the FSTU– method for the 

YRH system. 

 Table 1 contains highly averaged errors over observables with varying 

magnitudes.  Table 2 shows the UREs on a case-by-case basis for PN and FR and 

supports the conclusion drawn from Table 1 that the FSTU�V method is the best method 

for FR.  Specifically, the FSTU�V method has the statistically-significant lowest URE for 

FR for 14 of the 21 cases.  We note that the trends in PR are similar to the trends in FR, 

and PR is therefore not included in Table 2.  Table 2 also reveals a trend in PN that does 

not show up in the MUREs shown in Table 1.  The FSTU�V method has the statistically 

significant lowest URE for 19 of the 21 test cases for PN.  For the remaining two cases, 

the URE for all three methods is below 20%, where a 20% relative error may be 

considered satisfactory for semiclassical methods.  We conclude therefore that the 

FSTU�V method is better than the FSTU+ and FSTU– methods for PN, PR, and FR. 

 In order to perform a case-by-case analysis on all eight of the observables without 

going into great detail, we have developed a scorecard method of evaluating the methods.  

In the scorecard method, for each of the eight observables a score of 1.0 is given to the 

statistically significant winning methods (as defined above), and a score of 0.0 is given to 

all other methods for that observable.  The scores are then averaged over all 12 cases for 
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YRH and all 9 cases for MXH.  An average score of 1.0 or 0.0 indicates that the method 

predicts the statistically-significant lowest unsigned error for all or none of the test cases, 

respectively.  Table 3 shows these average scores for each observable.  For each of the 

two kinds of systems (YRH and MXH), we averaged these average scores over all four 

probabilities, all four moments, and all eight observables, as shown in the last three 

columns of Table 3.  Finally, we averaged over both kinds of systems, as shown in the 

last three rows.  All averages are unweighted.  Table 3 confirms the trends inferred from 

Tables 1 and 2, namely that the FSTU�V method is greatly preferred over the other two 

methods in predicting probabilities (scoring 70% higher than the second-place method), 

that the FSTU+ method is preferred for predicting moments (scoring 22% higher than the 

second-place method), and that the FSTU�V method is the best method overall (scoring 

18% higher than the second-place method).  Since there is no unique way to decide which 

method is “ better”  over a diverse test set, we believe that it is encouraging that the mean 

unsigned relative errors and the scorecard method lead to the same conclusions.  

Furthermore, it is pleasing that the prescription that has the best physical justification also 

turns out to be the prescription that performs the most accurately. 

 We note that the FSTU�V results in Tables 1 and 2 support our previous 

observation6 that the semiclassical trajectory approach is reasonably accurate for 

modeling the dynamics of systems with weakly coupled electronic states.  The YRH 

systems feature highly classically forbidden electronic transitions (the quantum 

mechanical values of PN range from 0.2 to 10–4), and the overall MURE of the improved 

semiclassical method (FSTU�V) for these systems is 39%.  For the more strongly 

coupled MXH systems (with quantum mechanical PN from 0.5 to 0.7), the overall MURE 

is 33%.  Considering the probabilities only, the FSTU�V method performs better for the 

small-probability YRH cases than for the MXH cases, with average MUREs for the 

probabilities of 38% and 48%, respectively. 

 We also tested the TFS+, TFS–, and TFS�V methods and obtained similar trends 

with respect to the treatment of frustrated hopping (i.e., the TFS�V method is more 

accurate than the TFS+ and TFS– methods).  We have previously shown [7] that the 

FSTU method is, in general, more accurate than the TFS method, and the same trends 
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occur when both algorithms are implemented with the �V prescription, i.e., the FSTU�V 

method has a smaller average error than the TFS�V method.  We also remind the reader 

that in previous papers3,4,6 we have tested several other algorithms for treating surface 

hops, and this letter results from a distillation of those efforts in that the methods 

presented here are only the very best methods. 

 

V.  Concluding Remarks 

 The accuracy of semiclassical dynamics calculations using the trajectory surface 

hopping method for simulating non-Born-Oppenheimer processes is determined by the 

accuracy of the potential energy surfaces and the surface couplings, the selection of initial 

conditions, nonhopping trajectory propagation, the treatment of successful surface hops, 

and the treatment of frustrated hopping.  We have shown in this work and previously6,7 

that frustrated hopping can be very important for realistic chemical systems, and allowing 

nonlocal hopping (as in the FSTU algorithm) and carefully treating frustrated hopping (as 

in the �V prescription) can have a significant quantitative effect on the overall 

semiclassical dynamics, and in some cases the treatment of frustrated surface hops is the 

dominant potential source of error.  Semiclassical simulations of electronically 

nonadiabatic dynamics should therefore explicitly address the treatment of frustrated 

hopping, and based on the numerical studies presented here and elsewhere,6,7 we 

recommend the FSTU�V method as the most successfully validated option for trajectory 

surface hopping calculations. 
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Table 1.  Mean unsigned relative errors (MUREs) for the 12 YRH cases, the 9 MXH cases, and all 21 cases.a 

System Method PR < v′ > < j′ > PQ <v ′′ > < j ′′ > PN FR Momsb Probsc Alld 

YRH FSTU+ 1.25 0.14 0.15 0.21 0.27 0.79 0.19 1.12 0.34 0.69 0.51 

 FSTU– 0.75 0.20 0.14 0.22 0.37 0.88 0.18 0.67 0.40 0.46 0.43 

 FSTU�V 0.54 0.18 0.14 0.20 0.34 0.92 0.15 0.63 0.40 0.38 0.39 

             

MXH FSTU+ 1.09 0.29 0.13 0.24 0.13 0.16 0.30 0.66 0.18 0.58 0.38 

 FSTU– 0.98 0.27 0.13 0.23 0.14 0.16 0.29 0.58 0.17 0.52 0.35 

 FSTU�V 0.88 0.28 0.13 0.26 0.12 0.15 0.26 0.54 0.17 0.48 0.33 

             

Bothe FSTU+ 1.18 0.20 0.14 0.22 0.21 0.52 0.24 0.92 0.27 0.64 0.46 

 FSTU– 0.85 0.23 0.13 0.23 0.27 0.57 0.23 0.63 0.30 0.48 0.39 

 FSTU�V 0.69 0.23 0.14 0.23 0.25 0.59 0.20 0.59 0.30 0.42 0.36 

aThe methods with the statistically lowest MUREs for each observable are given in bold.  See the text for more details. 

bAverage of the < v′ >, < j′ >, <v ′′ >, and < j ′′ > MUREs.  

cAverage of the PR, PQ, PN, and FR MUREs.  

dAverage of all eight MUREs. 

eMUREs averaged over all 21 test cases. 
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Table 2.  Unsigned relative errors for the 12 YRH and 9 MXH cases. 
 PN    FR  

System 
Initial 

Conditionsa 
Parameter-

izationb FSTU+ FSTU– FSTU�V  FSTU+ FSTU– FSTU�V 
YRH (1.10, 0) 0.20 0.38 0.32 0.14  0.71 0.42 0.10 

  0.10 0.06 0.08 0.17  0.57 0.30 0.15 
  0.03 0.15 0.15 0.05  0.37 0.08 0.07 
  0.01 0.33 0.33 0.14  0.07 0.07 0.06 
 (1.10, 6) 0.20 0.01 0.09 0.02  0.54 0.36 0.60 
  0.10 0.26 0.29 0.24  0.66 0.67 0.74 
  0.03 0.10 0.07 0.11  0.31 0.39 0.46 
  0.01 0.11 0.07 0.13  0.51 0.40 0.60 
 (1.02, 0) 0.20 0.66 0.60 0.45  0.50 0.00 0.24 
  0.10 0.09 0.13 0.18  3.58 2.37 1.73 
  0.03 0.05 0.03 0.05  2.30 1.63 1.18 
  0.01 0.07 0.05 0.15  3.26 1.38 1.57 
Average of YRH cases 0.19 0.18 0.15  1.12 0.67 0.63 

          
MXH (1.10, 0) SB 0.53 0.44 0.43  0.77 0.58 0.48 

  SL 0.21 0.21 0.18  1.11 1.07 1.00 
  WL 0.35 0.34 0.31  0.14 0.12 0.08 
 (1.10, 1) SB 0.19 0.18 0.15  1.45 0.99 0.94 
  SL 0.18 0.19 0.15  1.46 1.42 1.35 
  WL 0.47 0.48 0.45  0.19 0.17 0.10 
 (1.10, 2) SB 0.20 0.16 0.12  0.23 0.33 0.38 
  SL 0.40 0.40 0.37  0.50 0.45 0.43 
  WL 0.19 0.19 0.18  0.12 0.13 0.08 
Average of MXH cases 0.30 0.29 0.26  0.66 0.58 0.54 
          
Average of all 21 cases 0.24 0.23 0.20  0.92 0.63 0.59 

aThe initial conditions are denoted (Etot/eV, j), where Etot is the total energy in eV and j 

is the initial rotational state of the diatom. For more details see Refs. 6 and 20 for the 

YRH and MXH systems, respectively. 

bSee Refs. 6 and 20 for descriptions of the YRH and MXH parameterizations, 

respectively. 
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Table 3.  Scorecard for the 12 YRH cases, the 9 MXH cases, and all 21 cases.a 

System Method PR < v′ > < j′ > PQ <v ′′ > < j ′′ > PN FR Momsb Probsc Alld 

YRH FSTU+ 0.33 0.92 0.92 0.83 1.00 0.67 0.67 0.25 0.88 0.52 0.70 

 FSTU– 0.58 0.58 0.83 0.67 0.25 0.67 0.50 0.50 0.58 0.56 0.57 

 FSTU�V 0.67 0.75 0.83 0.83 0.25 0.42 0.83 0.50 0.56 0.71 0.64 

             

MXH FSTU+ 0.11 0.78 0.78 0.56 0.67 0.89 0.44 0.11 0.78 0.31 0.54 

 FSTU– 0.00 1.00 0.78 0.78 0.56 0.78 0.56 0.11 0.78 0.36 0.57 

 FSTU�V 0.89 0.78 0.89 0.67 0.44 1.00 1.00 0.89 0.78 0.86 0.82 

             

Bothe FSTU+ 0.22 0.85 0.85 0.69 0.83 0.78 0.56 0.18 0.83 0.41 0.62 

 FSTU– 0.29 0.79 0.81 0.72 0.40 0.72 0.53 0.31 0.68 0.46 0.57 

 FSTU�V 0.78 0.76 0.86 0.75 0.35 0.71 0.92 0.69 0.67 0.78 0.73 

aSee Sec. IV for a description of the scorecard method. 

bAverage of the < v′ >, < j′ >, <v ′′ >, and < j ′′ > scores.  

cAverage of the PR, PQ, PN, and FR scores.  

dAverage of all eight scores. 

eAverage of the YRH and MXH scores. 
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Chapter Seven 

7 
Narrow Subthreshold Quantum Mechanical Resonances  

in the Li + HF � H + LiF Reaction 

 

 

 

I.  Introduction 

 The reaction Li + HF � H + LiF has become a prototype for both theoretical and 

experimental investigations of the dynamics of atom-diatom systems with three different 

atoms and the heavy-heavy-light mass combination.  The ground-state potential energy 

surface has been calculated, and several analytic fits have been presented in the 

literature.1–17  Various aspects of the dynamics of LiFH have been studied, including 

reactive collisions,10,11,18–32 stereodynamics and vector correlations,26,29,30,33–35 and 

photodissociation dynamics.15,36–39  Experimentally observable quantities such as the 

differential and integral cross sections have also been discussed.18,20,26,29,30 

A striking feature of the previously reported studies is the strong resonance 

structure.10,11,19,21–25,28,32  It is well known that resonance structure in dynamical 

features may be associated with quasibound (i.e., metastable) states of the system.  

However, in all of the investigations carried out so far for the Li + HF reaction, the 

description of the resonance structure is phenomenological, and there is little quantitative 

characterization.  In addition, research has been primarily focused on the scattering 

features, and there is no study of the intermediate metastable states of the Li… FH 

complexes, which are of fundamental interest.  One objective in the present study is to 

identify the energies and lifetimes of the resonance states using fully converged quantum 

mechanical scattering calculations.  The method employed is a time-independent, two-
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arrangement Green’ s-function-based scattering approach, namely the outgoing scattering 

wave variational principle (OWVP).40–43  The results are limited by the accuracy of the 

fitted multidimensional potential energy surface. 

The present work is especially timely in light of the recent work of Bowman, 

Manolopoulos, and co-workers,44,45 in which subthreshold resonances associated with 

the van der Waals wells of the HOCl system were identified in exact quantum mechanical 

scattering calculations and characterized using quasibound-state calculations.  A similar 

analysis for the FH2 system and its deuterated isotopes has demonstrated the existence of 

van der Waals well resonances.46–48  In the present paper, we interpret observed 

resonances in the Li + HF reaction as due to metastable van der Waals complexes of the 

reactants, i.e., Li… FH van der Waals complexes. 

This paper is organized as follows.  Section II reviews the basic features of the 

ground-state potential energy surface for the reactive LiFH system.  Section III contains a 

brief summary of the theory and methods that are used in the scattering and the bound- 

and quasibound-state calculations.  In Sec. IV, we present state-to-state, initial-state-

selected, and cumulative reaction probabilities for total angular momentum J = 0.  The 

resonance energies and widths are obtained by fitting the energy dependence of the 

eigenphase sum to the multichannel Breit-Wigner formula.  The product rotational state 

distributions resulting from the decay of two resonances are also presented.  The 

resonance complexes are further characterized by assigning vibrational quantum numbers 

corresponding to quasi-bound states of the Li… FH van der Waals complex.  Section V is 

a summary. 

 

II.  Ground-State Potential Energy Surface of the LiFH Complex 

Details of the ground-state LiFH potential energy surface used here have been 

presented previously.15  Briefly, potential energies for the two lowest-energy electronic 

surfaces were calculated at a high level of theory over a wide range of nuclear 

geometries.  These adiabatic energies were fitted to analytic functional forms in the 

diabatic representation.  The ground-state adiabatic potential energy surface used in the 
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present study is obtained by diagonalizing the fitted diabatic potential energy matrix.  The 

surface fit used here has been labeled surface fit H in later work.16 

The ground-state surface has two van der Waals wells:  one in the entrance valley 

with a well depth of 0.21 eV with respect to the Li + HF asymptote at its equilibrium 

geometry, and the other in the product valley with a well depth of 0.043 eV with respect 

to the LiF + H asymptote at its equilibrium geometry.  The surface also has two saddle 

points.  The first saddle point is the transition state for the F transfer reaction and has a 

non-linear geometry and a potential barrier height of 0.35 eV with respect to the Li + HF 

asymptote at its equilibrium geometry.  The second saddle point is the transition state for 

dissociation of the LiF… H complex and has a very small height of 0.014 eV with respect 

to the LiF + F asymptote at its equilibrium geometry and is located in the product valley.  

The overall reaction Li + HF � LiF + H is endoergic by 0.21 eV without including the 

zero-point energy of the reactants and products and by 0.015 eV when zero-point energy 

is included.  The characteristic features of the stationary points of the ground-state LiFH 

surface are summarized in Table 1 and are shown schematically in Fig. 1.  The zero-point 

energies in Table 1 are taken from Ref. 15 and were calculated using the Morse-I 

approximation49,50 available in the POLYRATE51 software package. 

 

III.  Theory 

III.A.  Quantum Mechanical Scattering Matrices 

Quantum mechanical scattering matrix elements were obtained by solving the 

time-independent Schrödinger equation by the outgoing wave variational principle 

(OWVP).40–43  In this method, the Schrödinger equation is solved by expanding the 

outgoing scattering waves in terms of internal-state channel functions for each asymptotic 

chemical arrangement.  The solution to the Schrödinger equation can be written in 

integral form using the Lippmann-Schwinger formalism.42,43,52,53  The first term in the 

solution is called the distorted wave and satisfies 

  ( ) 0)(
0

=Φ− + k
n

k
D EH , (1) 
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where k
DH  contains some of the channel-channel coupling, E is the total energy, k labels 

a chemical arrangement (k = 1 for the Li + HF arrangement and k = 2 for the H + LiF 

arrangement), n is the collection of quantum numbers describing the asymptotic state of 

the system (including the rotational, vibrational, and electronic states, and the chemical 

arrangement) and may be called an asymptotic channel, n0 is the initial asymptotic 

channel, and k
n

)(
0

+Φ  is obtained by solving eq. (1) numerically using finite 

differences.41,54  The difference between the full Hamiltonian for arrangement k and the 

distorted wave Hamiltonian k
DH  is the coupling potential k

CV .  The contribution to the 

scattering matrix from k
CV  is obtained variationally using a dynamically adapted basis 

set.40–43 

Using this two-step scheme, the full scattering matrix is written as the sum of two 

terms, 

  
0000

0
nn

k
nnkknn SS S+= δ , (2) 

where the first term is the distorted wave Born approximation for the scattering matrix 

obtained using the distorted wave functions k
n

)(
0

+Φ , and the second term is the 

contribution from the coupling potential k
CV .  Two kinds of basis functions are employed 

in the present study:  half-integrated Green’ s functions54 (called type-g basis functions) 

and asymptotic eigenstate basis functions (called type-e basis functions).  The type-g 

basis functions are used for energetically open channels, and type-e basis functions are 

used for energetically closed channels.  See Refs. 40–43 for more details regarding our 

implementation of the OWVP scattering algorithm.   

 After the scattering matrix is calculated, the transition probabilities and 

cumulative reaction probabilities may be obtained according to their usual definitions. 
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III.B.  Resonance Scattering 

A resonance may be characterized in terms of its resonance energy Eα and total 

width Γα, where the index α labels the resonance.  These observables may be correlated 

with the analytic properties of the scattering matrix such that the complex energies 

  ααα Γ−=
2
i

Ez , (3) 

are the poles of the scattering matrix elements.52,55   

In the neighborhood of an isolated narrow resonance (INR), the scattering matrix 

elements )(ES nn ′  can be separated into background (nonresonant) contributions 

)(b ES nn ′  and contributions from the resonance.  This yields52,55 

  
α

αα γγ
zE

iESES nn
nnnn −

−= ′
′′ )()( b , (4) 

where nαγ  is the partial width amplitude for channel n and is related to the partial width 

by 

  2
nn αα γ=Γ . (5) 

Each partial width is related to the lifetime ταn for the unimolecular decay of resonance 

state α into a specific final channel n, 

  nn αατ Γ= /� . (6) 

The sum over all of the partial widths for a given resonance α gives the total width of that 

resonance, 

  �Γ=Γ
n

nαα , (7) 

and the total width is related to the lifetime of the resonance, 

 αατ Γ= /� . (8) 

Using eqs. (3) and (4) and ignoring the background contribution, one can obtain the state-

to-state or channel-to-channel transition probability in the neighborhood of resonance, 

  nnnn PP
EE

ES ′′
Γ+−

Γ
= αα

αα

α
4/)(

)(
22

2
2 , (9) 
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where 

  ααα ΓΓ= /nnP  (10) 

is the branching ratio, i.e., the probability for entering the resonance state α from the 

initial channel n (or equivalently the probability of leaving the resonance state α into the 

final channel n).   

 In order to extract the resonance energy and resonance width, it is convenient to 

use the expression for the eigenphase sum ∆(E), which is defined by  

 )](det[)](2exp[ ESEi =∆ . (11) 

As the total energy E passes close to a resonance energy zn, the eigenphase sum increases 

rapidly by approximately π.  This behavior can be expressed analytically using the multi-

channel Breit-Wigner formula,56–58 

  ,...2 ,1 ,0,1,2...,     ,)(
)(2

arctan)()( b −−=+�
�

�
�
�

�

−
Γ

+∆=∆ mEm
EE

EE π
α

α , (12) 

where )(b E∆  is the nonresonant or background contribution.  The term m(E)π indicates 

that eq. (12) determines ∆(E) only within a factor of π, and for each value of E some 

integral multiple of π must be added to the eigenphase sum such that the eigenphase sum 

is a continuous function of E.  The observables Eα and Γα may be extracted from ∆(E), 

by fitting the multi-channel Breit-Wigner formula, eq. (12), to the eigenphase sum data 

obtained from scattering calculations.59–61   

Not all resonances are isolated and narrow.  Overlapping resonances may occur 

and these resonance features involve strong interference effects and statistical behavior in 

contrast to the mode-specific behavior of the INRs.62  The theoretical analysis of 

overlapping and broad resonances is much more complicated than the case of INRs and 

will not be considered here. 
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III.C.  Bound and Quasibound States of the Reactant van der Waals well 

 The bound-state and quasibound-state energies and wave functions of the Li… FH 

van der Waals well were computed using the computer code ABCSPECTRA.63  The bound-

state and quasi-bound state wave functions were expanded in the basis Γβ  

  ,),(),( � Γ=Ψ
β

βαβα rRrR c  (13) 

where 

  )ˆˆ()(
1

)(
1

),( rRrR ,yr
r

Rt
R jlvjm φβ =Γ , (14) 

R = R R̂  is the mass-scaled translational Jacobi coordinate describing the Li to center-of-

mass of HF motion, r = r r̂ is the mass-scaled internal Jacobi coordinate describing the 

HF vibrational motion, α is a collection of quantum numbers and labels the bound or 

quasibound state, αβc  is an expansion coefficient, tm is a Gaussian translational basis 

function, φvj is an asymptotic eigenstate rovibrational function of HF, and yjl is an 

eigenfunction of the total angular momentum J = 0, the rotational state of HF j, and the 

orbital angular momentum of Li with respect to the center-of-mass of HF l.  The basis 

function index β is the collection of the indices v, j, l, and m, where v is the vibrational 

quantum number of the isolated diatom, and m labels the translational basis functions. 

 The expansion coefficients in eq. (13) may be obtained by numerically computing 

the matrix elements 

  � ΓΓ≡′= ′′ rRddHHH ββββ ββ , (15) 

  � ΓΓ≡′= ′′ rRddS ββββ ββ | , (16) 

where H is the full Hamiltonian and solving the generalized eigenvalue problem.  Details 

of the bound-state calculations including the computational implementation and the 

numerical and basis set parameters are given in the appendix. 
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IV.  Results and Discussion 

IV.A.  State-to-State, State-Selected, and Cumulative Reaction Probabilities 

OWVP reactive scattering calculations were carried out at total energies ranging 

from 0.26 to 0.50 eV relative to the Li + HF asymptote at its equilibrium geometry using 

version 18.8 of the VP scattering code.64  In order to resolve the resonance states, we used 

an energy grid of 0.0001 eV at low energies.  Resonance widths usually increase with 

energy, and therefore we used a coarser grid of 0.00025 eV at high energies.  Table 2 lists 

two sets of basis set and numerical parameters used for the scattering calculations at a 

total energy of 0.4 eV.  The definitions of the parameters are given elsewhere.42,43  At 

this energy, parameter set 1, for example, has a total of 511 asymptotic channels, of 

which 47 are open, and a total of 18 043 basis functions.  The larger parameter set, 

parameter set 2, was used to check the convergence of the results with respect to 

variations in both the numerical and basis parameters.  The state-to-state transition 

probabilities and eigenphase sums computed with parameter sets 1 and 2 differ from each 

other by no more than one percent. 

Figure 2 shows the state-to-state reaction probability plotted as a function of 

energy for the process Li + HF(v = 0, j = 0) � H + LiF(v� = 0, j�), where  j� = 0 – 5.  A 

strong resonance structure dominates the energy profiles, especially in the energy region 

associated with the Li… FH van der Waals well in Fig. 1.  We note that even at resonance 

energies, the probability of reaction is small (less than 0.1), and therefore nonreactive 

collisions are the dominant process.  This is not surprising due to the 0.35 eV barrier and 

0.23 eV endoergicity of the reaction, as shown in Fig. 1. 

Figure 3 presents the initial-state-selected reaction probability for the process Li + 

HF(v = 0, j) � H + LiF, where j = 0 – 9.  We see that the major resonances displayed in 

the state-to-state reaction probabilities persist after summing over final states.  Note the 

strong dependence of the state-to-state transition probabilities on the initial rotational 

state j of the HF diatom.  Specifically, as j increases the background reaction probability 

increases and moves to higher energies.  We also note that the resonances at low energies 

are mainly due to the contribution from the low-j channels, while for higher-energy 



232 

resonances, the contributions are primarily from the high-j channels even though the low-

j channels are energetically accessible.   

Figure 4(a) shows the cumulative reaction probability for the Li + HF � H + LiF 

reaction over the energy range 0.26−0.50 eV, where energy is given relative the Li + HF 

asymptote at its classical equilibrium geometry.  The threshold for nonquantal passage 

over the barrier may be identified with the energy at which the background contribution 

first equals 0.5.65–67  In Fig. 4(a) we see that this occurs at E � 0.47–0.49 eV, which is in 

reasonable agreements with the zero-point inclusive barrier height (0.45 eV) in Fig. 1 and 

Table 1.  Figure 4(b) shows the cumulative reaction probability below the threshold.  The 

reaction probability is almost zero except at several localized resonance energies, and 

even at resonance energies, the probability of reaction is small (much less than 0.5).  As 

the energy increases above the effective threshold energy, the background reaction 

probability (which measures direct reaction) rises gradually.  The transition probabilities, 

however, continue to exhibit sharp resonance features [see Fig. 4(c)].  The overall trend 

for both the background and resonance reaction probabilities is an increase with 

increasing energy. 

 

IV.B.  Resonance Energies and Total Widths 

 In order to characterize the resonance features, we computed the eigenphase sum 

∆j on a dense grid of energies (Ej, j = 1 – NE) surrounding each resonance.  The 

background contribution was expanded as a polynomial function of the total energy, 

  �
=

=∆
N

l

l
l EaE

0

b )( , (17) 

and eq. (12) was fitted to the dense grid of eigenphase sums.  To check the stabilization 

of the fitted Eα and Γα, we varied the order N of the polynomial in eq. (17) such that  

  �
=
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was minimized with respect to Eα, Γα, and al. 
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Table 3 presents the resonance energy and width for each of the resonances that 

was observed and characterized.  Note that we observe both isolated narrow resonances 

and broad overlapping resonances.  We calculate lifetimes [using eq. (8)] that range over 

approximately three orders of magnitude from 0.20 to 87 ps.  This is not surprising since 

the decay rate often depends exponentially on the translational energy associated with the 

dissociation coordinate.68–70  Even though not all of the resonances are INRs, the fits to 

the eigenphase sum are still relatively accurate.  The root mean square error for each fit is 

smaller than 0.1 percent. 

Figure 5 illustrates the energy dependence of the eigenphase sum in the region of 

an isolated narrow resonance with an energy of 0.274 eV, where the dots are the 

calculated results, the solid line is the fitted curve, and the straight line is the background 

contribution.  As expected,56–58 there is a rapid increase by π in the eigenphase sum 

around the resonance. 

 

IV.C.  Resonance Decay Product State Distributions 

 For an isolated narrow resonance, the partial widths Γαn [defined in eq. (5)] may 

be obtained from any column of the scattering matrix.59–61  Specifically, the background 

contribution to each of the scattering matrix elements in eq. (4) is expressed as a 

polynomial of the total energy, 

  �
=

′′ =
N

l

l
nnlnn EAES

0
,

b )( . (19) 

Equation (4) may then be written 
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where 

  nnnnnn iCAzB ′′′ −−= αα ,0,0  (21) 
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and 

  nnnnC ′′ = ααα γγ . (24) 

The partial width amplitudes nαγ  are related to nnC ′α  by 

  
nn

nn
n

C

C

α

α
αγ ′

′ = , (25) 

and Γαn may be calculated using eq. (5). 

 The quantities }{ , nnlB ′  may be obtained by fitting eq. (20) to the calculated 

OWVP scattering matrix elements jnnS ,′  and minimizing the quantity 
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where No is the number of open channels and NE is the number of energies included in 

the fit.  From }{ , nnlB ′ , we can calculate }{ , nnlA ′  and nnC ′α  from eqs. (21)–(23).   

We present detailed results for two resonances, namely the E = 0.294 and 0.304 

eV resonances, which have total reactive decay probabilities (calculated by summing the 

partial widths associated with reactive channels) of 0.03 and 0.53, respectively.  At these 

energies, LiF is in its ground vibrational state, and the maximum rotational quantum 

number j that is energetically accessible is 18 and 20, respectively.  From the partial 

widths and eq. (10), we computed the probability of decay into each rotational state, and 

the results are plotted in Fig. 6.  The rotational state profiles do not differ significantly 

from the rotational state distributions resulting from direct scattering at nearby 

nonresonant energies.  Considering that these calculated rotational state distributions are 

very sensitive to the anisotropy of PES, comparison of the calculated product state 

distributions to experiment would be a stringent test of theory, but no experimental result 

is currently available. 

A more detailed study of the trends in the partial widths, although potentially 

illuminating as to the resonance decay mechanism, is not pursued in the present work. 
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IV.D.  Bound and Quasibound States 

In addition to their energies and widths, the resonance states of Li… FH identified 

in Secs. IV.A and IV.B can be approximately characterized by a set of three quantum 

numbers (when J = 0, as is the case throughout this paper).  We note that for J > 0, a 

more sophisticated analysis is required than the simple one presented below.71,72   

For resonances trapped in the reactant van der Waals well, one choice for the 

quantum numbers is (v, n, j = l), where v and j are the quantum numbers respectively 

describing the vibrational and rotational state of the tightly bound diatom HF, and n and l 

are quantum numbers describing the stretching motion and angular momentum of Li with 

respect to the center-of-mass of HF.71–73  These quantum numbers are useful for 

interpreting the dynamics of the resonance when the Li atom is far from HF, i.e., when 

the interaction energy between Li with HF is small. 

Alternatively, one may characterize the resonance states with a set of quantum 

numbers (νr, νR, νχ), where each quantum number represents the vibrational state of one 

of the normal modes of the system at its minimum energy geometry.  The vibrational 

quantum numbers are listed in the order of decreasing frequencies, i.e., first the HF 

vibration mode νr, then the nonreactive dissociation mode νR, and finally the van der 

Waals bending mode νχ.  This set of quantum numbers is useful for describing the 

dynamics of the resonance when Li is close to HF (i.e., when Li and HF are strongly 

interacting) and the system is in the deep reactant van der Waals well. 

As the system dissociates nonreactively (i.e., to Li + HF) at a resonance energy, 

the more useful set of quantum numbers changes from the (νr, νR, νχ) set to the 

(v, n, j = l) set, and the two sets of quantum numbers may be correlated in this way.  For 

example, νr is approximately equivalent to v, and increased excitation of the bending 

mode νχ is likely to result in increased excitation of j and l.  Although both sets of 

quantum numbers represent idealized situations and are only zero-order approximations, 

the resonance states are localized over the deep Li… FH van der Waals well, and we 

expect the (νr, νR, νχ) scheme to be more useful in the present work. 
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In order to characterize the quasibound states by the (νr, νR, νχ) scheme for the 

Li… FH van der Waals complexes, we first computed the bound states of Li… FH.  Details 

of the bound-state calculations are given in Sec. III.C and the Appendix.  The Li… FH van 

der Waals well supports 25 bound states, as shown in Table 4.  Excitation of the HF 

vibration requires ~0.5 eV of energy and therefore all of the bound states have νr = 0.  

The bound-states were further characterized by computing the radial wave functions and 

counting nodes to obtain νR.  The remaining quantum number νχ was assigned as 

required.  Assignment by this method was straightforward, and the energy spacings of the 

bound states fit regular patterns, i.e., the progression of (0, 0, νχ) states is similar to the 

progression of (0, 1, νχ) states, etc.  The assignments are shown on the left-hand side of 

Table 4. 

The bound-state energy levels of the Li… FH van der Waals well have been 

studied previously.14,17  Reference 17 compares the bound-state energies of potential 

surfaces obtained from fits to high-level ab initio data calculated at various levels of 

theory.  The most accurate surface that was studied in Ref. 17 has a zero-point energy of 

0.272 eV (relative to the bottom of the well), which agrees well with the value reported in 

the present work of 0.273 eV.  The reported17 values of the energies of the (0, 0, 1) and 

(0, 1, 0) states are 0.045 and 0.040 eV relative to the (0, 0, 0) state, respectively.  We 

report values of 0.20 and 0.41 eV for the (0, 0, 1) and (0, 1, 0) states, respectively.  Based 

upon our own bound-state calculations74 of a previously published surface14 and the 

current work, we believe that the (0, 0, 1) state is lower in energy than the (0, 1, 0) state, 

i.e., the (0, 0, 1) and (0, 1, 0) states in Ref. 14 (and possibly Ref. 17) are assigned 

incorrectly.  We do not believe, however, that the surface used in the present work is 

quantitatively accurate in the van der Waals bend near the van der Waals well, i.e., the 

energy spacings of the energy levels with varying νχ quantum numbers are not 

quantitatively accurate.  This defect has been corrected in surface fit J,16 which has 

energies of 0.34 and 0.48 for the (0, 0, 1) and (0, 1, 0) states, respectively.74  All of the 

results in the current paper were obtained using surface fit H,15,16 and the results may 

therefore not provide quantitative comparison with experiment. 
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In principle, quasibound-states may also be obtained from the energy spectrum 

obtained by diagonalizing the Hamiltonian in a finite basis.  In practice, however, the 

energies of these states are strongly dependent on the accidental closeness in energy to 

nearby continuum states.  Furthermore, the nodal structure can become obscured as 

quasibound-state wave functions mix with nearby continuum or quasibound states.  By 

inspection of the radial parts of the unbound wave functions, we were able to definitively 

determine the energy of and assign quantum numbers for all quasibound states with νR = 

0, 1, and 2, as well as one state with νR = 3 on the energy range of the scattering 

calculations presented in Sec. IV.A.  The quasibound states that we identified and 

assigned are given on the right-hand side of Table 4. 

 In order to obtain the full spectrum of quasibound states, we fit the bound-state 

and quasibound-state energies in Table 4 to the same kind of quantum number series75 as 

used in conventional spectroscopy, taking the series to second order in the quantum 

numbers, i.e.,  
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was minimized with respect to ωR, ωχ, xR, xχ, fRχ, and E0, where 
χνν ,R

E  are the 

calculated bound-state and quasibound-state energies in Table 3, and the sum in eq. (28) 

runs over all observed states.  The best-fit parameters for eq. (27) are given in Table 5, 

and the resulting fit has a RMS error of 0.006 eV.  Using the fitted parameters, the full 

spectrum of quasibound states can be obtained, and the calculated 
χνν ,R

E  (from Table 

4) and fitted Efit(νR,νχ) quasibound-state energies are given in Table 6 for the energy 

range in Figures 2–4. 
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IV.E.  Characterization of the observed resonances and decay mechanisms 

 The quantized energy of the saddle point for reaction is 0.45 eV including zero-

point energy in the modes orthogonal to the reaction coordinate,65 and this energy is 

within the energy range of total energies considered the present study (0.26 to 0.50 eV).  

It is possible that we may observe a “ barrier passage”  resonance corresponding to the 

decrease in the kinetic energy of the system as it passes over the transition state barrier.58  

Barrier passage resonances have short lifetimes (and therefore large widths), and we may 

associate such a resonance with a broad increase in the cumulative reaction probability 

between 0.45 and 0.50 eV; we will not analyze this further.  The product van der Waals 

complex LiF… H is not bound when zero-point energy is included as shown in Fig. 1.  We 

therefore consider all of the resonances in Table 3 to correspond to trapped-state 

resonances localized over the reactant van der Waals well. 

 The resonance energy widths vary over several orders of magnitude (from 

8 x 10−6 to 3 x 10–3 eV), and trends in the widths may be explained by assigning (νr, νR, 

νχ) quantum numbers to the resonances.  Assignments were made using the estimated 

quasibound state energies in Table 6 as follows:  Below the threshold energy (~0.35 eV) 

there is a one-to-one correspondence between the scattering resonance energies and the 

fitted quasibound-state energies if the quasibound states when the νR = 0 and 1 are 

excluded.  We conclude that quasibound states with νR = 0 and 1 have widths too small 

(smaller than 10–6 eV) to observe in the scattering calculations presented here. 

 Above threshold, the nonresonant reaction probability increases, and the CRP 

energy profile becomes more complicated and contains several broad and overlapping 

features that are not characterized in Table 3.  We assign the observed scattering 

resonances by again excluding the νR = 0 and 1 quasibound states and based on closeness 

in energy to the computed quasibound states.  There are several missing states, which 

may be explained as due to the complicated CRP structure above threshold.  The missing 

states have radial dissociation quantum numbers with νR � 1 or νR � 5.  We interpret this 

finding to indicate that the small-νR quasibound states have energy widths too small to 
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observe and the high-νR quasibound states resemble continuum states, have short 

lifetimes, and have broad, overlapping resonance features that are lost in the nonresonant 

reactive background probability. 

 The RMS error of the observed and fitted resonance energies is approximately 

equal to the RMS error of the bound-state energies (0.005 eV).   

 Figure 7 shows the energy width of the scattering resonance as a function of its 

assigned radial quantum number νR.  There is a strong exponential dependence of the 

resonance width on the dissociation energy as observed previously.69  The trend persists 

over several orders of magnitude in the energy widths, and this strengthens our 

confidence in the accuracy of the quasibound-state quantum number assignments in 

Table 6.  Although the trends in Table 6 are systematic, some irregularity persists, 

probably due to the precise but accidental positioning of each resonance energy with 

respect to asymptotic quantum states. 

The scattering resonances undergo the following decay mechanism:  At a 

quasibound-state resonance energy, the system is delayed (i.e., there in an increase in 

probability density) in the van der Waals well before the transition state barrier, resulting 

in enhanced tunneling to form the LiF product.  The lifetime of the trapped state is 

determined by the overlap of the quasibound-state radial function with unbound 

continuum functions of the same translational energy.  This overlap depends 

exponentially on the translational energy and therefore on the radial quantum number. 

 

V.  Summary 

The Li + HF � H + LiF reaction has been investigated in detail using the 

OWVP full-dimensional time-independent quantum scattering approach to calculate 

scattering matrix elements, from which we calculated state-to-state, initial-state-specific, 

and cumulative reaction probabilities.  The reaction probabilities are very well converged 

so that the resonance structure is not lost in the noise, indicating the robustness of the 

methods being used.  All the dynamical features have been recovered, thereby permitting 

a precise description of resonance states.  The scattering resonances were identified in 

terms of their complex resonance energies. 
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The Li + HF � H + LiF reaction exhibits a threshold near 0.35 eV, and below 

the threshold energy the reaction takes place via a mechanism of resonance tunneling, 

which results in several resonance spikes in the cumulative reaction probability.  When 

the energy is above the threshold, the reaction is governed by both direct and resonance 

mechanisms.  The resonance complexes populated by the collisions can decay 

nonreactively either by resonance tunneling through the centrifugal barrier in the entrance 

valley or by energy transfer from the bending mode to the nonreactive dissociation mode.  

The sum of the reactive and nonreactive rates of decay have been calculated from the 

fitted resonance widths, with lifetimes ranging from 0.20 to 87 ps.   

For two resonances, the product LiF rotational state distributions that result from 

decay of the resonance complex have been calculated. 

We have determined the resonance-state energies by both scattering and bound-

state calculations, and quasibound-state vibrational quantum numbers have been 

assigned.  Below threshold there is excellent agreement between the resonance and 

quasibound-state energies.  Resonances corresponding to quasibound states with νR < 2 

are not observed in the scattering calculations.  Above threshold, several resonances are 

observed that correspond to quasibound states with 2 � νR � 4.  In both regimes, there is 

good exponential correlation between the energy width of the resonance and the radial 

quantum number νR. 

The present study is particularly intriguing in the context of identifying 

intrinsically quantum mechanical behavior in chemical reactions.  Resonances that lead to 

sharp quantum mechanical spikes in the reaction probability at energies beneath the 

classical threshold are one of the most dramatic quantum effects that one can 

postulate.45,66,76  The observation of long sequences of such resonances, both in the O + 

HCl reaction45 and in the present study of Li + HF, provides a serious reminder of the 

necessity of checking classical models against quantum mechanical reality when 

interpreting chemical reactivity, especially are subthreshold energies. 

In general, bimolecular chemical reactions feature van der Waals attractions on 

both sides of the transition state barrier, and these wells are often deep enough to support 
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bound states.  The dramatically enhanced reactivity (i.e., the resonance in the reaction 

profile) at energies associated with van der Waals quasibound states that results from the 

localization of the wave function at the base of the barrier depends on several factors 

including the depth and shape of the well, the height and width of the barrier, the mass of 

the tunneling particles, etc.  Recent experimental work on van der Waals complexes has 

included several examples of radical-molecule systems,77–80 and it is not clear which of 

these might potentially show such behavior.  The possibility of state-selected coherent 

reactivity at isolated narrow resonances raises new possibilities for exploiting quantum 

mechanical phenomena for control and technological advantage. 
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Appendix:  Bound-State and Quasibound-State Calculations 

 The basis functions defined by eq. (14) and the matrix element evaluation 

strategies used to obtain the Hamiltonian matrix elements defined by eq. (15) have been 

presented in detail previously in the context of scattering calculations.43  The application 

of these strategies to bound-state calculations (as implemented in the computer code 

ABCSPECTRA63) is straightforward.  In this appendix, we briefly present some of the 

details of the bound-state calculations. 

 We restrict our attention to the case of zero total angular momentum (J = 0), and 

therefore l = j, in which case the elements of the overlap matrix in eq. (16) can be written 

  � ′′′′ = dRRtRtS mmjjvv )()(δδββ , (29) 

where throughout this appendix ),,,( mljv=β  and ),,,( mljv ′′′′=′β .  The translational 

basis functions tm are distributed Gaussian functions with evenly spaced centers 
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( T
mR , where m = 1, … , ntrans).  The width parameter of the translational basis functions is 

determined by setting the overlap parameter c of Hamilton and Light.81  

 The Hamiltonian operator in eq. (15) can be written 
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 V(R,r) = Vint(R,r) + Vdiat(r), (34) 

 ),(lim)(diat rRVrV
R ∞→

= , (35) 

mA is the mass of atom A, l̂  is the orbital (Li to center-of-mass of HF) angular 

momentum operator, and ĵ  is the internal (for the HF diatom) angular momentum 

operator.   

 The matrix elements of the first term in eq. (30) can be written 
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and can be evaluated analytically.  The matrix elements of the second term in eq. (30) are 
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where n = (v, j, l), ),,( ljvn ′′′=′ , 
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  rR ˆˆcos ⋅=γ , (40) 

Pλ(cosγ) are the Legendre polynomials, and λ
nnf ′  are the J = 0 Percival-Seaton 

coefficients.82,83  The radial integral in eq. (37) is handled by Nrep repetitions of 

NGL-point Gauss-Legendre quadrature.  Optimized vibrational quadrature with the Gauss 

ground-state option84 is used to obtain the weights i
nnw ′  and nodes ri in eq. (38).  The 

angular integral in eq. (40) is carried out using NQA-point Gauss-Legendre quadrature.  

Matrix elements of the third term in eq. (30) may be simplified because the functions φvj 

are eigenfunctions of τ̂ , i.e.,  

  vjS εβτβ ββ ′=′ ˆ , (41) 

where εvj is the diatomic energy of the state φvj. 

The HF diatomic problem is solved in a harmonic oscillator basis h , where 

h = 0, … , NHO – 1.  The resulting matrix elements are evaluated by writing 

  hrVrV
r

jj
hhhHh hh

j )()(
)1(

2
)( HOdiat2

2

2
1

diat −++′++=′ ′ µ
ωδ �

�  (42) 

and using (NHO + 14)-point Gauss-Hermite quadrature.  The harmonic frequency ω is 

obtained from the second derivative of the HF asymptotic potential at its minimum-

energy bond distance.  This frequency is also used to determine the exponential 

parameter of the HO basis functions and the harmonic potential term VHO.  The resulting 

matrices (there is one matrix for each value of j) are diagonalized to obtain the required 

eigenenergies εvj and eigenfunctions vjφ .  All asymptotic eigenfunctions vjφ  with 

energies εvj less than Easym (relative to the bottom of the asymptotic HF potential curve) 
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are included as basis functions, where Easym is a parameter with respect to which the 

results are converged.  The number of such asymptotic basis functions is nasym. 

 Once the matrix elements for the Hamiltonian and overlap matrices were 

calculated, version 2.0 of the LAPACK linear algebra package85 was used to solve the 

generalized eigenvalue equation 

  cSEcH = , (43) 

where the underline and the double underline indicate vectors and matrices in the 

vibrational state space, respectively. 

 Two sets of numerical and basis set parameters are given in Table 7.  The mass-

scaled parameters Rmin and Rmax [of eq. (37)] and T
mR  are related to the distances Smin, 

Smax, and T
mS  by 

  MRS /minmin = , (44) 
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The total number of basis functions is nbas = nasym ntrans.  The energies of the bound 

states computed using the two basis sets differ by less than 0.1%.
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Table 1.  Geometries and energies of the stationary points for the ground-state potential energy surface of the Li + HF � H + LiF 

reaction.  Distances are in bohr, angles are in degrees, and energies are in eV. 

Geometry Energy 
Stationary Point 

RHF
b RLiF RLiH θLiFH

c V ZPE V + ZPE 

Reactant (A)d 1.733 – – – 0.000 0.255 0.255 

Reactant well (B) 1.750 3.563 4.483 110. –0.211 0.281 0.070 

First saddle point (C) 2.422 3.151 3.379 73.3 0.352 0.098 0.451 

Product well (D) 3.316 2.997 3.592 69.2 0.171 0.136 0.306 

Second saddle point (E) 4.506 2.957 5.294 87.8 0.227 0.062 0.290 

Product (F) – 2.953 – – 0.213 0.056 0.270 
aThe zero point energies (ZPE) were calculated using the Morse I approximation46,47 with the POLYRATE software package.48 
bRAB is the internuclear distance between atoms A and B. 
cθLiFH is the Li–F–H bond angle. 
dThe letters A–F correspond to the features labeled in Fig. 1.  
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Table 2.  Basis set parameters and numerical parameters for the outgoing scattering wave 
calculation for the total energy 0.4 eV.  Atomic units are used. 

Basis set parameters Set 1 Set 2 Basis set parameters Set 1 Set 2 
)0,1(max == vkj  26 28 )3,2(max == vkj  56 62 
)1,1(max == vkj  22 24 )4,2(max == vkj  50 56 
)2,1(max == vkj  17 19 )5,2(max == vkj  43 50 
)3,1(max == vkj  10 12 )6,2(max == vkj  35 43 
)4,1(max == vkj   4 )7,2(max == vkj  24 35 

N(HO) (k = 1) 80 80 )8,2(max == vkj  14 24 
gm (k  = 1) 37 39 )9,2(max == vkj   2 
em (k  = 1) 37 39 N(HO) (k = 2) 80 80 
G
lS (k  = 1) 1.80 1.50 gm (k = 2) 35 37 

G
uS (k  = 1) 7.20 7.58 em (k = 2) 35 37 
S∆ (k  = 1) 0.15 0.16 G

lS (k = 2) 1.80 1.50 
Sw (k  = 1) 0.75 0.80 G

uS (k = 2) 6.56 6.90 
)0,2(max == vkj  72 76 S∆ (k = 2) 0.14 0.15 
)1,2(max == vkj  67 72 Sw (k = 2) 0.75 0.80 
)2,2(max == vkj  62 67    

Numerical parameters Set 1 Set 2 Numerical parameters Set 1 Set 2 
QVN (k = 1) 20 25 radε  7 9 
QAN (k = 1) 75 80 Bε  10 12 
QA
eN (k = 1) 0 0 Wε  10 12 
QR
lS (k = 1) 1.5 1.3 F

0S (k = 1) 1.0 0.8 
QR
uS (k = 1) 15 17 QV

1)( +FNS (k = 1) 20 22 
QGLN (k = 1) 100 100 FDN (k = 1) 13 13 
QSN (k = 1) 7 7 )(FN (k = 1) 730 733 
QVN (k = 2) 20 25 SDN (k = 1) 30 33 
QAN (k = 2) 75 80 SDf (k = 1) 0.9 0.9 
QA
eN (k = 2) 75 80 F

0S (k = 2) 1.0 0.8 
QR
lS (k = 2) 1.0 0.8 QV

1)( +FNS (k = 2) 25 27 
QR
uS (k = 2) 15 17 FDN (k = 2) 11 11 
QGLN (k = 2) 120 120 )(FN (k = 2) 870 873 
QSN (k = 2) 7 7 SDN (k = 2) 30 33 

χε  10 12 SDf (k = 2) 0.9 0.9 

tε  50 55    
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Table 3.  Energies, widths, and lifetimes for several observed resonances. 

α Eα (eV) Γα (eV) τα (ps) 

1 0.274  7.81 x 10–5 8.43 

2 0.278 1.40 x 10–3 0.470 

3 0.285 2.81 x 10–3 0.234 

4 0.287 1.48 x 10–3 0.445 

5 0.294 1.68 x 10–5 39.2 

6 0.298 1.04 x 10–3 0.633 

7 0.304 7.91 x 10–4 0.832 

8 0.313 3.25 x 10–3 0.203 

9 0.319 7.68 x 10–6 86.7 

10 0.322 6.61 x 10–4 0.996 

11 0.327 9.63 x 10–4 0.683 

12 0.349 5.59 x 10–4 1.18 

13 0.354 2.34 x 10–4 2.81 

14 0.381 6.83 x 10–4 0.964 

15 0.387 1.99 x 10–5 33.1 

16 0.418 2.57 x 10–4 2.56 

17 0.439 3.05 x 10–4 2.16 

18 0.460 5.30 x 10–5 12.4 

19 0.485 3.92 x 10–4 1.68 
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Table 4.  Bound and quasibound states of the Li… FH van der Waals well. 

Bound States  Quasibound States 
νR νχ 

χνν ,R
E  (eV)  νR νχ 

χνν ,R
E  (eV) 

0 0 0.062  0 5 0.266 
0 1 0.082  2 4 0.279 
1 0 0.103  1 5 0.301 
0 2 0.112  0 6 0.330 
1 1 0.123  2 5 0.334 
2 0 0.139  3 5 0.355 
1 2 0.148  1 6 0.363 
0 3 0.156  2 6 0.389 
2 1 0.162  0 7 0.401 
3 0 0.170  1 7 0.430 
2 2 0.181  2 7 0.450 
3 1 0.190  0 8 0.475 
4 0 0.197  1 8 0.499 
1 3 0.200     
0 4 0.209     
4 1 0.210     
3 2 0.218     
5 0 0.222     
2 3 0.232     
5 1 0.233     
6 0 0.238     
4 2 0.245     
1 4 0.247     
7 0 0.248     
6 1 0.253     
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Table 5.  Li… FH van der Waals well bound-state and quasibound-state fitted energy 

parameters. 

Parameter Value 

ωR 4.506 x 10–2 eV 

ωχ 1.100 x 10–2 eV 

xR –2.378 x 10–2 

xχ 4.539 x 10–3 

fRχ –5.311 x 10–4 eV 

E0 3.794 x 10–2 eV 
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Table 6.  Fitted and calculated Li… FH quasibound-state energies and assigned resonance 
energies and widths. 

νR νχ Efit(νR,νχ) (eV) 
χνν ,R

E  (eV) Eα (eV) Γα (eV) 

4 3 0.278  0.274 7.81 x 10–5 
6 2 0.278  0.278 1.40 x 10–3 
7 2 0.288  0.285 2.81 x 10–3 
1 5 0.294 0.301   
8 2 0.294  0.287 1.48 x 10–3 
5 3 0.298  0.298 1.04 x 10–3 
3 4 0.300  0.294 1.68 x 10–5 
6 3 0.312  0.304 7.91 x 10–4 
0 6 0.321 0.330   
7 3 0.322  0.313 3.25 x 10–3 
4 4 0.323  0.327 9.63 x 10–4 
2 5 0.326 0.334 0.319 7.68 x 10–6 
8 3 0.327  0.322 6.61 x 10–4 
5 4 0.342  0.354 2.34 x 10–4 
3 5 0.354 0.355 0.349 5.59 x 10–4 
6 4 0.356    
1 6 0.358 0.363   
7 4 0.366    
8 4 0.370    
4 5 0.377  0.381 6.83 x 10–4 
2 6 0.390 0.389 0.387 1.99 x 10–5 
5 5 0.396    
0 7 0.396 0.401   
6 5 0.409    
3 6 0.418  0.418 2.57 x 10–4 
7 5 0.418    
8 5 0.422    
1 7 0.432 0.430   
4 6 0.440  0.439 3.05 x 10–4 
5 6 0.458    
2 7 0.464 0.450 0.460 5.30 x 10–5 
6 6 0.471    
0 8 0.479 0.475   
7 6 0.479    
8 6 0.483    
3 7 0.490  0.485 3.92 x 10–4 
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Table 7.  LiFH bound-state and quasibound-state basis set and numerical parameters. 

Parametera Set 1 Set 2 

 NHO 20 25 

 NQV 20 25 

 NQA 50 60 

 Nrep 40 55 

 NGL 7 7 

 Smin (a0) 0.5 0.2 

 Smax (a0) 12 14 

 Easym (eV) 2.8 3.0 

 TS1 (a0) 2.73 2.23 

 T
nS

trans
(a0) 9.77 10.33 

 ∆ (a0) 0.11 0.10 

 c 0.9 0.8 

 nasym 132 161 

 ntrans 64 81 

 nbas 8448 13041 

aSee the Appendix for definitions of the parameters. 
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Figure Captions 

Figure 1.   Relative energies of stationary points of Li + HF � H + LiF reaction on the 

electronic ground-state potential energy surface.  The features labeled A–F are 

described in Table 1 and correspond to:  (A) reactants, (B) the reactant van der 

Waals well, i.e., Li… FH, (C) the saddle point, (D) the product van der Waals 

well, i.e., LiF… H, (E) the product saddle point, and (F) products.  The lower 

potential scheme is zero-point exclusive, and the upper potential scheme is 

zero-point inclusive.  The zero-point energy that is included is from one mode 

at A and F, from two modes at C and E, and from three modes at B and D. 

Figure 2.   State-to-state reaction probabilities as a function of the total energy for the 

reaction Li + HF(v = 0, j = 0) � H + LiF (v� = 0, j�): (a) j� = 0, (b) j� = 1, (c) j� 

= 2, (d) j� = 3, (e) j� = 4, and (f) j� = 5. 

Figure 3.   Initial-state-selected reaction probability for the vibrational ground state (v = 0) 

and different rotational states, i.e., the probability of the reaction Li + HF(v = 0, 

j) � H + LiF(all v�, all j�), as a function of the total energy: (a) j = 0, 1, 2, 3, 

(b) j = 3, 4, 5, 6, and (c) j = 6, 7, 8, 9. 

Figure 4.  Cumulative reaction probability, i.e., the probability of the reaction 

Li + HF(all v, all j) � H + LiF(all v�, all j�), as a function of the total energy 

for the energy range: (a) 0.25–0.50 eV, (b) 0.25–0.36 eV, (c) 0.34–0.50 eV. 

Figure 5.  Eigenphase sum as a function of the total energy for the Li + HF � H + LiF 

reaction at energies near the resonance state energy with Eα = 0.274 eV.  The 

dots are from the OWVP calculations (smoothed by adding integral multiples 

of π).  The solid line is from the multichannel Breit-Wigner formula. The 

straight line is the fitted background contribution. 

Figure 6.  Product rotational state distributions of LiF for the decay of the resonance state 

with the resonance energy: (a) 0.294 eV, (b) 0.304 eV. 

Figure 7. Resonance widths as a function of the translational quantum number.  Note that 

the ordinate scale is logarithmic. 
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Figure 1 
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Figure 2(a) 
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Figure 2(b) 
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Figure 2(c) 
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Figure 2(d) 
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Figure 2(e) 
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Figure 2(f) 
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Figure 3(a) 
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Figure 3(b) 
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Figure 3(c) 

 



268 

Figure 4(a) 
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Figure 4(b) 
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Figure 5 
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Figure 6(a) 
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Figure 6(b) 
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Figure 7 
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