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Presentation Overview:

« Major Wind Turbine Blade Components
+ Modifications Affecting Stiffness & Stability
» Infusion Processing - New Materials "
* New Fiberglass Products Being Developed

* Proposed 60+ meter Blade Assembly
* Questions




Wind Turbine Blade Components: '@

« Traditional composite sandwich laminates are designed for out of
plane loading. However Wind Turbine Blade laminates experience
in-plane loads for both the blade surfaces and shear webs.

* Inertial loads will increase as blade lengths and weights continue to
grow contributing to greater shear loading.

« Decreasing overall blade weights will reduce blade loading.

« Much emphasis is given to reducing weight by focusing solely on
the reinforcing fiber as a “solid laminate” rather then treating the
sandwich laminate as one entity.

« More than 65% of a large wind turbine blade’s surface area is a
sandwich laminate.



External Modifications: (Macro) '@

» Changing the overall blade profile is one way to modify stiffness & stability but may
impact a blades aerodynamic performance
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Internal Modifications:

* Modifying the internal laminate or web components is another way to enhance
stiffness & stability without changing the blades cross sectional “footprint”.
This is a favorable approach since it does not impact a blade’s aerodynamic

performance. Result: Decreased blade loading

Central Spar Design Shear Web Design

B

* Increased the use of core materials
» Decreased the number of webs
 Eliminated the spar

* Decreased blade weight

New “Optimized” Blade Design



Material Modifications: (Micro)
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Where Kj 15 the value of the buckling coefficient of an ordinary plate with =10.
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The critical shear buckling load P,,. is calculated through:
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Table 1 Sandwich lay-up for reference shell panel.

Laminate Modulus, Ef* 150 GPa
Lamuinate Thickness, t; 2.0 mun
Core Modulus, E, 60.0 MPa * Increase Core Thickness/Density
Core Shear Modulus, G, 220 MPa . . .
Core Thickness. . 200 mm * Increase Reinforcing plies
Properties assumed to be quasi 1sotropic . Change fiber orientation
Table 2 Sandwich la}';up for reference stiffener panel. . Change reinforcing fiber material
Laminate Modulus, Es 15.0 GPa
Lamunate Thickness, t; 4.0 mun
Core Modulus, E. 60.0 MPa
Core Shear Modulus, G, 22.0 MPa
Core Thickness, t. 10.0 mm




Shear Buckling: (Web)
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Figure 6 Influence of laminate modulus on critical shear buckling load.
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Figure 7 Influence of laninate thickness on critical shear buckling load.
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Figure 8 Influence of core thickness on critical shear buckling load.
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Figure 9 Influence of core density on entical shear buckling load.




Material Modifications: (Micro)
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where K 1s the buckling coefficient
a and b 1s the length and width of the panel
D 15 the flexural rigidity
S 15 the shear stiffness

and &1s the shear factor, which for 1sotropic laminates equals: * Increase Core Thickness/Density

5 * Increase Reinforcing plies

Brsh-v?) » Change fiber orientation

» Change reinforcing fiber material

Skin

Core

Skin

Bending Shear
Stress Stress



General Buckling: (Blade Surfaces
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Figure 2 Influence of laminate modulus on crtical buckling load.
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Figure 4 Influence of core density on critical buckling load.

Figure 3 Influence of laminate thickness on critical buckling load.
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Figure 5 Influence of core thickness on entical buckling load.




Compressive Strength (Psi)

Fabric Compressive Test Effect and Failure Mode
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Effect of Manufacturing on Blade Weight: ’@
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New Infusion Fabrics from Knytex: ’

* New Flowtex® line of fabrics decrease infusion time for
many closed molding processes.

* Flow channels are incorporated directly into the Knytex®
fabric eliminating the need for a disposable infusion media.

» Knytex® fabrics are available bonded to eliminate fiber

crimping. 20
=de=FlowTex 32 oz. Blaxial
=—Traditional 32 oz. Biaxial
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Flow"i"tx infuses 40% faster
r' the first footl
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New Fiberglass Developments:

« Advantex® : New fiberglass
chemistry combining the
properties of traditional E-glass
with the enhanced performance
characteristics of E-CR glass.
Patented Technology by
Owens Corning.

« New SE 1200 polyester &
SE 1500 epoxy Single End
Rovings for weaving and
infusion processing of Wind
Turbine Blades.

— Enhanced Fatigue Characteristics




Environmental Advantages of ’@

Advantex® Fiberglass:

« About 100,000,000 Ibs of glass are used
each year to build wind turbines blades

« Advantex® fiberglass production reduces
emissions:

— Boron 85% reduction - NOx 80% reduction
— Fluorine 90% reduction
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Advantex® Corrosion Resistance: ’@
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Advantex ECRGLAS Traditional Traditional Traditional Traditional Traditional Traditional

E-glass E-glass
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Load (% ultim ate)

Creep-Rupture of Composite Rods ’
in Cement Extract (pH 12.6)
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New SE 1500 Single End Roving: '@

Fatigue Properties Laminate Comparison: +/- 450

Product Extrapolated Stress at 106 Glass content (%)
cycles
(MPa)
Previous E-glass 13 71
New SE1500 23 71
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New SE 1500 Single End Roving:

Tensile Properties: +/- 45° Laminate

Product Strength Modulus Elongation % Glass content
(MPa) (MPa) (%)

Previous E-glass 86.8 14,132 11.34 71

New SE 1500 149 13,766 17.9 71

Compressive Properties: +/- 45° Laminate

Product Strength Modulus Elongation % Glass
(MPa) (MPa) content (%)

Previous E-glass 98 3,729 2.34 71

New SE 1500 111 4,512 1.83 71




New ldeas For 60+ m Blade Assembly

OC is looking to develop new ways to produce larger blades in order to
achieve the following goals:

» Cost effective ransportability of 60+ meter blades on 1 truck
» On-site assembly of either 2 or 3 piece blades

« Ability to design stiffness and torsional response into blade

ed for length wise joining of blade halves

s be transition points between different materials
to reduce deflection, dampen vibrations
& allow flap twist coupling?

___________
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Thank you to the following suppliers for their assistance &

technical support:

Blade Buckling Information Supplied by:

I N A I
Peter Norlin - DIAB el e
BV NNy
Title: Optimised Usage of Foam Core Material in Rotor Blades
REFERENCES
1. Fagerberg Linus, Wrninkling i sandwich panels for marine applications,

Report 2001-17, KTH, Stockholm, Sweden

Zenkert. Dan, The handbook of Sandwich construction. EMAS Ltd, UK,
1997

3. Davinycell, Technical Data Sheet, H-grade. DIAB. Laholm, Sweden
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Fabric Test Data Supplied by:

David Hartman — Owens Corning
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Advantex & SE 1500 Test Data Supplied by:

Byrd Hennessee — Owens Corning



