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Take home point

The quality of density functional theory
calculations must be first determined
independent from the comparison
between calculated results and
experimental observations.



DFT: Background

Dirac (1929)

“The general theory of quantum mechanics is now
almost complete ... . The underlying physical laws
necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact
application of these laws leads to equations much too

complicated to be soluble. ”

P.A.M. Dirac, Proc. R. Soc. London Ser. A 123, 714 (1929).



DFT: Background
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Remember:

Dirac made his statement in 1929.



DFT: Background

Kohn-Sham equations:
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Choice of XC-functional

Hierarchy of functionals

Jacob’s ladder

HEAVEN OF CHEMICAL ACCURACY

unoccupied {¢,} generalized RPA

£y hyper-GGA

T andlor VZn meta-GGA

Vn GGA

LSD

HARTREE WORLD

From preprint by J.P. Perdew et. al. to appear in JCP



The choice of XC-functional is the
limiting factor
for the accuracy of DFT




Choice of XC-functional

Silicon ad-dimer diffusion on Si(001)
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System size — Relaxation — Boundary conditions
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System size — Relaxation — Boundary conditions

PHYSICAL REVIEW B 67, 115309 (2003)
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FIG. 1. GaP bulk energy calculated by finite-difference using the
total energies of slabs with » and n+ An layers.
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System size — Relaxation — Boundary conditions

TABLE II. Formation energies for VVg; calculated with the
LDA. The Brillouin zone was sampled using nyp=4, nyp=4, and
nyp=3 MP parameters for the 214-, 510-, and 998-atom supercells,
respectively. The last row contains values extrapolated to an infinite
sized supercell.

Cell size 747 vV 747 4%
214 5.481 5.340 5.498 5.627
510 5.368 5.269 5.545 5.777
998 5.316 5.247 5.579 5.861
% 5.333 5.220 5.649 6.111

TABLE III. Formation energies for VVy; calculated with the
PBE. The Brillouin zone was sampled using nyp=4, nyp=4, and
nyp=3 MP parameters for the 214-, 510-, and 998-atom cells, re-
spectively. The last row contains values extrapolated to an infinite
sized supercell.

Cell size VVE vvi VWV 4%
214 5.486 5.445 5.618 5.786
510 5415 5.402 5.691 5.952
998 5.393 5.380 5.721 6.042

oo 5418 5.363 5.800 6.298




System size — Relaxation — Boundary conditions

Carbon impurities in bcc iron
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K-point sampling
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Figure 4. The convergence of computed equilibrium quantities for beec Ta as a function of the
k sample: (a) lattice constant; (b) total energy; (¢) bulk modulus; (d) shear moduli. The values
extracted using the computed stress tensor are given as solid red lines, and the values obtained using
fits to the potential energy surface are dashed blue (the shear moduli in () were both obtained from
the stress calculation). While the total energy, lattice parameter and bulk modulus appear to
converge, if slowly, the computed shear moduli (d) are much more sensitive to the k sample, and
are still varying over a range of S GPa at a k grid of 40°.



K-point sampling
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Figure 5. The computed equilibrium lattice constant, ap, of Ta as a function of Fermi filling
temperature and & point sample. The ap computed as the point of zero stress 1s in red. and ap at
the minimum of the potential energy curve is in blue. Both these methods converge better versus
the & sample with higher Fermi occupation temperatures. However, for both methods the lattice
constant drifts as the occupation temperature increases, and the drft 1s in opposite directions.



K-point sampling: erbium hydride 96 atom cell
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K-point sampling

Octahedral Occupation Energy
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K-point sampling
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K-point sampling
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Pseudopotentials

Pseudopotentials: A Black Art

- Core electrons do not actively participate
in chemistry.

- They can be replaced with a pseudo core.
* Fewer electrons to deal with.
- Smoother wave functions.

- Larger systems can be studied faster.

But it is an approximation




Pseudopotentials

Computed fcc Ni properties vs. Ry
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R, is the ‘core radius parameter’,
one of the main parameters to decide
when constructing a pseudopotential.

The temptation is to tune these results to match w/ experiment.



Pseudopotentials

Remember: A pseudopotential is an
approximation for the full core potential.

The quality of a pseudopotential should be
determined by how well it reproduces the
results from all electron calculations.




Basis Set / Energy cut off: Formation energy of [Vg]* 216-atom supercell

Energy cutoff convergence (neutral Silicon Vacancy)
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Basis Set / Energy cut off
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FIG. 6. Correlation of the magnitude of the converged plane-wave forces (120 Ry, I" point Brillouin zone sampling) and LCAO
forces for different basis sets: (a) single zeta; (b) double zeta; (c) double zeta plus polarization; and (d) double zeta plus polarization
and triple zeta plus polarization on atoms numbered 21, 32, 39, 52, 61, and 11. The solid-diamond symbols are the LCAO results and

the solid line is the plane-wave results.

JS Nelson, EB Stechel, AF Wright, SJ Plimpton, PA Schultz, and MP Sears,
Basis-set convergence of highly defected sites in amorphous carbon
PRB 52 9354 (1995)



Summary of factors to consider:

1. Choice of functional
2. System Size

3. Relaxation

4. Boundary conditions

5. Sampling: k-points

6. Pseudopotentials

7. Basis Set/ Energy cut off

8. Trajectory length / time step

9. Equilibration (initial configurations)
10. Fictitious electron mass (CPMD)

AE Mattsson, PA Schultz, MP Desjarlais, TR Mattsson, K Leung
Modelling Simul. Mater. Sci. Eng. 13 (2005) R1-R31



Erbium dihydride
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C.S. Snow et. al, J. Nuclear Materials (2007) (4.25 yrs old Film)

1200 . . S— :
Er —ErD2
1000L —— oxide | |
8001

6001

400¢

200+

————— 100 hm

ErD, : Brewer et al.




Erbium dihydride




Hydrogen in erbium dihydride




Oxygen in erbium dihydride
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Binding Energy for clusters:
Ea=12eV Do=1x103
2 atoms = 0.28 eV
Immobile @ 20 °C for 1 hr 3 atoms = 0.34 eV
250 nm @ 300 °C for 1 hr 4 atoms = 0.45 eV

6.5 um @ 500 °C for 1 hr 5 atoms = 0.48 eV



Helium in erbium dihydride/tritide
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. Gas/Metal ratio determines mobility of hydrogen

. Oxygen resides in tetrahedral sites, increases octahedral
hydrogen occupancy.

. In ideal erbium hydride, helium sits in octahedral site.

. If H/Er < 2.0, helium ground state inside tetrahedral
vacancies where it is pretty well trapped.

. Networks of vacancies possible/probable? Multiple helium
atoms trapped together?



Molecular dynamics movie?



K-point sampling
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n=(NN")exp(-E, /kT)
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