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A
}Is bubble shape dependent simply on

crystal structure?

* Helium bubble shape depends on crystal
structure.
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# What parameters are needed to make

“predictions”?

Cowgill’s predictions are predicated on:

p = 2y/r + pub/[r(1+¢)]

e b = Burger’s vector (Lattice)
e u = shear modulus (Elastic Constants)
« v = surface energy

 We can calculate all of these parameters!!!
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e results for the metallic lattice constant
calculations are excellent.

Metal/Values Erbium Scandium Titanium Zirconium Yttrium Palladium

Calculated a=3.586 a=3.321 a=2.9390 a=3.2390 a=3.6605 a=3.9598

(A) c=5.5578 c=5.163 c=4.646 c=5.1780 c=5.6721

Experimental a=3.5588 a=3.309 a=2.9508 a=3.2320 a=3.6474 a=3.8907

(A) C=5.5874 c=5.2733 c=4.6855 c=5.147 c=5.7306

Percent Error a=0.76% a=0.36% a=0.399% a=0.2% a=0.36% a=1.77%
c=0.53% c=2.1% c=0.8% c=0.6% c=1%

*For cubic and hexagonal systems the
agreement is excellent.
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Y The results for the metal hydride lattice

constants are also excellent

Metal/Values ErH, ScH, YH, ZrH, TiH, LaH,
Calculated a=5.1295 a=4.7815 a=5.2168

(A)

Experimental a=5.123 a=4.78 a=5.205

(A)

Percent a=0.13% 0.03% a=0.22%

Error

*Cubic systems show excellent agreement.

Still having a few difficulties with the tetragonal
systems.
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How to calculate elastic constants:
stress-strain |

¥,.

 The stress, o, and the strain, €, must be
symmetric. 0 =) Cyy &

* The nature of the c;; depends on symmetry of the
crystal.

* Short hand
— C4411 — C44 relations between o,, and g,,
— C4492 — C4, relations between o,, and ¢,

— C,3,3 — Cy44 relations between o,; and €,
— In general, 11-1; 22 —2; 23=32 —4;13=31 —5;12=21 —6
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# How to calculate elastic constants:

stress-strain |l

 Maximum of 21 elastic constants for a crystalline body.

Ca Y2 Yz LY L5 L
Cax Gay Gy G Gy

Lz Gy G Gy

iy Cys Cy
Ciz G5
L% ';':l:'.h

* Cubic crystals the elastic constants reduce to just three
independent numbers

— €44=C,,=C33 axial compression

— C44=C55=Cygq shear modulus

— €15,=C43=Cys modulus for dilation on compression
— All other c; =0
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) How to calculate elastic constants:

stress-strain Il

& Ay &y 8, X
A, |=| Ay Ay 8y, |0 Y
d, d,, a d,, Z

 Know lattice (primitive) vectors

3y

 Distort lattice vectors a'= (| 4+ 5) Y-l

« New lattice vectors (& . 2 % a, a, a,) (X
oy
YA
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stress-strain IV

= A 4
}‘ How to calculate elastic constants:

* Using Hook’s law, if € are small, can expand
energy in terms of ¢.

6 6

E=E +vZae +%VZZCU e, +9(e”)

=1l j=1

* For cubic crystal, energy relation is

1 2 2 2 1 2 2 2
E=E, +§c11[e1 +e, +e;]+c[ee, +e.e, Jre?,el]+§<:44[e4 +e; +e;]
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}' How to calculate elastic constants:

stress-strain V
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#‘alculated elastic constants for the cubic

phases of some di-hydrides.

Quantity ErD, YD, ScD,
C,, (GPa) 146 122 167
C,, (GPa) | 58 61 60
C,(GPa) | 74 69 79

B=1/3 (C,, + 2C.,)

G =5(Cy; - C)C,/[4C,, + 3(C,4-C )]

Gy = (C44-Cqz + 3C4,)/5
Gy = (GrtGy)/2
Y = (9BG,)/(3B + G,,)

&)
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etermined moduli for hydrides compared
to the VASP calculated values.

:;ﬁ-'

Quantity ErD, YD, ScD, LaD, TiD, ZrD,
(cubic) (cubic) (cubic) (cubic) (tet.) (tet.)

Young’s 147 124 164

Modulus

(GPa)

Shear 60 50 68

Modulus

(GPa)

Bulk 87 82 96

Modulus

(GPa)

Red = calculated values
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* Nano-indentation and finite element

modeling

He-implanted Ni

¢ Material properties of the thin films i .
are deduced using FEM modeling. ™

substrate
15 F effect

¢ Properties of the indenter and 8
underlying layers and substrate are —
fixed at known values. e

Depth (nm)

unloading

¢ Y and E for the layer are varied until a
good fit to experiment is obtained.

e Hardness of the layer material
= Tip yielding, stress, friction are is determined by an additional

all modeled. simulation of a “bulk” sample of
just the layer material:

e Two primary simplifications:

= 2-dimensional axi-symmetric
meshes l l

= isotropic elastic-plastic materials Y E —
with Mises yield criteria

Knapp, et al., JAP, vol. 85, p.1460 (1999)
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Sample configuration
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duli determined by nano-indentation for

bare metals match “accepted” values.

Quantity | Erbium | Scandium | Titanium | Yttrium Zirconium
Young’s | 77+/-7 144 +/-15| 147+/-13 | 154 +/- 20
Modulus | (70) (74) (116) (64) (68)

(GPa)

Shear 31 +/-4 58+/- 8 59 +/- 6 61 +/-15
Modulus | (28) (29) (44) (26) (33)

(GPa)

Bulk 50 +/- 3 96 +/- 5 98 +/- 4 103 +/- 6
Modulus | (44) (57) (110) (41) \

(GPa)

Black = nano-indent values
= “accepted values”

Red
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A
htermined moduli for hydrides compared
to the VASP calculated values.

Quantity ErD, YD, ScD, LaD, TiD, ZrD,
(cubic) (cubic) (cubic) (cubic) | (tet.) (tet.)

Young’s 148 +/- 20 135 +/- 20 36 +/-6 100 +/- 15 175 +/- 20

Modulus (147) (124) (164) () () ()

(GPa)

Shear 60 +/- 10 55 +/-10 14 +/- 3 40 +/- 7 70 +/-10

Modulus (60) (50) (68) () () ()

(GPa)

Bulk 97 +/- 4 90 +/-7 24 +/- 3 66 +/-5 115 +/-7

Modulus (87) (82) (96) () () ()

(GPa)

Black = nano-indent values
Red = calculated values @ﬁ&"ﬂi‘:‘m

Laboratories



}"

Graphical Summary of Results
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What is the degree of anisotropy?

«Zener’'s Elastic-Anisotropy
Index for cubic materials
- A=2C,/(C1;-Cy5)

2.4

N
N
l 1

The ratio of the two extreme
elastic-shear constants

n
o
l 1

=
oo
l 1

o“..higher crystal symmetry may
relate to higher
. elastic anisotropy”,
T S S— s - Ledbetter and Migliori, J. Appl.
Phys., 100, 063516 (2006).

Material

Zener Anisotropy A

=
(e}
l 1
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 Nano-indentation gives good results for “most”
materials.

— Issues are probably due to sample/substrate
problems and not the technique.

— Computational results are generally within error.

* Definitely need to expand material list beyond
cubic crystals.

Conclusions about elastic constants
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Implications for helium retention.

 What does it say about helium retention and
bubble shape?

— Important piece of the puzzle but need more
information:

 Tackle more materials
 Re-do some experimental results

— Calculate and measure the Surface Energy
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