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Abstract

We consider the problem of denoising and classification of SONAR signals observed under com-

positional noise, i.e., they have been warped randomly along the x-axis. The traditional techniques

do not account for such noise and, consequently, cannot provide a robust classification of signals. We

apply a recent framework that: (1) uses a distance-based objective function for data alignment and

noise reduction, and (2) leads to warping-invariant distances between signals for robust clustering and

classification. We use this framework to introduce two distances that can be used for signal classification:

(a) a y-distance, which is the distance between the aligned signals, and (b) an x-distance that measures

the amount of warping needed to align the signals. We focus on the task of clustering and classifying

objects, using acoustic spectrum (acoustic-color), which is complicated by the uncertainties in aspect

angles at data collections. Small changes in the aspect angles corrupt signals in a way that amounts to

compositional noise. We demonstrate the use of the developed metrics in classification of acoustic color

data and highlight improvements in signal classification over current methods.
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I. INTRODUCTION

The problem of underwater object detection and classification, using SONAR, has attracted a

substantial amount of attention [1]–[5]. This problem is complicated due to various factors, such

as variations in operating and environmental conditions, presence of spatially varying clutter,

and variations in target shapes, compositions, and orientation. Moreover, bottom features such

as coral reefs, sand formations, and vegetation, may totally obscure a target or confuse the

classification process. Consequently, a robust classification system should be able to quantify

changes between the returns from the bottom and any target activity in SONAR data. Thus, a

robust system designed to mitigate false alarms, in various clutter density scenarios is desirable.

Considerable research has been devoted to the development of methodologies to detect and

classify underwater objects utilizing SONAR imagery. Dobeck [1], [6] utilized a nonlinear

matched filter to identify mine-size regions that match the target template in a side-scan SONAR

image. For each detected region, several features were extracted based on the size, shape, and

strength of the target template. A stepwise feature selection process was then used to determine

the subset of features that maximizes the probability of detection and classification. A K-nearest

neighbor and an optimal discrimination filter classifier were used to classify each feature vector.

The decisions of the two classifiers were then fused to generate the final decision. In [2],

the adaptive clutter filter detector in [7] was individually applied to three different SONAR

images varying in frequency and bandwidth. Final classification is done by using a nonlinear

log-likelihood ratio test, on an optimal set of features, where the decisions of the individual

detector and classifier are fused. Recently in [4], a new coherence-based detection framework

was developed for the dual-sensor problem using Canonical Correlation Analysis (CCA) that can

be applied to the data collected by two disparate SONAR systems. Using this method allows

for the simultaneous detection and feature extraction of coherent target information among two

SONAR images.

These methods all use traditional synthetic aperture SONAR (SAS) images, which often pro-

vides high quality images of proud targets that are useful for image based detection, localization,

and identification algorithms. For targets in highly cluttered environments, or where the target

is partially or fully buried in the sediment, the images are usually blurred with less structure

definition; hence, target identification from these images is more difficult. Moreover, one may
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have access to only a small range of angles, lacking the ability to use a full frequency versus

aspect structure. Generating acoustic color data products is one way to overcome these short-

comings. Acoustic color [8], [9] is a simple, spectral-based method that generates a normalized

plot showing the strengths of the return signatures off an object, in individual frequency bands at

various aspects, that may provide features useful for identification. Acoustic color data provides

structural acoustic and target information for a wider range of aspect angles, which can increase

algorithm performance over image-based methods. The problem then shifts to statistical analysis

on these acoustic color images, which are essentially a two-dimensional function of frequency

and aspect representing relative power of the target return.

We can treat these spectral signatures as functions (of frequency) and analyze them using

tools from statistical function analysis, such as functional PCA under Euclidean metrics [10].

However, this spectral data is sensitive to sensor placement and aspect alignment between sensor

and targets. Even small changes in aspect angles can result in nonlinear shifts of peaks and

valleys in spectral signatures, a phenomenon that is naturally encoded as random warping along

the x axis or compositional noise. Shown in Fig. 1(a) are two observed signatures (upper and

middle panels) of the same target from two similar angles, one as the solid line and the other

as the dashed line, where it is easy to see shifts in peaks and valleys between the two signals.

The bottom panel shows an alignment of the dashed line to the solid line, denoting removal of

estimated warping noise, and the optimal warping function used here is shown in the right panel.

The alignment is performed using the method that will be described in Section III. Fig. 1(b) is

the same as (a) except that the two signatures are taken from two different target classes, where

a more drastic warping is needed to align the signals. This motivates the use of a measure of

warping as a separate metric by itself for target classification. Fig. 8 shows more examples of

raw data from nine target classes and one can see the shifting of peaks in signals of the same

class. In practical situations where the data is not collected in a controlled environment, one

will not know exactly the aspect angles for data collection. Therefore, automated data warping

and alignment are crucial to handling compositional noise for an improvement in classification.

Fig. 2(a) presents the difference between a pair of signals for one target type with 2 degrees

of separation in aspect angle before and after alignment. There is a smaller difference after

alignment which confirms that small changes in aspect angle causes warping of the received

signal. Fig. 2(b) presents the distance between a pair of signals for multiple pairs before and
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Fig. 1. (a) An example of frequency warping between two functions in the same class: f36 (upper panel), f4 (middle panel,

left) and f4 ◦ γ (lower panel), where γ is the optimal warping (middle panel, right) between f4 and f36. (b) Same as (a) except

that the functions f19 and f258 are in different classes.

after alignment which, again, confirms our hypothesis that small degree of aspect angle separation

is representative of compositional noise. We can make the conclusion that our original signals

(circles) contain both compositional and additive noise and, that after alignment (triangles),

contain only additive noise, as the compositional noise is removed during the alignment process.

Our contributions in this manuscript are: 1) We particularize the framework presented in

[11], [12] for the alignment and denoising of spectral signatures for targets in presence of

compositional noise; and evaluate it empirically in presence of both compositional and additive

noise. 2) We introduce two metrics for classification of targets from SONAR data: one of them

is invariant to compositional noise and the other measures the warping itself.

The rest of this paper is organized as follows: Section II reviews the main ideas in function

registration in the current literature and discusses their major limitations. Section III presents

a differential geometric approach for signal alignment and suggests two metrics for target

classification. It also presents a computational procedure for alignment of signals observed under
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Fig. 2. Compositional noise amongst pairs of signals with 2◦ of separation in aspect angle.

random warping. Section IV describes experimental results on acoustic color signals, including

the classification problem, and compares results with current conventional methods. Finally,

conclusions and observations are offered in Section V.

II. CURRENT IDEAS, LIMITATIONS, AND CHALLENGES

First, we introduce some notation which is shown in Table I. Let f1, f2, . . . , fn : [0,Ω] → R

be real-valued signals that are observed and let F be the set of all such signals. Let Γ be the set
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Symbol Meaning

[0,Ω] Frequency Domain

ω element of [0,Ω]

fi real-valued signal on [0,Ω]→ R

F set of all fi

g mean function

Γ set of boundary-preserving diffeomorphisms on [0,Ω]

γi element of Γ

γid identity element of Γ

TABLE I

SUMMARY OF NOTATION.

of boundary-preserving diffeomorphisms of the interval [0,Ω]: Γ = {γ : [0,Ω]→ [0,Ω]| γ(0) =

0, γ(Ω) = Ω, γ is a diffeomorphism}. Elements of Γ play the role of warping functions or

compositional noise. That is, for any γ ∈ Γ, fi ◦ γ denotes a composition or a warping of the

signal fi by γ. With the composition operation, the set Γ is a group with the identity element

γid(ω) = ω.

For a variety of reasons, the observed signals get corrupted, including by random warping,

during observations. What we mean by warping is that a real-valued signal g on the frequency

domain [0,Ω] is composed with a random warping function γi : [0,Ω] → [0,Ω], resulting in a

nonlinear frequency-shift of the locations of peaks and valleys, but not the heights of those peaks

and valleys. More generally, a signal model incorporating compositional as well as a additive

noise model is given by:

fi(ω) = cig(γi(ω)) + ni(ω) , (1)

where ci’s are random scalars, γi’s are random warping functions, and ni’s are independent

Gaussian noise. This model contains three types of noise sources: multiplicative, compositional,

and additive. The goal is to use observations {fi, i = 1, 2, . . . , n} to denoise the signal, i.e.,

estimate γi, and to classify fi into pre-determined classes.

Signal Alignment and Denoising: Although the classical cross-sectional mean (i.e., f̄ = 1
n

∑n
i=1 fi)

is optimal for denoising a signal in presence of (zero-mean) additive Gaussian noise, it is not

optimal for the case of compositional noise. Consider the reduced model of fi(ω) = g(γi(ω))
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for all i. (We will consider this reduced model for the rest of the paper). There are three sets

of variables here, {fi}, g, and {γi}, and, given any two, one can easily estimate the third. As

an example, given fi and g, the solution for γi is based on the dynamic programming algorithm

(DPA) [13] or other estimation theoretic methods [14], [15]. This estimation is popular in speech

processing where the observation signal is matched to signals of known speech using DPA [16],

often called dynamic time warping in this context. The other problem, of estimating g given γi

and fi, is also simple, since g = fi ◦ γ−1
i , as one has to just compute the inverse of the γi’s.

Thus, the problem of alignment of signals is identical to the problem of denoising signals when

only the compositional noise is present.

The situation gets more complicated if both g and {γi} are unknown. If we assume that g takes

a parametric form; e.g., a superposition of Gaussians or exponentials with different parameters,

then perhaps we can set up an estimation problem for these parameters from the observed data

[17]. Our interest is in the nonparametric case, i.e., when g is a full function on [0,Ω]. Notice that

the estimation problem for this case, as stated, is ill-defined. One solution comes from Kurtek

et al. [11], [12], where they derive a fundamental theoretical framework for estimation of g

given {fi}, under the assumption that the mean of {γ−1
i } is γid. The estimator for g is obtained

by aligning the given signals {fi} by warping their horizontal axes (which is mathematically

equivalent to estimating γi’s), and then computing the mean of the aligned signals. Since this

estimation is based on multiple signal alignment, a well-studied problem in the literature, we

need to discuss the strengths of this approach relative to the current literature. The most common

approach for pairwise alignment of functions is based on the following optimization:

min
γ∈Γ

(
‖(f1 ◦ γ)− f2‖2 + λ R(γ)

)
, (2)

where R penalizes the roughness of γ and λ > 0 is a constant. The minimization over γ is

typically done using DPA. One obvious problem with this alignment procedure is that it is not

symmetric, i.e., the solution for (f1, f2) is not the same as for (f2, f1). Another issue comes

in the choice of λ in Eqn. 2. While it allows a user to adapt the regularization term to an

application, it may not be straightforward to select this automatically in a general situation. It

will be good to have an objective function that already incorporates both the terms in a single

functional, as is the case in the proposed approach.

In alignment of multiple signals {fi, i = 1, 2, . . . , n}, a common iterative approach is to define
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a template and use this template to align the individual signals. In each iteration one: (1) updates

the template by taking the cross-sectional mean of the currently aligned signals, and (2) aligns

each fi to the template in a pairwise manner, described above. Unfortunately, this approach often

does not provide desirable results, both theoretically and empirically, unless a proper distance

function is used to align and average signals. The framework introduced in [11], [12] avoids

these problems by defining a distance-based objective function that changes only with the change

in the registration. It is symmetric by definition and does not require a choice of λ since we

do not have two separate terms in the objective function. Additionally, it has been shown in

[11], [12] that as the sample size n→∞, the mean of the aligned functions in our framework

converges to g.

Metrics for Signal Classification: The second goal is deriving metrics for comparing signals,

especially metrics that are either invariant or robust to compositional noise. Given any f1 and

f2, the problem is how to compare f1 and f2 in a manner that is invariant to random warpings:

γ1, γ2. In other words, we would like a distance d(·, ·) such that

d(f1 ◦ γ1, f2 ◦ γ2) = d(f1, f2) ∀γ1, γ2 ∈ Γ . (3)

In presence of only the zero-mean additive noise, a commonly used distance is the L2 norm of

their difference ‖f1−f2‖. One may be tempted to extend this distance to the case of compositional

noise using a quantity of the type: minγ∈Γ ‖f1 − f2 ◦ γ‖, or minγ1,γ2∈Γ ‖f1 ◦ γ1 − f2 ◦ γ2‖,

or minγ∈Γ (‖(f1 ◦ γ)− f2‖2 + λ R(γ)), but they all suffer from the same issue. They are not

proper distances and/or they do not satisfy Eqn. 3! We present a comprehensive framework for

alignment and estimation of acoustic signals and use it for the classification of spectral acoustic

signatures into pre-determined classes. It is based on introducing a mathematical expression for

representing a function where the standard metric is isometric. An important reason for selecting

this representation is that it leads to a distance between signals that is invariant to their random

warpings. Not only is it robust to compositional noise present in the signals, but it also leads to

another metric that measures the amount of warping. Different levels of warpings in different

classes also lead to classification using such metrics.
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III. MATHEMATICAL FRAMEWORK

In this section, we adapt the theoretical framework presented in a recent report [12] and

conference papers [11], [18] for use in SONAR signal processing. This resulting framework

achieves three important goals: (1) completely automated alignment of signals using nonlinear

warpings, (2) estimation of underlying signals observed under random warpings, and (3) deriva-

tion of individual phase and amplitude metrics for comparing and classifying signals. For a

more comprehensive introduction on this theory, including asymptotic theorems and estimator

convergences, we refer the reader to [12].

A. Warping-Invariant Metrics

Let f be an acoustic signal viewed as a real-valued function with the domain [0,Ω]. For

concreteness, only functions that are absolutely continuous on [0,Ω] will be considered; let

F denote the set of all such functions. In practice, since the observed data is discrete, this

assumption is not a restriction. Our first goal is to find a distance function that will be invariant

to random warpings of the input functions. To address this, Srivastava et al. [12] introduced a

square-root representation for functions. This function, q : [0, 1] → R, is called the square-root

slope function or SRSF of f , and is defined in the following form:

q(ω) = sign(ḟ(ω))

√
|ḟ(ω)| .

SRSF is a particularization of the square-root velocity function used in shape analysis of Eu-

clidean curves [19]. It can be shown that if the function f is absolutely continuous, then the

resulting SRSF is square-integrable. Thus, we will define L2([0,Ω],R), or simply L2, to be the

set of all SRSFs. For every q ∈ L2 and a fixed t ∈ [0,Ω], the function f can be obtained precisely

using the equation:

f(ω) = f(0) +

∫ ω

0

q(s)|q(s)|ds . (4)

Thus, the representation f ⇔ pair (f(0) and q) is invertible. The most important property of

this representation is, if we warp a function f by γ, the SRSF of f ◦ γ is given by: q̃(ω) =

(q, γ)(ω) = q(γ(ω))
√
γ̇(ω). With this expression, it can be shown that for any f1, f2 ∈ F and

γ ∈ Γ, we have

‖q1 − q2‖ = ‖(q1, γ)− (q2, γ)‖ .
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where q1 and q2 are the SRSFs of f1 and f2, respectively. This is called the isometry property.

Why is this property important? The reason is that it leads to a distance between signals that

is invariant to their random warpings. This distance is defined as follows.

Definition 1 (Amplitude or y distance): For any two signals, f1, f2 ∈ F , and the corresponding

SRSFs, q1, q2 ∈ L2, we define the amplitude or the y distance Dy to be:

Dy(f1, f2) = inf
γ∈Γ
‖q1 − (q2 ◦ γ)

√
γ̇)‖.

The advantage of this is that Dy is symmetric, positive definite, and satisfies the triangle inequal-

ity. Technically, this is a proper distance, not on F but on the quotient space F/Γ. Moreover, it

is invariant to the random warpings of the input signals, i.e., Dy(f1 ◦ γ1, f2 ◦ γ2) = Dy(f1, f2)

for all γ1, γ2 ∈ Γ.

It is quite possible that the level of warping may be different in different signal classes and

one can also use that for classification. Toward this goal, we define another metric Dx that

compares the relative warping needed to align any two signals. Therefore, for any two functions

f1, f2 ∈ F and the corresponding SRSFs, q1, q2 ∈ L2, let γ∗ be given by:

γ∗ = argmin
γ∈Γ

‖q1 − (q2, γ)‖ = argmin
γ∈Γ

‖q1 − (q2 ◦ γ)
√
γ̇‖. (5)

If γ∗ = γid, then no warping is needed or the functions are perfectly aligned. Therefore, it

makes sense to use the difference between γ∗ and γid, in the set Γ, to define Dx. If we let

γ1, γ2, . . . , γn ∈ Γ be a set of observed warping functions, our goal is to find a proper distance

on this space.

However, since Γ is a nonlinear manifold, it is difficult to compute a proper distance. If we use

a convenient transformation similar to the definition of SRSF, we can overcome the nonlinearity.

We are going to represent γ ∈ Γ by the square-root of its derivative, ψ(ω) =
√
γ̇(ω). This is the

same as the SRSF as defined earlier and takes this form since γ̇ > 0 by definition. The identity

function, γid, maps to a constant function of ψid(ω) = 1 and one can reconstruct γ from ψ

using γ(ω) =
∫ ω

0
ψ(s)2 ds. The advantage of this representation is that ‖ψ‖2 =

∫ Ω

0
ψ(ω)2 dω =∫ Ω

0
γ̇(ω) dω = γ(Ω) − γ(0) = Ω. This means that the set of all ψs is a Hilbert sphere in L2.

In other words, the square-root representation simplifies the nonlinear structure of Γ to a sphere

with much simpler geometry.
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Therefore, we can define a distance between two warping functions as the arc-length between

their corresponding SRSFs on a sphere with radius
√

Ω. This is defined as follows.

Definition 2 (Phase or x distance): For any two functions, f1, f2 ∈ F , let γ∗ be the optimal

frequency warping function as given in Eqn. 5. Then, the horizontal distance between them,

Dx(f1, f2), is defined to be:

Dx(f1, f2) =
√

Ω cos−1

(
〈ψ∗(ω), ψid(ω)〉

Ω

)
=
√

Ω cos−1

(∫ Ω

0
ψ∗(ω)dω

Ω

)
.

where 〈·, ·〉 denotes the standard inner product operation in the L2 space.

Figure 3 shows a toy example which illustrates the advantages of using Dy and Dx in presence

of compositional noise. This example has two well separated signal classes, each class having

three functions. The functions from Class 1 are all one-period sine waves with amplitude 1,

slightly shifted from each other. The functions in Class 2 are the same except smaller amplitudes

(0.5) and a larger shift from the first class. The 6× 6 distance matrices for these signals under

Dy, Dx, and L2 are shown in the remaining panels. One can see that both Dy and Dx will

outperform L2 in classifying these signals.

B. Multiple Signal Alignment

The second goal of this paper is to align signals observed in the presence of compositional

noise. In this section, we describe an algorithm for the alignment of {fi}, and refer the reader

to [11], [12] for the proof of consistency and underlying asymptotic behavior. This alignment is

a two step process – in the first step, we find a set of mean functions and, in the second step,

we align the given functions to a particular member of this set.

For a given collection of functions f1, f2, . . . , fn ∈ F , let q1, q2, . . . , qn denote their SRSFs,

respectively. A notion of a mean of these functions is defined as follows:

Definition 3: Define the Karcher mean of the given functions as the function that minimizes
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Fig. 3. An example of two-class data where Dy and Dx outperform L2 distance in classification.

the sum of squares of distances according to:

µf = argmin
f∈F

n∑
i=1

Dy(f, fi)
2

µq = argmin
q∈L2

n∑
i=1

(
inf
γi∈Γ
‖q − (qi, γi)‖2

)
. (6)

We denote the mean function by µf and its SRSF by µq. It is important to note that if µf is a

minimizer in the above equation, then so is µf ◦γ for any γ ∈ Γ, since Dy is invariant to random

warping of its input variables. Therefore, this definition provides a whole set of functions, rather

than an individual function, as a mean. So, we have an extra degree of freedom in choosing an

arbitrary element of the set {µf ◦γ|γ ∈ Γ}. To make this choice unique, we can define a special

element of this set as follows. Let {γ∗i } denote the set of optimal warping functions in Eqn. 6;

then, we choose the element such that the mean of {γ∗i } is γid.

The following algorithm can be used to compute the mean set for the given data:

Algorithm 1: (Karcher Mean of {fi} under Dy)

1) Compute SRSFs q1, q2, . . . , qn of the given functions f1, f2, . . . , fn.

2) Initialization Step: Select µq = qj , where j = argmin1≤i≤n ||qi − 1
n

∑n
k=1 qk||.
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3) For each qi, find γ∗i by solving: γ∗i = argminγ∈Γ ‖µq − (qi ◦ γ)
√
γ̇‖. The solution to this

optimization comes from the dynamic programming algorithm.

4) Compute the aligned SRSFs using q̃i = (qi ◦ γ∗i )
√
γ̇∗i .

5) If the increment ‖ 1
n

∑n
i=1 q̃i−µq‖ is small, then stop; the solution is given by µq. Convert

µq into µf using Eqn. 4.

Else, update the mean using µq = 1
n

∑n
i=1 q̃i and return to step 3.

As mentioned previously, this algorithm results in a whole set of functions, but we need a specific

element of that set for alignment. To introduce that element, we first need to define the mean

of warping functions.

Definition 4: For a set of warping functions γ1, γ2, . . . , γn ∈ Γ, we define their cross-sectional

mean as:

γ̄n(ω) =
1

n

n∑
i=1

γi(ω) ω ∈ [0,Ω] . (7)

It is easy to see that γ̄n is an element of Γ.

Definition 5: For a given set of functions, f1, f2, . . . , fn and f , define an element f̃ as the center

of the set {f ◦ γ|γ ∈ Γ} where the set of warping functions {γi}, γi = argminγ∈Γ ‖q̃− (qi, γ)‖,

has a cross-sectional mean γid. Here qi’s and q are the SRSFs of fi’s and f , respectively.

Such an element exists by construction and is found using the following algorithm:

Algorithm 2: (Finding Center of the set {f ◦ γ|γ ∈ Γ}):

1) Let q1, . . . , qn, q be the SRSFs of given functions f1, . . . , fn, f , respectively.

2) For each qi find γi by solving: γi = argminγ∈Γ

(
‖q − (qi ◦ γ)

√
γ̇‖
)
.

3) Compute the mean γ̄n of all {γi} using Eqn. 7 and compute q̃ = (q, γ̄−1
n ). The center of

the set f̃ is obtained by mapping q̃ back to the function space using Eqn. 4.

Thus, we choose the element of {f ◦ γ|γ ∈ Γ} which ensures that the cross-sectional mean of

{γ∗i }, denoted by γµ, is γid(ω) = ω, the identity element of the group Γ.

Now we can utilize Algorithms 1 and 2 to present the full procedure for alignment of {fi}.

Signal Alignment Algorithm: Given a set of functions f1, f2, . . . , fn on [0,Ω], let q1, q2, . . . , qn

denote their SRSFs, respectively.

March 18, 2013 DRAFT



IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. X, NO. X, MONTH 2013 14

1) Compute the Karcher mean of f1, f2, . . . , fn in SRSF space using Algorithm 1. Denote

it by µf .

2) Find the center f̃ of the set {µf ◦ γ|γ ∈ Γ} with respect to {fi} using Algorithm 2; name

the SRSF of that center µq. (Note that this algorithm requires a step for computing the

mean of warping functions using Eqn. 7).

3) For i = 1, 2, . . . , n, find γ∗i by solving: γ∗i = argminγ∈Γ ‖µq − (qi, γ)‖.

4) Compute the aligned SRSFs q̃i = (qi, γ
∗
i ), their average µ̂q = 1

n

∑n
i=1 q̃i, and the aligned

functions f̃i = fi ◦ γ∗i .

IV. EXPERIMENTAL RESULTS

In this section, we describe some experimental results to demonstrate the estimation of SONAR

signals and their classification using distances Dy and Dx. We choose the acoustic color data

(spectral response), over spatial impulse response data, to exploit resonances that occur in the

frequency domain for different materials.

A. Data Description

The data set used in these experiments was collected at the Naval Surface Warfare Center,

Panama City Division (NSWC PCD), test pond. For a description of the pond and experimental

setup, the reader is referred to [20]. The raw SONAR data was collected using a 1 - 30kHz

LFM chirp and data was collected for nine proud targets that included a solid aluminum cylinder,

an aluminum pipe, an inert 81mm mortar (filled with cement), a solid steel artillery shell, two

machined aluminum un-exploded ordinances (UXOs), a machined steel UXO, a de-militarized

152mm TP-T round, a de-militarized 155mm empty projectile (without fuse or lifting eye), and

a small aluminum cylinder with a notch. The aluminum cylinder is 2ft long with a 1ft diameter;

while the pipe is 2ft long with an inner diameter of 1ft and 3/8 inch wall thickness.

The acoustic signals were generated from the raw SONAR data to construct relative power

as a function of frequency and aspect angle. Due to the relatively small separation distances

between the targets in the experimental setup, the scattered fields from the targets overlap. To

generate the acoustic templates, SAS images were formed and then an inverse imaging technique

was used to isolate the response of an individual target and to suppress reverberation noise. A

brief summary of this process is as follows: The raw SONAR data is matched filtered and the
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(a) Aluminum Pipe Pass #1

(b) Aluminum Pipe Pass #2

Fig. 4. Example acoustic color map for the aluminum pipe for two different target passes.

SAS image is formed using the ω − k beamformer [21]. The target is then located in the SAS

image and is then windowed around the selected location. This windowed image contains the

information to reconstruct the frequency signals associated with a given target via inverting the

ω−k beamformer [22] and the responses were then aligned in range using the known acquisition

geometry. For the nine targets, 2000 different data collections runs were done and 1102 acoustic

color templates were generated using the method described above from the data set. Figure 4

presents an example acoustic-color map for the aluminum pipe for two different data collection

passes. From the acoustic color maps, one-dimensional functional data was generated by taking

slices at aspect value of 0◦ and therefore generating 1102 data samples.
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Fig. 5. Compositional noise removal on SONAR functions. First row: The left panel shows 6 typical functions {fi} (solid

lines) from Class 1 before alignment and their cross-sectional mean (dashed line). The right panel shows aligned functions {f̃i}

and their cross-sectional mean by the complete alignment algorithm. Second and third rows: Same as the first row except for

Classes 5 and 9, respectively.

B. Signal Alignment and Denoising

Here we present results for the alignment of signals from some select classes. Recall that the

aligned signals represent data from which the (estimated) compositional noise has been removed.

The results are similar in the remaining classes. Also, for improving the clarity, we display only

a selected few observed signals {fi} in each class and show the estimate ĝ. However, all the

available signals were used in the calculation. The left panel of the first row in Fig. 5 shows

6 observed signals in Class 1 where most of the signals have two dominant peaks, but their

locations vary across samples. When we take the cross-sectional mean (dashed line) f̄ , some

peak information is averaged out and the mean does not retain the original bimodal pattern in

the original sample. We then apply our alignment algorithm and the result is shown in the right

panel of the first row in Fig. 5. We see that all peaks and valleys in the aligned functions are

well-aligned. In this case, the average after alignment keeps the two-peak pattern and reasonably

represents the variability in the frequency domain. Similar preservation of patterns is observed

in the remaining examples involving Classes 5 and 9. These results generally indicate that the
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overall alignment algorithm can appropriately remove the compositional noise in the functional

data. Since we do not have a ground truth for these signals, we cannot evaluate these results

more formally.

C. Classification using Pairwise Distances

In this section, we present experimental results for classification of signals using the metrics

developed in this paper. In addition to studying the real SONAR data, we will use a simulation

experiment to study the effect of traditional additive noise on our metrics.

Simulated Data: We conducted a simulation study using a data set similar to the one presented

in Fig. 3, where each class is represented by a sine waveform and each class has a different

amplitude and phase shift. We studied a five-class problem with the amplitudes for the 5 classes

being 1, 0.88, 0.76, 0.64, and 0.52, respectively. The phase shift for each class was ((k− 1) ∗π)

for k = 1, · · · , 5 classes and the data was generated by randomly warping the classes.

The original classes are shown in Fig. 6(a) and the randomly warped data for the 5 classes

is shown in Fig. 6(b); the warping functions are generated randomly. The additive noise was

generated as white Gaussian noise with mean zero and variance σ, where σ was changed for the

desired signal-to-noise ratio (SNR), and then smoothed using a moving average with a window

of size 3. The choice of the smoothing allows for numerical robustness in the calculation of

the SRSFs. Moreover, this noise is representative of the correlated noise we see in the spectral

response data. The pairwise distances were calculated for the standard L2, DNaive, Dx, and Dy

and classification was performed using the leave-one-out (LOO) cross-validated nearest-neighbor

classifier for varying degrees of noise. Dnaive corresponds to the quantity minγ ‖f1−f2 ◦γ‖ that

has often been used in the literature for signal alignment. We denote this method as a “naive”

warping method and refer the associated distance matrix to as (DNaive)ij = ||fi−fj ◦ γ̃ij||. Note

that the data in the original domain does not obey the isometry property. Therefore, the distance

matrix DNaive is not symmetric.

Fig. 7 presents the classification rates for this data set versus SNR. We can see that Dy

outperforms the Naive classifier and the L2 method. This implies that when the compositional

noise is accounted for in the model, we get better classification performance. In this example,

the distance Dx expectedly gives poor performance since the same random warping was used

for all the classes.
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Fig. 6. Simulated Data of 5 classes with 20 functions in each class.

Overall, our nonlinear warping method using a proper distance performed well on the sim-

ulated data and greatly increases classification performance. Moreover, this system shows vast

improvement over the standard L2 distance and current alignment techniques such as DNaive.

Real Data: Next, we applied our metrics for classifying SONAR data containing n = 1102

SONAR signals with nine target classes. The numbers of observations in the nine classes are:

{ni}9
i=1 = {131, 144, 118, 118, 121, 119, 120, 114, 117},

respectively. A selected subset of functions in each class is shown in Fig. 8. We observe that

the original data is quite noisy, due to both the compositional and the additive noise, increasing

variability within class and reducing separation across classes. This naturally complicates the

task of target classification using SONAR signals.
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Fig. 7. Classification rates in the presence of additive noise.

10 20 30
0

2

4
x 10

−4 Class 1

P
o
w

e
r

10 20 30
0

2

4
x 10

−4 Class 2

10 20 30
0

2

4
x 10

−4 Class 3

10 20 30
0

2

4
x 10

−4 Class 4

P
o
w

e
r

10 20 30
0

2

4
x 10

−4 Class 5

10 20 30
0

2

4
x 10

−4 Class 6

10 20 30
0

2

4
x 10

−4 Class 7

Frequency (kHz)

P
o
w

e
r

10 20 30
0

2

4
x 10

−4 Class 8

Frequency (kHz)
10 20 30

0

2

4
x 10

−4 Class 9

Frequency (kHz)

Fig. 8. Original SONAR functions in each of the 9 classes.
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Amount of Smoothing 0 25 75 125 175

Dx 0.57 0.58 0.59 0.58 0.55

Dy 0.63 0.73 0.67 0.64 0.60

DNaive 0.61 0.64 0.62 0.57 0.51

L2 0.43 0.44 0.45 0.45 0.44

TABLE II

CLASSIFICATION RATES VERSUS AMOUNT OF SMOOTHING APPLIED.

To have a robust estimate of the SRSF {qi}, we first smooth the original signals {fi} using

a standard box filter [1/4, 1/2, 1/4]. That is, numerically, we update the signals at each discrete

point by fi(ωk)→
(

1
4
fi(ωk−1) + 1

2
fi(ωk) + 1

4
fi(ωk+1)

)
. To determine the effect of smoothing on

the classification performance, we conducted a small study on the number of times the smoothing

filter is applied. Table II presents the classification performance versus applying the smoothing

filter 0, 25, 75, 125, and 175 times. It is interesting to note that the performance is quite stable

with respect to smoothing and smoothing 25 times gives only slightly better performance. Hence,

we use that level of smoothing for each signal for the rest of the analysis.

We first compute the standard L2 distance between each pair, i.e., (L2)ij = ‖fi− fj‖, i, j =

1, . . . , n. The matrix of pairwise L2 distances are shown as a gray scale image in Fig. 9(a).

This image of the pairwise distances looks very noisy, underlying the difficulty of classification

using SONAR data. Based on this distance matrix, we perform classification by using the LOO

cross-validation on the standard nearest-neighbor method. It is found that the accuracy is 0.44

(489/1102). Then, we computed distances Dy and Dx between all pairs of signals and these

distance matrices are shown as gray scale images in Fig. 9(b) and (c), respectively. Note that,

in theory, Dx and Dy should lead to symmetric matrices, but, in practice, due to the numerical

errors, these matrices are not exactly symmetric. So, we force them to be symmetric using

Dx → (Dx +DT
x )/2, Dy → (Dy +DT

y )/2, where the superscript T indicates the transpose of a

matrix.

In the image of Dy (Fig. 9(b)), we find that the pairwise distances are more structured

than the L2 distances. We also perform classification using the LOO cross-validated nearest-
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neighbor based on the Dy distances. The accuracy turns out to be 0.73 (803/1102), a significant

improvement over the result (0.44) in the standard L2 distances. Interestingly, we find that the

Dx distances also have strong indication of the target class in the data. In Fig. 9(c), we see

that the Dx image have some clusters (dark squares) along the main diagonal. The classification

accuracy by Dx turns out to be 0.58 (643/1102), which is also higher than the classification

performance of the standard L2 norm in the function space.

Pairwise distance: L
2
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Fig. 9. The pairwise distances using the L2 (a), Dy (b), and Dx (c) metrics.

Since Dx and Dy each only partially describe the variability in the data, which corresponds to

the phase and amplitude differences between the functions, there is a possibility of improvement

if Dx and Dy are used jointly. One simple idea is to linearly combine these two distances and

use the weighted distance to perform classification on the data. Here the amplitude and phase are

being treated as two different “features” of the signals. To accurately represent the contribution

from each distance, we first normalize Dx and Dy by the maximum values in the matrices,

respectively. That is, Dx → Dx
maxDx

, Dy → Dy
maxDy

. Then, for τ ∈ [0, 1], we define

Dτ = τDx + (1− τ)Dy.

Dτ is a weighted average of Dx and Dy with D0 = Dy and D1 = Dx.

The next step is the estimation of an optimal τ . Towards this end, we randomly select 50% of

the given signals as training data and evaluate the LOO classification performance for different

values of τ . Since this selection is random, the resulting evolution is potentially random. Figure

10(a) shows the performance profile versus τ for 100 randomly selected training data. An average
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of these curves is superimposed on the same plot (thick solid line). A histogram of the optimal

values of τ for different random selections of the training data is shown in (b). Both these

figures show that a broad range of τ values, from 0.3 to 0.7, all result in a decent increase in

the classification performance over the individual metrics Dx and Dy, and the general pattern of

increase is similar. In fact, if we use the full data and plot the LOO classification performance

versus τ , we obtain the plot shown in (c). The overall shape (and the location of the maximizer)

of this curve is very similar to the curves in (a) and underscores the independence of different

observations. From this study, we select a value, say τ = 0.41 and use that to perform LOO

classification on the full data.

When τ = 0.41 is used, we get an accuracy of 0.76 (839/1102), which is higher than the

accuracy of the L2, Dy, and Dx distances. This indicates that the variability in the SONAR

signals are better characterized when we separate the phase and amplitude variabilities and

better classification can be achieved when both variabilities are utilized.

Next, we compute the “naive” distance between any two signals presented in the previous

section, according to (DNaive)ij = argminγ∈Γ ‖fi− fj ◦ γ‖. We also perform the cross-validated

nearest-neighbor using the DNaive and find that the accuracy is 0.64 (702/1102). This is slightly

better than the accuracy by Dx, but worse than that of Dy. This indicates that even a sim-

ple method of warping can help remove certain warping noise in the SONAR data, but the

performance is not as good as a more formal SRSF-based warping.

Next we generated a cumulative match characteristic (CMC) curve [23] for the distances Dx,

Dy, Dτ (τ = 0.41), DNaive, and L2. A CMC curve plots the probability of classification against

the returned candidate list size and is presented in Fig. 11. Initially, Dy and Dτ outperform the

other distances with DNaive slightly outperforming Dx. After a slight increase in the returned list

size, Dx begins to outperform DNaive and our method rapidly approaches over 0.90 classification

rate, in contrast to the DNaive and the standard L2 distances.

Next, in Table III(a)-(e), we present the confusion matrices for the distances L2, DNaive, Dx,

Dy and the weighted Dτ , respectively. The top number in the table represents the classification

rate for 0◦ aspect angle.

Overall, we see an increase in correct classification rates in Dy and Dτ over the other methods

and the incorrect classification rates are distributed evenly across the classes. Moreover, the

weighted distance, Dτ , reduced the false classifications to nearly zero in many cases.
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Class 1 2 3 4 5 6 7 8 9

1
0.58 0.05 0.03 0.08 0.05 0.02 0.08 0.05 0.05
0.4 0.18 0.06 0.06 0.03 0.16 0.03 0.05 0.03

2
0.03 0.49 0.01 0.14 0.13 0.01 0.10 0.08 0.01
0.08 0.52 0.02 0.03 0.1 0.08 0.08 0.08 0.03

3
0.03 0.12 0.34 0.02 0.12 0.04 0.17 0.13 0.04
0.06 0.14 0.52 0.01 0.06 0.13 0.03 0.03 0.03

4
0.02 0.16 0.01 0.50 0.09 0.01 0.06 0.13 0.03
0.01 0.13 0.07 0.39 0.02 0.16 0.07 0.07 0.08

5
0.02 0.14 0.06 0.13 0.27 0.03 0.17 0.11 0.06
0.05 0.19 0.06 0.02 0.32 0.04 0.11 0.15 0.05

6
0.07 0.04 0.04 0.03 0.05 0.69 0.05 0.03 0
0.08 0.05 0.03 0.09 0.01 0.54 0.05 0.08 0.08

7
0.02 0.13 0.03 0.13 0.14 0.01 0.35 0.10 0.09
0.05 0.17 0.03 0.02 0.08 0.09 0.38 0.12 0.07

8
0.01 0.08 0.04 0.16 0.11 0 0.11 0.43 0.06
0.02 0.21 0.04 0.04 0.07 0.07 0.15 0.33 0.07

9
0.05 0.08 0.03 0.11 0.08 0.01 0.15 0.16 0.32
0.04 0.11 0.09 0.04 0 0.15 0.1 0.04 0.42

(a) L2

Class 1 2 3 4 5 6 7 8 9

1
0.56 0.03 0.08 0.08 0.05 0.09 0.05 0.04 0.03
0.57 0.13 0.04 0.01 0.06 0.1 0.05 0.03 0.01

2
0.01 0.82 0 0.06 0.03 0 0.06 0.03 0.01
0.02 0.63 0 0.01 0.16 0.03 0.09 0.07 0

3
0.02 0.05 0.62 0.01 0.14 0.03 0.1 0.01 0.03
0.1 0.03 0.63 0 0.08 0.14 0.01 0.01 0.01

4
0 0.15 0.01 0.66 0.05 0.01 0.07 0.04 0.01

0.01 0.11 0.02 0.59 0.06 0.03 0.08 0.09 0.01

5
0.02 0.17 0.03 0.07 0.52 0.02 0.07 0.03 0.06
0.02 0.24 0.03 0.02 0.42 0.03 0.08 0.14 0.03

6
0.06 0.03 0.02 0.05 0.04 0.73 0 0.02 0.05
0.01 0.05 0.03 0.05 0.02 0.74 0.03 0.01 0.07

7
0.01 0.11 0.03 0.07 0.1 0.02 0.58 0.05 0.03
0.02 0.13 0 0.02 0.09 0.04 0.61 0.05 0.05

8
0 0.1 0.04 0.15 0.04 0.03 0.09 0.54 0.04

0.03 0.12 0.01 0.04 0.02 0.03 0.07 0.64 0.02

9
0 0 0.03 0.07 0.09 0.04 0.07 0.03 0.68

0.02 0.14 0.02 0.03 0.09 0.02 0.09 0.08 0.52

(b) DNaive

Class 1 2 3 4 5 6 7 8 9

1
0.76 0.04 0.04 0.01 0.02 0.06 0.02 0.02 0.02
0.59 0.06 0.03 0.05 0.03 0.08 0.08 0.07 0.03

2
0.03 0.48 0.04 0.12 0.14 0.01 0.05 0.1 0.03
0.08 0.41 0.02 0.06 0.08 0.07 0.09 0.09 0.1

3
0.02 0.03 0.66 0.03 0.11 0.03 0.06 0.03 0.05
0.08 0.03 0.61 0.08 0 0.05 0.03 0.03 0.08

4
0.02 0.09 0.05 0.57 0.08 0.03 0.07 0.07 0.03
0.1 0.06 0.1 0.44 0.05 0.01 0.07 0.1 0.08

5
0.02 0.1 0.06 0.04 0.55 0.03 0.05 0.07 0.07
0.07 0.02 0.06 0.07 0.49 0.03 0.1 0.08 0.08

6
0.05 0.04 0.03 0 0.06 0.77 0.03 0.02 0.01
0.08 0.03 0.05 0.03 0.05 0.66 0.02 0.05 0.03

7
0.03 0.1 0.08 0.07 0.14 0.06 0.36 0.09 0.07
0.1 0.07 0.06 0.14 0.16 0.04 0.28 0.08 0.07

8
0.04 0.1 0.02 0.17 0.16 0 0.12 0.39 0.02
0.07 0.04 0.02 0.06 0.08 0.09 0.07 0.49 0.07

9
0.02 0.04 0.03 0.04 0.03 0.06 0.03 0.03 0.71
0.07 0.07 0.07 0.07 0.03 0.04 0.05 0.03 0.57

(c) Dx

Class 1 2 3 4 5 6 7 8 9

1
0.85 0.03 0.03 0 0 0.04 0.02 0.01 0.02
0.63 0.05 0.08 0.03 0.03 0.08 0.04 0.04 0.02

2
0.01 0.74 0.01 0.11 0.05 0 0.06 0.01 0.01
0.03 0.61 0.02 0.03 0.09 0.02 0.1 0.08 0.03

3
0.03 0.01 0.66 0.02 0.13 0.03 0.03 0.04 0.05
0.08 0.03 0.73 0.02 0.03 0.08 0.02 0.02 0

4
0 0.11 0.01 0.75 0.04 0.01 0.03 0.06 0

0.03 0.05 0.03 0.66 0.03 0.08 0.04 0.07 0.03

5
0.02 0.02 0.04 0.07 0.67 0.05 0.06 0 0.07
0.07 0.07 0.02 0.03 0.58 0.04 0.08 0.07 0.04

6
0.02 0.01 0.02 0.02 0.03 0.87 0.01 0.01 0.02
0.03 0.02 0.02 0.01 0.03 0.85 0.01 0.03 0.01

7
0 0.12 0.02 0.06 0.1 0.02 0.6 0.06 0.03

0.05 0.13 0.03 0.02 0.08 0.04 0.5 0.12 0.03

8
0 0.07 0.03 0.17 0.06 0.01 0.07 0.59 0.01

0.02 0.12 0.02 0.04 0.07 0.06 0.08 0.53 0.06

9
0.03 0.01 0.04 0.01 0.07 0 0.02 0.02 0.81
0.03 0.04 0.03 0.07 0.06 0.01 0.06 0.04 0.65

(d) Dy

Class 1 2 3 4 5 6 7 8 9

1
0.89 0.02 0.02 0 0 0.03 0.02 0.01 0.01
0.76 0.03 0.03 0.02 0.03 0.03 0.05 0.03 0.02

2
0.01 0.76 0 0.07 0.08 0 0.03 0.04 0.01
0.03 0.68 0.03 0.03 0.07 0.02 0.05 0.07 0.03

3
0.02 0.02 0.72 0.02 0.11 0.03 0.04 0.02 0.03
0.09 0.01 0.82 0 0 0.07 0 0.01 0

4
0 0.08 0.01 0.79 0.03 0.01 0.01 0.08 0

0.03 0.03 0.03 0.71 0.02 0.04 0.03 0.06 0.04

5
0.02 0.02 0.02 0.07 0.71 0.03 0.05 0.01 0.07
0.05 0.03 0.02 0 0.69 0.05 0.07 0.07 0.02

6
0.02 0 0.03 0 0.03 0.89 0.03 0.01 0
0.02 0.01 0.02 0.02 0.02 0.89 0 0.03 0

7
0 0.07 0.02 0.08 0.11 0.03 0.63 0.05 0.03

0.03 0.1 0.03 0.03 0.06 0.04 0.58 0.09 0.03

8
0 0.06 0.04 0.16 0.09 0.01 0.05 0.59 0

0.02 0.09 0.01 0.05 0.06 0.06 0.05 0.64 0.02

9
0.03 0.01 0.03 0.01 0.06 0 0.03 0.01 0.83
0.05 0.03 0.02 0.03 0.02 0.02 0.04 0.03 0.76

(e) Dτ (τ = 0.41 for 0◦) and (τ = 0.43 for 20◦)

TABLE III

CONFUSION MATRICES FOR THE DISTANCES L2 , DNaive , Dx , Dy AND THE WEIGHTED Dτ FOR THE 0◦ AND 20◦ ASPECT

ANGLE DATA SETS. THE TOP NUMBER IS FOR 0◦ AND THE BOTTOM IS FOR 20◦ .
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Fig. 10. (a) Evolution of classification performance versus τ for randomly selected training data. The average of these curves in

drawn on the top. (b) The histogram of optimal τ values for different random selections of training data. (c) Overall performance

versus τ for the full data.

To compare, the classification accuracy at 0◦ aspect angle another set of data was extracted at

20◦ aspect angle and was classified using the same method described previously. The classifica-

tion rates for L2 and DNaive was found to be 0.41 (453/1102) and 0.57 (631/1102), respectively.

As with 0◦ aspect, our distances of Dy and Dτ offered an improvement over these methods.

The distance Dx had a classification rate of 0.49 (537/1102) and Dy had a classification rate of

0.61 (677/1102). We also found an optimal τ = 0.43 for the weighted distance Dτ and had a

classification rate of 0.70 (774/1102).

Next, we generated a CMC curve for the 20◦ aspect angle and is presented in Fig. 12. As
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Fig. 11. CMC Comparison of L2, DNaive, Dx, Dy and the weighted Dτ (τ = 0.41) distances for 0◦ aspect angle.

0 5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1
CMC Comparison

Returned List Size

C
la

s
s
if
ic

a
it
o

n
 R

a
te

 

 

L
2

D
Naive

D
x

D
y

D
τ

Fig. 12. CMC Comparison of L2, DNaive, Dx, Dy and the weighted Dτ (τ = 0.43) distances for 20◦ aspect angle.

with 0◦, we see that both Dy and Dτ approach 0.90 classification rate faster than L2 and DNaive.

However, the performance and rate of increase is lower than the 0◦ aspect angle case.

The confusion matrices for 20◦ aspect angle are presented in Table III(a)-(e) and are the

bottom numbers in the table. Again, we see performance similar to 0◦ with decreasing incorrect

classification rates for Dτ and Dy over the other distances. However, the overall classification
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rate is lower for most of the classes except Class 3 and Class 8. This can be attributed to more

information for these classes captured at that aspect angle.

V. CONCLUSIONS AND OBSERVATIONS

The statistical analysis and classification of targets using acoustic signatures is a challenging

task. In particular, it is complicated by the presence of compositional noise in the observed

signals. We have adapted a recent comprehensive approach that solves the problem of signal

alignment and denoising by comparing signals in a unified framework and using a cost function

that is eventually a warping-invariant distance between the two signals. This framework is applied

to both real and simulated data. It provides two distances – Dx and Dy – that can be used

for classifying noisy signals using any metric-based classifier. We have used the leave-one-out

classifier in this paper to demonstrate the improvements over traditional methods for signal

comparisons. In experiments involving real data, we demonstrate a LOO performance of almost

0.76, which easily outperforms the standard L2 distance (0.44), and current methods using a

naive alignment (0.64).

The method presented in this paper only solves the one-dimensional problem. To process all

available aspect angles and relationship between the angles a two-dimensional warping is needed.

An extension to this work would be to explore a two-dimensional warping for distance-based

classification based upon current ideas in shape analysis of surfaces [24]. Moreover, one could

combine multiple results using the one-dimensional method in a machine learning framework

for increased performance.
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