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Abstract 
 

This report provides a summary of the three-year LDRD (Laboratory Directed Research and 
Development) project aimed at developing microchemical sensors for continuous, in-situ 
monitoring of volatile organic compounds.  A chemiresistor sensor array was integrated with a 
unique, waterproof housing that allows the sensors to be operated in a variety of media including 
air, soil, and water.  Numerous tests were performed to evaluate and improve the sensitivity, 
stability, and discriminatory capabilities of the chemiresistors.  Field tests were conducted in 
California, Nevada, and New Mexico to further test and develop the sensors in actual 
environments within integrated monitoring systems.  The field tests addressed issues regarding 
data acquisition, telemetry, power requirements, data processing, and other engineering 
requirements.  Significant advances were made in the areas of polymer optimization, packaging, 
data analysis, discrimination, design, and information dissemination (e.g., real-time web posting 
of data; see www.sandia.gov/sensor). 

This project has stimulated significant interest among commercial and academic institutions.  A 
CRADA (Cooperative Research and Development Agreement) was initiated in FY03 to 
investigate manufacturing methods, and a Work for Others contract was established between 
Sandia and Edwards Air Force Base for FY02-FY04.  Funding was also obtained from DOE as 
part of their Advanced Monitoring Systems Initiative program from FY01 to FY03, and a DOE 
EMSP contract was awarded jointly to Sandia and INEEL for FY04-FY06.  Contracts were also 
established for collaborative research with Brigham Young University to further evaluate, 
understand, and improve the performance of the chemiresistor sensors. 
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1. Executive Summary 
The objective of this LDRD project was to develop a microchemical sensor system for 
unattended real-time monitoring and characterization of volatile organic compounds (VOCs) in 
soil and groundwater.  The intent was to reduce the high costs associated with manual sampling 
methods while improving public and stakeholder confidence in long-term monitoring and 
environmental stewardship activities.  

An in-situ chemiresistor sensor probe was developed that can continuously monitor VOCs in a 
variety of media including air, soil, and water.  The chemiresistor itself consists of a conductive 
polymer deposited onto a microfabricated circuit.  The polymer swells reversibly in the presence 
of VOCs as vapor-phase molecules absorb into the polymer, causing a change in the electrical 
resistance of the circuit that can be calibrated to known concentrations of analytes.  An array of 
four chemiresistors has been fabricated on a single chip to aid in discrimination, and many 
polymers were tested and evaluated to yield an optimized array of chemiresistors to detect the 
subsurface contaminants of interest.  Data analysis methods employing pattern recognition 
techniques (e.g., VERI) and statistical methods (e.g., partial-least squares) were investigated and 
evaluated using data obtained from the chemiresistor array when exposed to a variety of 
environmental conditions and analytes.  Preconcentrators were also investigated as a means of 
increasing the sensitivity of the chemiresistor sensors, and automated on-chip temperature 
control methods were developed to produce more stable responses. 

In addition to laboratory testing and evaluation of the chemiresistor sensors, a complete in-situ 
chemiresistor monitoring system was developed for field applications.  A rugged, waterproof 
housing was constructed that allows the chemiresistor to be emplaced in monitoring wells or 
immersed in water.  A cable connects the sensor to a surface-based solar-powered data logger 
employing wireless telemetry.  Data can be collected automatically and uploaded to a web site 
(e.g., see www.sandia.gov/sensor/cwl).  Field tests of the in-situ chemiresistor sensor system 
were conducted at Edwards Air Force Base, CA, the Nevada Test Site, and the Chemical Waste 
Landfill, NM.  Results of these field tests show that the in-situ chemiresistor sensor shows 
promise for use in long-term monitoring activities for trichloroethylene and other VOCs in the 
subsurface. 

New and alternative designs and applications for the chemiresistor sensor (e.g., concentric spiral 
configuration, Chemicouples,™ ChemSticks,™ Bioresistors,™ automated monitoring and 
remediation systems) have been developed as part of this LDRD project.  These new concepts 
and applications have led to seven patent applications and eight technical advances, a dozen 
scientific publications, nearly 20 invited and contributed presentations, media coverage in over 
30 magazines and news publications, a CRADA, Work for Others contracts, and collaborations 
with academic universities.  Collectively, nearly $700K of external revenue has been generated 
as a result of this LDRD project, and additional collaborations are currently being initiated. 
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2. Introduction 
Thousands of sites containing toxic chemical spills, leaking underground storage tanks, and 
chemical waste dumps require characterization and long-term monitoring to reduce health risks 
and ensure public safety (http://www.epa.gov/superfund).  In addition, over two million 
underground storage tanks containing hazardous (and often volatile) contaminants are being 
regulated by the EPA (U.S. EPA, 1992), and the tanks require some form of monitoring to detect 
leaks from the tanks and pipe network.  However, current methods are costly and time-intensive, 
and limitations in sampling and analytical techniques exist.  Looney and Falta (2000, Ch. 4) 
report that the Department of Energy (DOE) Savannah River Site requires manual collection of 
nearly 40,000 groundwater samples per year, which can cost between $100 to $1,000 per sample 
for off-site analysis.  Wilson et al. (1995, Ch. 36) report that as much as 80% of the costs 
associated with site characterization and cleanup of a Superfund site can be attributed to 
laboratory analyses.  In addition, the integrity of the analyses can be compromised during sample 
collection, transport, and storage.  Clearly, a need exists for accurate, inexpensive, real-time, in-
situ analyses using robust sensors that can be remotely operated. 

Although a number of chemical sensors are commercially available for field measurements of 
chemical species (e.g., portable gas chromatographs, surface-wave acoustic sensors, optical 
instruments, etc.), few have been adapted for use in geologic environments for long-term 
monitoring or remediation applications.   

2.1. Objectives and Scope 

The objective of this LDRD (Laboratory Directed Research and Development) project was to 
develop a microchemical sensor system that can detect and monitor subsurface volatile organic 
compounds (VOCs) for potentially long-term applications.  As part of the first year of the LDRD 
project, Ho et al. (2001) conducted a survey of sensor technologies and concluded that 
conductometric (chemiresistor) sensors were strong candidates for long-term in-situ monitoring 
applications because of their simplicity (no moving parts) and ruggedness.  As a result, the bulk 
of the LDRD project focused on developing, designing, improving, and understanding the 
technology and  performance of the chemiresistor sensors for operation in long-term subsurface 
monitoring environments.  The resulting in-situ chemiresistor sensor system can be applied to 
other applications requiring real-time in-situ monitoring (e.g., air monitoring, homeland security, 
etc.). 

2.2. Overview of Report 

This report first provides a description of the chemiresistor sensor and it’s basic operation in 
Section 3.  Laboratory testing and evaluation of the chemiresistor and its components (e.g., 
polymers and preconcentrators) are discussed in Sections 4 and 5, and data analysis methods are 
presented in Section 6.  Field tests are described in Section 7, and alternative chemiresistor 
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designs and applications are described in Section 8.  A “return on investment” from this project 
is presented in Section 9, and recommendations for future work are discussed in Section 9. 

3. Chemiresistor Sensor 

3.1. Description 

The chemiresistor sensor is a chemically sensitive resistor comprised of a conductive polymer 
film deposited on a micro-fabricated circuit.  The chemically-sensitive insulating polymer is 
dissolved in a solvent and mixed with conductive carbon particles.  The resulting ink is then 
deposited and dried onto thin-film, parallel, non-intersecting platinum traces on a solid substrate 
(chip).  When chemical vapors come into contact with the polymers, the chemicals absorb into 
the polymers, causing them to swell.  The swelling changes the physical conformation of the 
conductive particles in the polymer film, thereby changing the electrical resistance across the 
platinum-trace electrodes, which can be measured and recorded using a data logger or an 
ohmmeter (see Figure 1).  The swelling is reversible if the chemical vapors are removed, but 
some hysteresis can occur at high concentration exposures.  The amount of swelling corresponds 
to the concentration of the chemical vapor in contact with the chemiresistor, so these devices can 
be calibrated by exposing the chemiresistors to known concentrations of target analytes.  

I 

solid substrate 
metal trace 

conductive 
carbon 

particles polymer
volatile organic 
compound 

~ 0.1 mmnot to scale

(a) (b)
 

Figure 1.  VOC detection by a thin-film chemiresistor: (a) Electrical current (I) flows across a 
conductive thin-film carbon-loaded polymer deposited on a pair of micro-fabricated electrodes; 

(b) VOCs absorb into the polymer, causing it to swell (reversibly) and break some of the 
conductive pathways, which increases the electrical resistance. 

Figure 2 shows the architecture of the microsensor, which integrates an array of chemiresistors 
with a temperature sensor and heating elements (Hughes et al., 2000).  The chemiresistor array 
has been shown to detect a variety of VOCs including aromatic hydrocarbons (e.g., benzene), 
chlorinated solvents (e.g., trichloroethylene (TCE), carbon tetrachloride), aliphatic hydrocarbons 
(e.g., hexane, iso-octane), alcohols, and ketones (e.g., acetone).  The on-board temperature 
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sensor comprised of a thin-film platinum trace can be used to not only monitor the in-situ 
temperature, but it can also be used in a temperature control system.  A feedback control system 
between the temperature sensor and on-board heating elements can allow the chemiresistors to 
be maintained at a fairly constant temperature, which can aid in the processing of data when 
comparing the responses to calibrated training sets.  In addition, the chemiresistors can be 
maintained at a temperature above the ambient to prevent condensation of water, which may be 
detrimental to the wires and surfaces of the chemiresistor. 

7.0 mm 
 

      

3.
8 

m
m

 

Figure 2.  Chemiresistor arrays developed at Sandia with four conductive polymer films (black 
spots) deposited onto platinum wire traces on a silicon wafer substrate.  Left: Linear-electrode 
design (device #C4) with a temperature sensor in the middle and heating elements on the ends.  
Right: New spiral-electrode design (device #E2) with temperature sensor on the perimeter and 
heating element in the middle. 

3.2. Fabrication 

3.2.1. Chip Fabrication 

The chemiresistor chips are created using standard photolithographic methods, similar to the 
manufacture of microprocessors for PCs.  A mask is designed and fabricated to define the metal 
traces that will be deposited on a silicon wafer.  Three-inch and four-inch silicon wafers have 
been used in this project.  A typical process used to fabricate a four-inch silicon chemiresistor 
wafer is shown below:  

1) Solvent clean wafer – acetone, methanol, isopropanol, N2 dry.  
2) LFE O2 plasma clean, 5min 10 watts. 
3) 790 PECVD deposition: 2000Å SiN. 
4) Solvent clean wafer – acetone, methanol, isopropanol, N2 dry.  
5) HMDS – 33 minutes. 
6) Coat wafer with AZ4330 photoresist. 
7) Spin at 4K rpm for 30 seconds. 
8) Soft bake at 90°C for 90 seconds. 
9) Exposure on MA6 Aligner for 6.5 seconds. 
10) Develop in MIF 319 for approx. 2.5 minutes. 
11) Ozone clean for 5 minutes. 
12) Metal Deposition in Temescal – 100Å Ti and 1000Å Pt. (Note: Make sure to use 

minute sweep on Pt.) 
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13) Lift off – Place wafer on texwipe and spray in Acetone for a couple minutes, soak in 
Acetone for a couple of hours. 

14) Solvent clean wafer – acetone, methanol, isopropanol, N2 dry.  
 

Figure 3 shows an image of half of a silicon chemiresistor wafer where some of the chemiresistor 
dies have been removed. 

 

Figure 3.  Chemiresistor dies fabricated from half of a silicon wafer. 

3.2.2. Ink Creation 

The chemiresistor ink is a mixture of a know concentration of polymer, carbon, and solvent.  The 
inks are created by measuring out a known mass of polymer and dissolving it in a solvent.  
Typically the mass of carbon and polymer totals 0.1 g and is mixed in 5 ml of solvent.  The 
solvent is chosen based on the polymers’ solubility.  For example, for the polar polymer poly (N-
vinyl pyrolidone) (PNVP), water is used as the solvent.  For the other three polymers that were 
selected for our application (poly(epichlorohydrin) (PECH), poly(ethylene-vinyl acetate) 
(PEVA), and poly(isobutylene) (PIB)), TCE is used to dissolve the polymers (see Section 4.2 for 
more details on polymer selection).  The polymer/solvent mixture is placed on a hotplate set to 
approximately 40 °C.  The polymer will normally go into solution within an hour with heating.  
After the polymer is in solution a measured quantity of carbon is added to the mixture.  The vials 
are then placed in a sonicating bath for an hour to increase the dispersion of the carbon in the 
solution.  The ink is then ready to deposited on the dies.  Figure 4 shows an image of three vials 
of inks. 

Surfactants were also investigated as a means to help promote carbon particle dispersion within 
the dissolved polymer and enhance chemiresistor response stability.  Surfactants investigated 
included Spurso (purchased form OMG Americas, Inc.), Polyglycol EP-530 (purchased from 
The Dow Chemical Company), and Ralufon DS (purchased from Raschig AG).  Results 
indicated that the inclusion of surfactants in the carbon/polymer mixture increased chemiresistor 
response stability, but that the response time was also slightly increased. 
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Figure 4.  Chemiresistor inks consisting of polymer, carbon, and solvent. 

 

3.2.3. Ink Deposition 

The chemiresistor dies are cleaned with acetone and methanol.  A micropipette is placed inside 
the vial that is still in the sonicating bath.  A small amount of ink wicks up in the micropipette.  
The micropipette is placed directly above the area of deposition, and a slight pressure is placed 
on the top of the micropipette to push a bead of the ink out of the pipette.  Then the pipette is 
placed directly on the chip and pulled up.  If a resistance is not measured, more ink can be 
deposited to the die or the prior deposition can be wiped off with acetone followed by another 
deposition. 

 
Figure 5.  Deposition of inks onto chemiresistor dies using a micropipette and tweezers to hold 

the chemiresistor die stationary. 

 
The manual deposition methods yields baseline resistances that can vary by 100% or more.  
However, the yield is excellent compared to automated deposition processes using computer-
controlled machines, which are prone to having polymer solutions clog the deposition tips. 

3.2.4. Chip Packaging 

After the inks are deposited and dried on the die, the die is attached to a 16-pin dual inline 
package (DIP) with a Hardman 3-minute epoxy (no-heat cure).  Then, gold wires are ball-bonded 
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from the pads of the DIP to the pads of the chemiresistor.  Figure 6 shows an example of a wire-
bonding template that is used.  The numbers on the template correspond to the pads on the DIP.   
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Chemiresistor Template3 minute epoxy
Gold-Wire Bond

 
 

Figure 6.  Chemiresistor template for assembly. Note: The notch on the side of the template 
refers to the notch in the DIP for orientation purposes. 

 

3.3. Waterproof Packaging 

A robust package has been designed and fabricated to house the chemiresistor array (Ho and 
Hughes, 2002).  This cylindrical package is small (~ 3 cm diameter) and is constructed of 
rugged, chemically-resistant material.  Early designs have used PEEK (PolyEtherEtherKetone), a 
semi-crystalline, thermoplastic with excellent resistance to chemicals and fatigue.  Newer 
package designs have been fabricated from stainless steel (Figure 7).  The package design is 
modular and can be easily taken apart (unscrewed like a flashlight) to replace the chemiresistor 
sensor if desired.  Fitted with Viton O-rings, the package is completely waterproof, but gas is 
allowed to diffuse through a GORE-TEX® membrane that covers a small window to the sensor.  
Like clothing made of GORE-TEX®, the membrane prevents liquid water from passing through 
it, but the membrane “breathes,” allowing vapors to diffuse through.  Even in water, dissolved 
VOCs can partition across the membrane into the gas-phase headspace next to the chemiresistors 
to allow detection of aqueous-phase contaminants. The aqueous concentrations can be 
determined from the measured gas-phase concentrations using Henry’s Law.  Mechanical 
protection is also provided via a perforated metal plate that covers the chemiresistors.  The 
chemiresistors on the 16-pin DIP is connected to a weatherproof cable.  The cable can be 
connected to a hand-held multimeter for manual single-channel readings, or it can be connected 
to a multi-channel data logger for long-term, remote operation. 
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patent pending 

Figure 7.  Stainless-steel waterproof package that houses the chemiresistor array.  Left: GORE-
TEX® membrane covers a small window over the chemiresistors.  Right: Disassembled package 
exposing the 16-pin DIP and chemiresistor chip. 

4. Chemiresistor Testing and Development 

4.1. Experimental Approach 

Throughout the course of this LDRD project, calibrations and experiments were conducted at 
two facilities at Sandia, New Mexico.  The first facility is located in the In-Situ Sensing Lab in 
the Geoscience and Environment Center, which is operated by staff in the Geohydrology 
Department (i.e., Cliff Ho, Jerome Wright, Lucas McGrath, and Ara Kooser).  The second 
facility is located in the Integrated Materials Research Laboratory (IMRL) building, which is 
operated by staff in the Microsensors Science and Technology Department (i.e., Chad Davis, 
Michael Thomas, and Bob Hughes). The sections below describe the calibration and 
experimental procedures that were used in each of the facilities. 

4.1.1. Calibration and Testing Procedure: In-Situ Sensing Lab 

4.1.1.1. Experimental Equipment and Apparatus 

The majority of chemiresistor experiments were run using an apparatus that consisted of the 
chemiresistor being exposed to a known concentration of an analyte of interest.  The analyte 
concentrations were monitored with an MTI M200 micro gas chromatograph.  The chemiresistor, 
in its waterproof packaging, was placed in a sleeve.  The sleeve was then placed in a customized 
steel tube.  A customized reservoir that allows the input of a gas line was placed in the opposite 
end of the steel tube.  The sleeve was customized to allow the gas to flow across the sensor and 
then into the fume hood.  Data were recorded with the Agilent 34970A datalogger, a Campbell 
Scientific CR10X, or Campbell Scientific CR23X datalogger.  A schematic of the apparatus used 
for these experiments is shown in Figure 8. 
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Figure 8.  Schematic for chemiresistor experiments in In-Situ Sensing Lab. 

 
An alternative approach to exposing the chemiresistors to know concentrations of analytes 
employed a customized Nalgene bottle.  Holes were drilled into the top of the Nalgene bottle so 
that the chemiresistor cable could slide through.  Then input and output holes were drilled for the 
addition of a gas line.  Figure 9 shows a schematic of a modified Nalgene bottle. 

 

 
Figure 9.  Modified Nalgene bottle for chemiresistor exposures. 

 
 
4.1.1.2. Calibration Procedure 

Each chemiresistor had to be individually calibrated to known concentrations of analyte (TCE 
was used for most calibration runs).  The calibration procedure begins by passing dry air across 
each sensor in order to remove the ambient water vapor.  The sensors are allowed to reach 
equilibrium in the dry conditions.  Equilibrium is determined by visually evaluating the stability 
of the chemiresistor resistances.  If the measured resistances appear to be stable then a steady 
baseline is recorded.  Then known concentrations of TCE are added and the sensors are allowed 
to stabilize in the TCE environment.  Then dry air is added to remove the TCE from the 
apparatus and reestablish a new baseline for the next TCE exposure.  The concentrations of TCE 
are verified by the micro gas chromatograph.   The procedure of adding a known concentration 
of TCE followed by the addition of dry air was continued for various concentration of TCE.  A 
typical calibration run of the chemiresistor for TCE would use 500, 1000, 5000, 10,000-ppm 

 22 



 

TCE.  The calibration of the sensors is found by calculating the relative change in resistance for 
each chemiresistor.   
 
The relative change in resistance for the sensors during an exposure is found by first determining 
the average of stable baseline values, Rb, for two minutes prior to the exposure of TCE. The 
baseline values are recalculated prior to each exposure.  Next the value of the resistance during 
an exposure to TCE is calculated by taking an average of the steady resistance values, R, two 
minutes prior to turning off the TCE.  Then the relative change in resistance is calculated using 
Eq. (1).  For simple univariate regression analyses, this relative change is then plotted against the 
concentration of TCE, and a curve fit (e.g., power law or polynomial) is applied to the data using 
Microsoft Excel. 
 

 
b

b

b R
RR

R
R −

=
∆  (1) 

 
As an example, the calibration of chemiresistor array E2 (with polymers PNVP, PECH, PIB, and 
PEVA) in dry air at room temperature is shown in.  Table 1 shows the power functions for each 
of the polymers with their respective correlation coefficients.  
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Figure 10.  Graph of the calibration of chemiresistors in array E2 to TCE under dry conditions at 

room temperature, 23 ºC. 
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Table 1.  TCE calibrations for chemiresistor array E2 at room temperature (23 ºC)   

 
Polymer Regression 

Type Regression (ppm) R2

PECH Power y = 5.45E+05x9.51E-01 0.972 
PNVP Power y = 1.71E+07x1.45E+00 0.935 

PIB Power y = 1.19E+05x9.28E-01 0.993 
Chemiresistor 

Array E2 
PEVA Power y = 2.87E+04x7.21E-01 0.991 

y= TCE vapor concentration (ppm)
x = ∆R/Rb

 
 
4.1.1.3. Multivariate Analysis 

The previous univariate calibration technique assumed that the response of the individual 
polymers was independent of any other disturbances (e.g., temperature changes, presence of 
water vapor and other analytes, etc.).  In order to calibrate the sensor in the presence of 
fluctuating environmental variables and/or multiple analytes, multivariate calibration can be 
performed. 

A multivariate calibration procedure consists of exposing several components to the 
chemiresistor simultaneously and independently.  The variables of interest for our applications 
included water vapor concentration, temperature, and chemical environment (TCE 
concentration).  Statistica™ 6.0 was used to develop a multivariate regression model that 
incorporated values of the predictor variables (e.g., temperature, water vapor concentration, 
response of each of the four chemiresistors) into a model that predicted the desired analyte 
concentration. Different water vapor and TCE concentrations are obtained by dilution using flow 
meters.  Gas bottles of analytes (e.g., TCE) at know concentrations are also used (from Matheson 
TriGas).  The ambient temperature of the chemiresistor is controlled by placing the 
chemiresistors in an oven or a refrigerator.  The chemiresistor is placed in the customized steel 
tube and a gas line is fed through the reservoir.   The gas line is 60 ft of 1/8 inch copper tubing.  
The copper tubing in located entirely inside the oven/refrigerator in order to allow the flowing 
gas to reach the same temperature of the oven/refrigerator.  The temperature of the gas flowing 
over the sensor is monitored with the on-chip temperature sensor (Resistance Temperature 
Detector or RTD). After the temperature of the system has stabilized, exposure of the 
chemiresistor to various analytes is applied at that temperature.  Numerous calibration runs (or 
training sets) were performed to generate sufficient data that spanned the range of conditions that 
were anticipated to be encountered. 
 
A subset of a sample calibration data set used by Statistica™ is shown in Table 2.  In this 
example, chemiresistor array E14 is calibrated to TCE at different temperatures and water vapor 
concentrations.  The first six columns of data are used as predictor variables, and the last column 
is the dependent variable.  Several different multiple regression models (e.g., factor analysis, 
polynomial, linear, response surface, etc.) can be used in Statistica™.   
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Table 2.  Sample ∆R/Rb values for chemiresistor array E14.  Values are used by Statistica™ to 
generate a multivariate model.   

E14 
∆R/Rb       

PECH PNVP PIB PEVA Temp C Vp (Pa) TCE (ppm) 
4.343E-03 5.528E-01 2.815E-03 4.976E-03 25.18 2153 257 
4.353E-03 5.528E-01 2.831E-03 4.979E-03 25.18 2153 257 
4.365E-03 5.524E-01 2.820E-03 4.959E-03 25.17 2153 257 
4.362E-03 5.523E-01 2.848E-03 4.979E-03 25.18 2153 257 
4.343E-03 5.523E-01 2.851E-03 4.976E-03 25.18 2153 257 
4.349E-03 5.522E-01 2.848E-03 4.998E-03 25.18 2153 257 
4.372E-03 5.521E-01 2.873E-03 5.008E-03 25.18 2153 257 
4.356E-03 5.520E-01 2.864E-03 5.028E-03 25.18 2153 257 
4.349E-03 5.518E-01 2.892E-03 5.031E-03 25.18 2153 257 
3.495E-03 2.476E-01 2.754E-03 5.005E-03 25.22 508 1471 
3.505E-03 2.473E-01 2.762E-03 5.002E-03 25.22 508 1471 
3.492E-03 2.470E-01 2.762E-03 5.002E-03 25.22 508 1471 
3.511E-03 2.467E-01 2.776E-03 5.018E-03 25.22 508 1471 
3.476E-03 2.463E-01 2.751E-03 5.011E-03 25.22 508 1471 
3.505E-03 2.461E-01 2.762E-03 5.024E-03 25.22 508 1471 
3.495E-03 2.458E-01 2.773E-03 5.015E-03 25.22 508 1471 
3.482E-03 2.453E-01 2.793E-03 5.024E-03 25.22 508 1471 

 
 
 
The resulting factor-analysis multiple regression model for chemiresistor array E14 is shown 
below: 
 

TCE(ppm) = -1.08E+00 – 1.83E+03*∆R/RbPNVP + 3.81E+06* ∆R/RbPECH* ∆R/RbPEVA + 
6.89* ∆R/RbPEVA *TempC + 4.35E-02*PNVP*TempC*Vp + 6.20E+01*PNVP*PIB*PEVA*Vp – 
2.83E+01*PNVP*PIB*TempC*Vp + 3.83E+03*PECH*PNVP*PIB*TempC*Vp 
 
Where: 
 TempC: Chemiresistor temperature (ºC) 
 Vp: Water Vapor Pressure (Pa) 

 
 
4.1.1.4. RTD Calibrations 

The RTD temperature sensor on the chemiresistor is a thin platinum trace on the chemiresistor 
die.  The RTD can be calibrated to temperature by the following procedure.  The chemiresistor is 
taken out of the its housing and is placed in an oven.  A thermocouple is placed as close to the 
chemiresistors as possible (Figure 11).   
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Figure 11. Apparatus inside an oven for RTD calibration (two chemiresistor chips and a 

thermocouple). 

 
The oven is turned on to an elevated temperature (~ 40ºC) and is allowed to stabilize.  Then the 
oven is turned off and data is recorded for several hours..  The RTD resistance is then plotted 
against temperature (Figure 12), and a linear regression is fit to the data.  
 

 
Figure 12.  Calibration of the RTD on the chemiresistor die. 

 

4.1.2. Calibration and Testing Procedure: IMRL Facility 

Chemiresistors were exposed to chemical analytes in the vapor phase through the use of a 
custom gas manifold that uses gas cylinders with an analytically verified concentration of the 
analyte of interest or a nitrogen gas stream passing through gas washing bottles filled with the  
liquid analyte.  A ceramic frit at the bottom of the washing bottle produces a fine stream of 
nitrogen bubbles.  Intimate contact between the liquid analyte and the gas bubbles allows the gas 
stream to exit the bottle in a saturated condition.  Concentration was then controlled by a set of 
Brooks 5850E mass flow controllers that allow dilution of the gas stream with dry nitrogen to 
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lower concentrations.   Valves and flow controllers were set and continuously monitored by the 
use of a LabVIEW® controlling program.  Concentrations were periodically verified near the 
exposure cell through the use of a RAE systems ToxiRAE or ppbRAE photo-ionization detector. 
Once analyte concentrations were established, the total gas stream could be sent directly to the 
exposure cell or through a final gas washing bottle filled with water to provide a background of 
100% relative humidity to simulate typical subsurface conditions.   

Chemiresistors, mounted in 16 pin DIPs, were inserted into exposure cells made from PEEK that 
directed the gas stream across the face of the DIP.  An O-ring sealed the face of the DIP to the 
cell preventing any of the gas stream from escaping.  This also allowed downstream 
measurement of the flow to ensure the total gas stream and desired concentration was passing 
over the chemiresistor.  For consistency all exposures were regulated at 1 SLPM total flow 
regardless of the concentration or analyte, and tests were conducted in an insulated oven 
chamber. 

For each calibration sequence, a set of chemiresistors were exposed simultaneously to an 
individual analyte in concentrations of 1, 3, 5, or 10 percent of the saturated vapor pressure at 
room temperature.  An exposure at a given concentration was maintained for ten minutes across 
the chemiresistors before purging the system with a clean nitrogen stream for ten minutes.  
Consistency in chemiresistor response was noted by repeating each concentration at least once 
before proceeding to the next concentration.   

Chemiresistor response to an exposure was noted by recording the changes in two-wire electrical 
resistance across two of the four electrodes (traditional linear electrode design).  For all 
experiments, electrical resistances and thermocouple measurements were taken using a Hewlett 
Packard 34970A digital multimeter and recorded by a LabVIEW® program on an Apple 
Macintosh® computer. 

4.2. Polymer Selection 

Initial work on the project included identification of an optimized set of polymers to include in 
chemiresistor array fabrication.  For this particular project, analytes of interest were identified as 
isooctane, m-xylene, and trichloroethylene, three different common environmental contaminants 
representing three distinctly different classes of chemicals (aliphatic, aromatic, and chlorinated 
hydrocarbons, respectively).  In addition, the particular application area of in-situ sensing 
introduced the element of variable relative humidity that would have some impact on all 
polymers selected for use.  Therefore, ideally either one of the four polymers or the combined 
results of would provide a signal that would allow determination of the relative humidity for any 
necessary signal correction.  Through the course of our testing, we examined the following 
polymers: ethyl cellulose, poly(chloroprene), poly(dimethylsiloxane), 
poly(diphenoxyphosphazine), poly(epichlorohydrin) (or PECH), poly(ethylene), poly(ethylene-
vinyl acetate) (or PEVA), poly(isobutylene) (or PIB), poly(n-vinyl pyrrolidone) (or PNVP), 
poly(styrene), poly(vinyl acetate), and poly(vinyl alcohol).   

Evaluation of the polymers for suitability in this program was based on a series of calibration 
sets.  First, each of the candidate polymers was subjected to each of the three VOCs of interest 
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individually in concentrations of 1, 3, 5, and 10% of the saturated vapor pressure of the particular 
analyte, with four exposures at a given concentration.  The polymers were then similarly exposed 
to water vapor in the amounts of 1, 3, 5, and 10% relative humidity (at room temperature, 
~23°C).  Finally, the polymers were exposed to each of the three VOCs for a second time, but in 
a constant background of 100% relative humidity (at room temperature).  Chemiresistor devices 
were maintained at an elevated temperature of 30°C to prevent condensation of water vapor on 
the substrates.  All polymers were examined for stability and consistency of baseline resistance 
under unexposed conditions, speed of response to exposure to a particular chemical, consistency 
of elevated resistance to a particular chemical exposure, and consistency of overall response 
(measured as the increase in resistance divided by the baseline resistance) to a particular 
chemical over a series of repeats.  Examples of overall resistance measurements and overall 
response values are shown in Figure 13 and Figure 14, respectively.  Based on these experiments 
and overall combined sensitivity to the analytes and interferant of interest, we selected PECH, 
PEVA, PIB, and PNVP as our best four polymer candidates for inclusion in a chemiresistor 
array. 

 

Figure 13.  Example plot of raw resistances for PECH-40-C (40% carbon to polymer by mass) 
chemiresistor exposed to isooctane, TCE, m-xylene, and water at 1, 3, 5, and 10% of the 
saturated vapor pressure at room temperature, with four exposures at each concentration.  
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Figure 14.  Bar plot of normalized chemiresistor response values to VOC exposures under 100% 
relative humidity (derived from data similar to that shown in Figure 13). Normalization divides 

each relative response by the largest response in a particular study, producing values scaled 
between 0 and 1. 

 

4.3. Temperature Control Analysis 

Each chemiresistor has a resistance temperature detector (RTD), which can be calibrated for 
temperature. The RTD is a thin platinum trace on the chemiresistor die that has a resistance that 
is linearly dependent on temperature.  The RTD is calibrated using the procedure in Section 
4.1.1.4.  The polymers on the sensor are sensitive to changes in the ambient environment, such as 
temperature, humidity, and chemical environment.  Figure 15 shows the response of the polymer 
PEVA on chemiresistor array C5 to changes in temperature. 
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Figure 15. Chemiresistor (C5) response to change in temperature. 
 

Fluctuations in temperature can cause swelling or contraction of the polymers that is similar to 
the polymer’s response during the absorption or desorption of chemicals.  This may lead to 
incorrect predicted concentrations of VOCs.  Condensation from water vapor can also lead to 
spurious readings from the chemiresistor.  Maintaining the local temperature above the dew point 
can prevent the ambient water vapor from condensing on the sensor substrate.  Therefore, 
maintaining the chemiresistor’s local temperature  at a constant value should provide more 
accurate predictions of VOC concentration.  

Local temperature control is obtained by use of the heating element, or heater bar, on the 
chemiresistor (see Figure 2).  The heating element is simply a low impedance platinum trace on 
the surface of the chip.  Once voltage is applied to the trace, resistive heating will increase the 
local temperature of the chip. Three different methods were attempted to utilize temperature 
control on the chemiresistor sensors.  These include 1) a feedback loop programmed into the 
datalogger, 2) use of a constant voltage supply to the heater bar, and 3) use of an external 
temperature-compensation circuit. 

4.3.1. Experimental Approach 

4.3.1.1. Programmable Feedback Loop 

The Campbell dataloggers can be programmed with the Campbell PC208W software.  Programs 
are comprised of three tables—two programs and one subroutine.  Table one contains the 
program that reads all of the polymers on the chemiresistor as well as the RTD.  Table two 
contains the program instructions for applying voltage to the heater bar as well as the instructions 
to read the RTD again. 

 
The first attempt at utilizing the heater bar was made with the CR10X.  The CR10X is able to 
supply 12V, 5V, and 2.5V on defined intervals.   The switched 12V supply was tried first by 
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writing a program that turned on the switched 12V for 5 seconds when the resistance was lower 
than 1.03 kΩ.  It was determined that 12 volts being applied for a full 5 seconds raised the 
temperature from 23°C to approximately 80°C.  Since the increase in temperature was too great, 
we began to evaluate lower voltages. Next, we evaluated the 2.5V supply on the CR10X.  We 
selected a chip, C1, which had an RTD that was calibrated for temperature.  A program was 
written for C1 that excited the heater bar with 2.5 volts when the local temperature of the chip 
was below 25°C.  If the temperature became higher than 25°C, the datalogger would not supply 
voltage to the heater bar. The program instructions that are specific to turning on and off the 
heater bar for the chemiresistor are shown below. 

 
12:  If (X<=>F) (P89) 
1: 43       X Loc [ HtempC    ] 
2: 4        < 
3: 30       F 
4: 30       Then Do 
 
13:  Excitation with Delay (P22) 
1: 3        Ex Channel 
2: 1500     Delay W/Ex (units = 0.01 sec) 
3: 50       Delay After Ex (units = 0.01 sec) 
4: 2500     mV Excitation 

 

With the parameters shown above, the temperature was maintained between 24.7°C and 26.4°C, 
but a smaller range in temperature was desired.  So the parameters of delay excite, delay after 
excite, and mV excitation were changed in order to find the smallest span in temperature 
obtainable. Table 3 shows the parameters tested along with the results. 

 

Table 3. Span of temperatures obtained using different parameters in the temperature-control 
feedback loop programmed into the Campbell CR10X datalogger. 

 
Delay Excite Delay After Excite mV excitation Temp Range °C Difference 

1500 50 2500 26.437-24.666 1.771 
1500 50 1000 26.437-24.666 1.771 
1000 50 1000 26.404-24.633 1.771 
500 10 1000 25.214-24.625 .589 
400 10 1000 25.157-24.567 .59 

 
 

We determined that the best parameter combination was the following: 400 delay excite, 10 
delay after excite, and 1000mV excitation.  The sensor was then placed in an ice bath with a 
temperature of approximately 0°C.  With the program parameters, the heater bar was unable to 
maintain a stable temperature in the non-ambient conditions.  It was determined that the 1000 
mV power supply could not deliver enough current into the low-impedance load of the heater 
element to maintain the rated voltage, and thus not enough power was being supplied to heat the 
chip in the ice bath.  The resistance of the heater bar will naturally decrease when temperature 
decreases, compounding the problem.  In order to correct this issue the 12 volt supply on the 
Campbell dataloggers was used.  The switched 12 volts supply on the Campbell dataloggers will 

 31 



 

deliver approximately 600mA, which is sufficient current to heat the chemiresistor under normal 
conditions.  However, too much power will increase the temperature too rapidly.  So we began to 
look for a way to limit the duration of heating.  

The Edlog program in PC208W contains an instruction (21), titled “pulse port with duration.”  
With this instruction, it is possible to dictate the amount of time a control port is turned on.  Once 
the control port is turned on, the 12 volts will be applied. A program was written with a pulse 
duration of 0.01s, the smallest possible interval of time that the 12V can be on. The program 
instructions that were used to apply a pulse of 12 volts to the heater bar is shown below. 

 
9:  If (X<=>F) (P89) 
 1: 45       X Loc [ HTempC    ] 
 2: 4        < 
 3: 30       F 
 4: 30       Then Do 
 
10:  Pulse Port w/Duration (P21) 
 1: 7        Port 
 2: 46       Pulse Length Loc [ pulse7    ] 
 

 
The program was set to maintain the temperature at 30°C.  The chemiresistor C1 was placed in 
ambient conditions of the laboratory and the program was loaded.  Evaluation of the pulse port 
instruction program yielded a temperature range of 3.07°C with a standard deviation of 0.62°C at 
a room temperature of 23°C.  To determine how well the 12V pulsed supply performed in a 
transient temperature environment, the sensor was placed inside a tall graduated cylinder that 
was placed inside an ice-filled beaker. The apparatus was then placed on a hot plate.  A 
thermocouple was taped to the outside of the sensor in order to monitor the ambient temperature. 
Once the temperature of the system had reached a minimum in the ice-filled beaker (~10ºC), the 
hot plate was turned on.  The temperature of the system increased to 30°C and the experiment 
was turned off.  Figure 16 shows the response of the polymer PEVA on chemiresistor C1 to the 
temperature variations during the heating cycle. 
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Figure 16.  PEVA response to a fluctuating ambient temperature with a programmed feedback 

loop maintaining the temperature of the chip at ~30ºC. 

 
 
Figure 16 demonstrates that the resistances of the PEVA did not respond significantly to changes 
in the ambient temperature when the feedback loop was maintaining the local temperature at 
~30ºC.  The temperature was maintained within a range of 2.39°C and a standard deviation of 
0.64°C.  The rather large temperature range results from the large voltage being applied.  If the 
local temperature of the RTD is lower than 30°C, the program applies the full 12 volts to the 
heater bar.  This results in a rapid increase in the chip temperature and chemiresistor response. 
To address this issue, a more steady supply of voltage was evaluated.  

4.3.1.2. Constant Voltage 

A constant voltage was applied to the heater bar on the chemiresistor die to determine if a 
constant temperature could be maintained on the chip.  During this test, the stability of the 
chemiresistor at temperatures elevated just above the dew point was also investigated.  The 
chemiresistor was placed in a 200 mL beaker filled with de-ionized water. The heater bar on the 
chemiresistor chip was connected to an Agilent E3630A DC power supply, and an Agilent 
34970A datalogger recorded the response of the chemiresistor polymers, the RTD temperature, 
the voltage across the heater bar, and the ambient temperature.  The DC power supply was set to 
supply a constant 2 volts to the heater bar.  After the sensor had been in water for a week the 
power supply was turned off and the chemiresistor remained unheated in the water for an 
additional week.  Then the power supply was turned back on to 2 volts and the sensor remained 
in the water for two additional weeks.  Figure 17 shows the response of the RTD during the 
experiment. 
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Figure 17.  Chemiresistor E18 RTD response with and without a constant-voltage heating. 

 
The constant voltage maintained the temperature within 1.7°C with a standard deviation of 
0.31°C.  There were no rapid increases in the local temperature of the chip due to the constant 
voltage supply.  However, Figure 17 shows that the local temperature of the chip varied along 
with changes in the ambient temperature.  

The resistances of the polymers were stable during times of heating.  The polymer PNVP on E18 
demonstrated the most dramatic response to the heating.  Figure 18 shows the response of PNVP 
to the long-term temperature control using a constant voltage supply. 
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Figure 18. Response of PNVP with and without constant-voltage heating. 

 
The remaining three polymers showed a similar response to the experiment.  The resistances of 
all polymers were less erratic in 100% humidity conditions with a constant voltage being 
supplied to the heater bar. 
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For field use, a NTE956 adjustable voltage regulator was used to output a voltage from 1.2 volts 
to 37 volts depending on the potentiometer that is used.  Adjusting the potentiometer can vary 
the voltage.  The voltage can then be changed to yield the desired local temperature.  The 
chemiresistor E28 was placed in a 500 mL Nalgene bottle filled with de-ionized water in order to 
simulate 100% humidity conditions.  The voltage across the heater bar was increased using the 
voltage regulator to yield a RTD temperature of 25 °C.  The sensor was left in the water for one 
month with constant voltage being supplied to it.  Figure 19 shows the response to the RTD on 
the chemiresistor E28.  

 

E28 Constant Voltage Temperature Control 25°C
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Figure 19.  Local chip temperature (E28) and ambient temperature during a month-long test with 

constant voltage applied to the chemiresistor heater bar using an adjustable regulator. 

 
The local temperature of the chip was maintained above the ambient with a range of 1.82°C and 
standard deviation of 0.32°C.  The local temperature was correlated to the ambient temperature, 
which fluctuated with a range of 1.95°C and a standard deviation of 0.35°C.  The response of the 
polymer sensors on the chemiresistor all appeared stable during the month long run in the water.  
Although the constant voltage method stabilized the resistances of the polymers and maintained 
the local temperature, this method responds to any change in the ambient environment.  It is a 
viable and simple method in environments where small temperature fluctuations are acceptable.  
However, to address environments with large temperature fluctuations, a temperature 
compensation circuit was used that constantly adjusts the voltage supplied to the heater bar based 
on the temperature difference between the local and ambient environments. 

4.3.1.3. Temperature Compensation Circuit 

The Temperature Compensation Circuit was designed by Mark Jenkins (SNL), and it maintains 
the temperature of the chemiresistor by adjusting the voltage supplied to the heater bar based on 
the difference in local and ambient temperatures (see Figure 20).  The Temperature 
Compensation Circuit reads the temperature by supplying a voltage across the RTD on the 
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chemiresistor.  The voltage drop that occurs across the RTD corresponds to a temperature and 
can be recorded (see Figure 21 for calibration).    
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Figure 20.  Temperature Compensation Circuit (designed by Mark Jenkins). 
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Figure 21.  Results from the calibration of chemiresistor E1 RTD. 

 
To evaluate how well the temperature of the chemiresistor sensor could be maintained using the 
Temperature Compensation Circuit, the chemiresistor was placed in a 250 mL Nalgene bottle 
filled with de-ionized water and exposed to variations in ambient temperatures.   Figure 22 
shows the response of the chemiresistor E26 to the experiment.  The set point for the local chip 
temperature was 30ºC. 
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E26 PECH response to Temperature control at 30°C with 
Temperature compensation Circuit
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Figure 22.  Chemiresistor E26 response to temperature control with the temperature 

compensation circuit. 

 
The temperature was maintained at 30°C with a range of 0.5°C and a standard deviation of 
0.1°C.  Overall, the three temperature-control methods stabilized the resistances of the polymers 
and maintained the local temperature of the chip above ambient.  The Temperature 
Compensation Circuit provided the best local temperature control.  The programmable feedback 
loop utilized the data logger and did not require external circuits, but large voltage inputs caused 
larger swings in temperature.  In environments where the temperature is fairly constant (e.g., the 
subsurface), a constant-voltage supply should be sufficient. 

4.4. Carbon Analysis and Noise Comparison 

In addition to fluctuations in temperature, the amount and type of carbon used in the polymer ink 
also impacts the sensitivity and stability (noise) of the chemiresistors. Various inks with different 
carbon percentages by mass of amorphous carbon black or graphitized carbon black from 
Columbian Chemicals were created to study the impacts of carbon concentration and type on the 
performance and stability of the chemiresistors.   Four chips were assembled: two amorphous 
carbon black and two graphitized carbon black.  The polymer used to evaluate the effects of 
carbon type and concentration was PEVA.  The sensors were placed in a customized steel tube 
and then calibrated using a similar procedure found in 4.1.1.  Figure 23 shows the results of the 
calibration run for the chemiresistor array E6, which had various carbon percentages by mass 
(relative to the total carbon/polymer mass) of amorphous carbon black, and Figure 24 show the 
response for chemiresistor array E8, which had different graphitized carbon black percentages. 
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Figure 23.  Chemiresistor E6 response to various TCE concentrations with different amorphous 

carbon black concentrations. 

 
 

Chemiresitor E8 Graphitized Carbon Black (Columbian Chemicals)
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Figure 24.  Chemiresistor E8 response to various TCE vapor concentrations with different 

graphitized carbon black concentrations. 

 
In general the lower carbon concentrations yielded greater sensitivity to concentrations of TCE.  
With fewer electrically conductive pathways, the lower carbon-concentration polymers yielded 
greater changes in resistance when exposed to TCE. 

 The noise and stability of each sensor was also evaluated by the following experimental 
procedure.  The sensors were connected to the Agilent 34970A datalogger and placed in 
customized six-inch steel tubes.  The tubes were sealed to prevent the flow of air in and out of 
the system.  The datalogger was programmed to take readings on a 0.01 second interval.  Scans 
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were started and run until approximately 1600 scans had been taken.  The standard deviations of 
each sensor were taken from sections of the data where the data appeared to be random without 
systematic increasing or decreasing trends. 

The average standard deviation of the selected data for each chemiresistor can be found in Table 
4.  In general, the amorphous carbon black had a lower standard deviation than the graphitized 
carbon black for the same carbon percentage.  The coefficient of variation, the standard deviation 
divided by the mean, is a normalized measure of the noise of a sensor.  Table 4 also includes the 
coefficient of variation for the chemiresistors used in this evaluation. 
 

Table 4.  Standard deviation of the chemiresistors 

 

Carbon 
Percentage

Standard 
Deviation 

Ω 

Coefficient of 
Variation 

50% 4.06E-03 1.34E-05
40% 1.15E-02 2.12E-05
30% 4.64E-02 4.16E-05

E5 
(amorphous 

carbon black) 
20% 3.54E+01 5.09E-04
50% 1.57E-03 7.75E-06
40% 6.78E-03 1.71E-05
30% 2.23E-02 3.88E-05

E6 
(amorphous 

carbon black) 
20% 1.13E+01 5.70E-04
50% 3.90E-01 1.45E-04
40% 5.30E-01 9.16E-05
30% 1.68E+01 5.03E-04

E7 
(graphitized 

carbon black) 
20% 3.54E+00 3.87E-04
50% 4.25E-02 4.39E-05
40% 1.97E+00 2.04E-04
30% 8.01E+01 6.11E-04

E8 
(graphitized 

carbon black) 
20% 7.00E+02 8.33E-04

 
In general the amorphous carbon black had less noise then the equal carbon percentage of 
graphitized carbon black.  Figure 25 shows a graphical representation of the coefficient of 
variation.  
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concentrations and carbon types. 

 

media (GEM) model and percolation theory. Each model predicts the resistivity of the composite 
as a function of the volumetric fraction of carbon.  This section evaluates these models for 
different carbon concentrations, where the dielectric component is the polymer PEVA, and the 
conductive component is carbon black.  Equation (2) shows the formula for resistivity where A is 
the cross-sectional area available for electrical conduction between the leads, L is the distance 
between the leads, and Ω is the resistance.   

 

Figure 25.  Coefficient of variation (noise) of the different chemiresistors with different carbon 

 

4.5. Effective Resistivity Models 

The previous section described the empirical impacts of carbon concentration and carbon type on 
the response and stability of the chemiresistor sensors.  Several theoretical models can also be 
used to explain the relationship between the volumetric fraction of conductive and dielectric 
components and the resulting resistivity.  Two such models include the generalized effective 

L
AΩ

=ρ  (2) 

The distance, L, between the leads is known, and the cross-sectional area, A, was calculated by 
using a profilometer to measure the average thickness of the polymer deposition, which was 
multiplied by the length of the deposition (perpendicular to the L) as determined using a digital-
camera-mounted microscope  Figure 26 shows the results from the profilometer for one 
deposition.  In this case the average thickness was 1.085 µm.   
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Figure 26. Polymer thickness along the width of a po age from L. Hua and 
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T
the resistivity.  Multiple depositions were performed for each volumetric fraction and carbon 
type.  The length of each individual deposition and resistance was recorded.  Then a resistivity 
was calculated for each deposition.  These calculated resistivity values for each deposition were 
averaged for a given volume fraction.  Table 5 includes the average resistivity values for each 
volumetric fraction.   These measured values are compared to theoretical predictions using the 
generalized effective media model and the percolation model. 

 

Table 5.  Average calcu

Vc Resistivity Ω cm   Vc Resistivity Ω cm
0.5 8.0   0.5 6.2 
0.4 7.6   0.4 6.6 
0.2 13   0.2 9.6 
0.15 136   0.15 9.1 
0.12 282286   0.12 214 
0.11 829   0.11 46 
0.09 OVLD   0.09 1350 
0.08 OVLD   0.08 932 
0.07 OVLD   0.07 38842 
Vc = vo
OVLD =

lumetric fraction of carbon 
 over the resistance range of the Fluke multimeter. 

sistivity of the carbon, an 

 
 
The manufacturer of the carbon blacks, Columbian Chemicals, did not have resistivity data for 
the types of carbon used in this study.  To estimate the re
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approximation was made based on a linear regression to measured resistivities as a function of 
e last three resistivity values versus the 

orresponding volume fraction for each carbon type. A straight line
resistivity value for a carbon volume fraction of one (pure carbon) was extrapolated, yielding a 

ity value of 0.092 Ω-cm for amorphous carbon black and 0.585 Ω-cm for graphitized 
black.  These values were used in the parameter estimation process for the percolation 

theory and GEM equations. 
 

nknown parameters in the equation are estimated using PEST software.  PEST software 
mplishes the estimation process by using a nonlinear estimation technique known as the 
s-Marquardt-Levenberg method. PEST requires the user to generate the model program, 

nd PEST changes th  i am until it finds the optimal fit to the 
experimental data.  T  f  percolation models were the 
resistivity of the polym e volume fraction with it’s 
corresponding resistiv  r PEVA has a range of 1E+12 
Ω−cm to 1E+16 Ω−c  F were kept constant at 
1E+12 Ω−cm.  The re ti  the overall shape of 

 

carbon concentration.  This was done by plotting th
c  was fit to the data and the 

resistiv
carbon 

U
acco

ausG
a e

he
nput variables for the progr
ixed parameters for both the GEM and
er, resistivity of the carbon, and th

ity value.   The resistivity of the polyme
m. or the parameter estimation process these values 

vity of the polymer does not have a large effect onsis
the generated curves.

4.5.1. Percolation Model 

The effective resistivity of a conductive and dielectric composite as a function of the volumetric 
fraction of the conductive component can be modeled by percolation theory (e.g., see Lundberg 
and Sundqvist, 1986).  The percolation theory equation is given by: 
 

 [ ] ρ
ρρ

ρρ
=

−++++

−
2/12 )2(2)(

)2(

mc

mc

zBABA

z
 (3) 

where 
[ ]))/(1)(2/(1 fvzA cc −+−= ρ  

 
[ ]1)2/( −= fzvB cmρ  

 
and 
 

ρ Resistivity of the composite 
ρm Resistivity of the dielectric component 
ρc Resistivity of conductive component  
vc Volume fraction of conductive component 
z Coordination number of conductive components 
f Total packing fraction 
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The parameters z and f were varied in order to closely match the observed resistivity for each 
carbon polymer composition.  The values of ρm = 1E+12 Ω-cm, ρc = 0.092 Ω-cm for amorphous 
carbon black, and ρc = 0.585 Ω-cm for graphitized carbon black were used in the estimation 
process.  Figure 27 shows the results from the PEST estimation process for graphitized carbon 
black.  The optimized parameters for percolation theory with graphitized carbon black and 
PEVA were z  = 18.1413, and f = 0.992425.  The same procedure was followed to estimate the 
parameters for amorphous carbon black with PEVA (Figure 28). The optimized parameters for 
percolation theory with amorphous carbon black and PEVA were z  = 16.2102, and f = 0.566794. 

 
Figure 27.  Predicted and measured resistivity values using percolation theory with graphitized 

carbon black and PEVA. 

 

 
Figure 28.  Predicted an me tion theory with amorphous d asured resistivity values using percola

carbon black and PEVA. 
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T  two carbons in PEVA were different.  This 
su  the carbons.  The process of creating the 

he packing fractions and coordination number of the
ggests some possible structural difference between

graphitized carbon black is done by subjecting amorphous carbon black to elevated temperature 
ng enough to realign the molecular structure resulting in graphitized carbon.  This change 

 

 

lo
creates a highly ordered surface that appears to have effects on the packaging fraction and 
coordination number of the carbon in a polymer.  

4.5.2. Generalized Effective Media Model 

The generalized effective media (GEM) model proposed by McLachlan et al. (1990) describes 
the effective resistivity of a mixture of conductive and dielectric components as a function of 
volumetric fractions of conductive and dielectric components.  The GEM equation is written as 
follows: 
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here 
ρM Resistivity of composite 
ρH Resistivity of dielectric component 
ρL Resistivity of conductive component 
f Conductive fraction 
q Experimental percolation exponent 

 
fR is given by the following equation: 

 

w

C

C
R f

f
f

−
=

1  (5) 

 
where fC is the critical volume fraction (percolation threshold) of the conductive component. The 
parameters of fC and q were optimized in PEST for the GEM equation.  The values of ρH = 
1E+12 Ω-cm, ρL = 0.092 Ω-cm for amorphous carbon black, and ρL = 0.585 Ω-cm for 
graphitized carbon black were used in the estimation process.  Figure 29 shows the results from 
the PEST estimation process of graphitized carbon black and PEVA.  The optimized parameters 
for the generated theoretical curve for the graphitized carbon black are fC = 0.083 and q = 2.053.  
Th k 
wi d 
parameters for the generated theoret us carbon black are fC = .0666 and 
 = 2.309. 

e same fitting procedure was followed to optimize the parameters for amorphous carbon blac
th PEVA.  The results of the estimation process are shown in Figure 30.  The optimize

ical curve for the amorpho
q
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Figure 29. Predicted and measured resistivity values using the GEM model with graphitized 

carbon black and PEVA. 

 
 

 
Figure 30. Predicted and measured resistivity values using the GEM model with amorphous 

carbon black and PEVA. 
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4.6. Limit of Detection Analyses 

To calculate the theoretical limit of detection of the chemiresistor, the raw noise of the sensor 
was evaluated.  This was done by finding the mean and standard deviation of the chemiresistor 
during a quiescent, non-exposed period.  The limit of detection was defined as the minimum 
concentration that causes a change in resistance greater than three standard deviations above the 
mean of the noise.  Therefore, any relative change in resistance that is above three standard 
deviations has a 99.7% chance that that value is not in the noise. The calculated standard 
deviation of each chemiresistor was multiplied by three and then divided by the mean in order to 
find the relative change in resistance (∆R/R) that corresponded to the theoretical limit of 
detection:   

  change relative minimum3
=

Mean
σ  (6) 

T  
c  

on s 
co d 
will in

Table 6. Average theoretical limits of detection for different polymers on chemiresistors E34-

he minimum relative change in resistance was then entered into the appropriate calibration
urve.  Table 6 shows the average theoretical limits of detection for seven chemiresistors with a

40% carbon percentage by weight.  The theoretical detection limits for the non-polar polymers is 
 the order of 10 ppm of TCE in the aqueous phase, which corresponds to an aqueou
ncentration of ~100 ppb.  However, interferences and environmental fluctuations in the fiel

crease these limits (see Section 7). 
 
 

E40. 

 

Average 
Limit of 

Detection to 
TCE (ppm)

PECH 16.9
PNVP 292.5
PIB 14.0
PEVA 23.6

 
 

4.7. Comparison to other Sensors and Designs 

4.7.1. Line

igure 31 shows a comparison between the traditional linear electrode design and a new 
i r sensors.  The spiral design allows for a larger 

ctrodes in a small circular footprint, which will 

ar vs. Spiral 

F
concentr c spiral design for chemiresisto
conductive contact area between the ele
accommodate deposition methods that produce small droplets.  In addition, the concentric spiral 
design is expected to yield more consistent baseline resistances.  Small aggregates of carbon 
particles that form in the ink are more likely to be evenly distributed between spiral electrodes 

 46 



 

than linear electrodes.  The next sections describe studies that compare the linear and spiral 
chemiresistor designs. 
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Figure 31.  Illustration of impact of location of carbon aggregates on a linear electrode design 
(left and middle) and spiral electrode design (right).  The spiral electrode is expected to be less 

sensitive to variations in carbon-aggregate size and location in the polymer deposition. The linear 
design is more sensitive because the aggregates may fall entirely around the electrodes rather 
than between them.  In the spiral design, the aggregates will likely fall between electrodes, 

regardless of their location. 

 
4.7.1.1. Experimental Approach. 

Five linear and seven spiral chemiresistor chips were used to compare the performance and 
stability of the two designs.  Figure 32 shows the prepackaged linear and spiral chemiresistors 
that were evaluated in this study.  Inks comprised of 60% polymer and 40% (by mass) 
graphi ed in 
 16-pin DIP.  Then the repeatability, noise, and the performance of these designs were evaluated 
nd compared. 

tized carbon black from Polysciences were deposited on the chemiresistor and packag
a
a
 

     
Figure 32.  Linear and spiral design configurations on chemiresistor dies. 

 
 
4.7.1.2. Repeatability and Noise Analysis 

 and the repeatability of the linear and al chemiresistors were evaluated using the 
sam
The noise  spir

e procedure described in Section 4.4.  In general the standard deviation of the measured 
resistance for the spiral chemiresistor was lower than that of the linear chemiresistor, and the 
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repeatability of the spiral chemiresistor was higher.  Figure 33 shows the averaged standard 
eviation of the polymers for the linear and spiral chemiresistors evaluated. d

 

 
Figure 33.  Averaged standard deviation of the spiral and linear chemiresistors. 

  
 
Figure 34 shows the coefficient of variation for each polymer on the chemiresistors, which 
shows that there is not a clear difference in noise between the linear and spiral designs. 
 

 
Figure 34.  Averaged coefficient of variation of the spiral and linear chemiresistors. 
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4.7.1.3. Sensitivity/Performance Analysis 

The sensitivity of the linear and spiral chemiresistors to TCE was evaluated.  The sensors were 
placed in the modified Nalgene bottle and exposed to known concentration of TCE.  TCE 
concentrations of 500, 1000, and 5000-ppm were added.  The chemiresistors were allowed to 
stabilize in the TCE, which typically took 25-30 minutes due to the large volume of the Nalgene 
bottle.   The effluent gas was monitored with an MTI M200 micro gas chromatograph.  Figure 35 

f the polymer PECH.  In general the linear chemiresistors was more 
sensitive to TCE than the spiral (i.e., for the same concentration of TCE the linear chemiresistors 
shows the response o

had a greater change in resistance). 
 
 
 

 
Figure 35.  Average response of the polymer PECH to TCE using linear and spiral chemiresistor 

designs. 

 
 
 
4.7.1.4. Theoretical Limits of Detection of Spiral and Linear Chemiresistors 

The theoretical limits of detection were calculated using the same procedure found in Section 
4.6.   The theoretical limits of detection were averaged for the different designs and plotted in 
Figure 36  (outliers that passed the Q-Test were not included in calculation of the average limit 
of detection).  The linear design shows a lower limit of detection for two of the polymers (PNVP 
and PEVA), and the spiral design shows a lower limit of detection for PIB.  There is no clear 
trend that indicates one design has a lower limit of detection over the other. 
 

 49 



 

0

50

350
Linear
Spiral 

100

150

200

250

300

Av
er

ag
e 

Li
m

it 
of

 D
et

ec
tio

n 
of

 T
C

E 
(p

pm
)

PECH PNVP PIB PEVA
 

Figure 36.  Theoretical limits of detection of linear and spiral chemiresistor designs. 

nuation of the signal are sensitive to the viscoelasticity and mass of the 
thin film. SAWs have been able to distinguish organophosphates, chlorinated hydrocarbons, 
ketones, alcohols, aromatic hydrocarbons, saturated hydrocarbons, and water. 

The SAW array used in these tests has four channels—each channel consisting of a transmitter 
and a receiver, separated by a small distance. Three of the four channels have a polymer 
deposited on the substrate between the transmitter and receiver. The purpose of the polymers is 
to adsorb chemicals of interest, with different polymers having different affinities to various 
chemicals. When a chemical is absorbed, the mass of the polymer increases, causing a slight 
change in phase relative to the reference (fourth) channel, which does not contain a polymer.  

4

The chemiresistor and SAW sensor lled concentrations of TCE. 
he sensors were both placed in customized six-inch steel tubes that allowed the sensors to be 

 

4.7.2. SAW vs. Chemiresistor Evaluation 

Surface-acoustic-wave (SAW) sensors are another category of microchemical sensors that are 
being studied for use in real-time chemical detection.  This section summarizes a side-by-side 
comparison of these two sensors.  A more detailed description of the evaluation can be found in 
Ho et al. (2003b).   

The SAW sensor consists of an input transducer, a chemically adsorbent polymer film, and an 
output transducer on a piezoelectric substrate, which is typically quartz. The input transducer 
launches an acoustic wave that travels through the chemical film and is detected by the output 
transducer. The Sandia-made device runs at a very high frequency (approximately 525 MHz), 
and the velocity and atte

.7.2.1. Calibration 

s were calibrated using contro
T

 50 



 

exposed to a flowing stream of varying concentrations of TCE vapor. Data were logged using 
ither a Campbell Scientific CR23X or an Agilent 34970A multiplexer. 

Figure  P9 
as analyzed and graphed in a similar manner. Figure 38 shows the results of the calibration run 
r SAW array  P9, which contained the following polymers: polyisobutylene (PIB) and two 

hannels with poly(vinyl tetradecanal) (PVTD). 

e

 
37 shows the calibration results for chemiresistor array E2.  Data for the SAW array
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Figure 38.  SAW array P9 response to TCE calibration. 
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4.7.2.2. Theoretical limits of detection 

The theoretical limits of detection of the SAW and the chemiresistor sensors were evaluated 
following the same procedure found in Section 4.6.  The standard deviations calculated during a 
quiescent (no exposure) period were plugged into the calibration equations determined from 
Figure Figure 37 and Figure 38.  Figure 39 shows the resulting theoretical detection limits for 
chemiresistor array E2 and SAW array P9.  Although different polymers were used, it appears 
that the chemiresistor and SAW sensors have similar limits of detection.  The response of the 
PIB polymer on the chemiresistor array yielded a much lower limit of detection than the PIB 
polymer on the SAW array. 
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Figure 39. Theoretical limits of detection of TCE (ppm) for the chemiresistor array E2 and SAW 
array P9 

 

 
 

4.7.3. Piezoresistive Microcantilever vs. Chemiresistor Evaluation 

The piezoresistive microcantilever (PRM) sensor is based on a similar principle as the 
chemiresistor sensor for analyte detection.  Polymers are used to absorb chemicals, but PRMs 
use microcantilevers to transduce the swelling or contraction of the polymer into a measurable 
resistance change in the microcantilever (Porter et al., 2003) (Figure 40). 

The polymer is dissolved in a solvent and then deposited onto a piece of silicon. The PRM is 
pushed into the polymer, embedding the cantilever (Figure 41). The cantilever contains two 
channels of piezoresistive material. As chemical vapors come into contact with the polymer, the 
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polymer swells. This causes the cantilever to bend, which causes a change in resistance in the 
piezoresistive material. 

 

Polymer PRM

Silicon Wafer

VOC

 

Figure 40. Inflection of the microcantilever caused by swelling of the polymer, which changes 
the resistance of the microcantilever. 

 
 
 
 
 

 
 

Figure 41. Shows a close up of the PRM cantilever and polymer on a silicon wafer 

 
 
 
The PRM and chemiresistor sensors were compared side by side in a Nalgene bottle to evaluate 
the responses to chemical warfare simulants. Methyl Salicylate was used as the mustard gas 
simulant. The nerve gas simulant used was dimethyl methanephosphonate (DMMP). The PRM 
array was assembled with four cantilevers, a silicon wafer, and superglue.  Four polymers were 
used for both sensors: PECH, PNVP, PIB, and PEVA.  

PECH, PNVP, PIB, and PEVA loaded with carbon black were prepared, with 0.120g of polymer 
and 5 mL of solvent used for the chemiresistor polymers. The PRM polymers used were PVNP 
and PEVA. For these PRM sensors, 0.25000g of polymer was dissolved in 5.0 mL of solvent. 
Each polymer contained 40% carbon by weight except for the PRM polymers, which contained 

 53 



 

no carbon black. 50uL pipettes were used to deposit the carbon-loaded ink onto the chemiresistor 
substrate. The polymer concentration for the PRM was increased so that a thicker layer of 
polymer could be deposited around the cantilever.  

The experimental apparatus includes two flow meters, a 500 mL customized Nalgene bottle to 
allow gas flow, and one bubbler with the liquid analyte.   

The sensors were allowed to run for 5 minutes before being exposed to dry air at 730mL/min. 
Once the sensor readings stabilized, the saturated analyte vapor was bubbled into the bottle. 
When equilibrium was reached, the run was continued for several minutes. At the end of the run, 
dry air was turned on and data is collected for another minute or two. The first experiment was to 
determine the stability of the chemiresistor and the PRM when exposed to nerve gas and 
chemical warfare simulants. The response of the chemiresistor and the PRM were recorded for 
concentrations of  28, 80, and 141 ppm methyl salicylate and 93, 208, and 468 ppm DMMP. All 
the polymers responded to the simulants. However halfway through the experiment half the PRM 

ulants. Methyl Salicylate and 

 33 CT for 
inhalation, and 15 CT vapor contact with skin. The LCT50 for inhalation is 900 and the ICT50 is 

the population and the ICT50 is the required amount 
to incapacitate 50% of the population. The PRM array is able to detect methyl salicylate under 

s not 
detect the simulant within the required range.  The limits of detection for the chemiresistor 

olymers were: 0.1 ppb, 0.78 ppb, and 0.78 ppb, respectively, for PECH, PIB, and PEVA. The 
chemiresistor was able to detect the simulant under the LCT50 and ICT50 value. 

array failed. The cantilevers embedded in the water sensitive polymer sheared off and no longer 
functioned.  

The first experiment for evaluating the chemiresistor and PRM was to determine the limits of 
detection for each sensor using chemical warfare and nerve gas sim
DMMP were chosen as the simulants because they exhibit many of the same chemical properties 
as the real agents. Methyl salicylate is used to represent mustard gas and DMMP is used for 
simulating Sarin. Limits of detection of the chemiresistor and the PRM were calculated using 
three standard deviations above the baseline noise as a metric, together with the calibration 
curves. The limits of detection were necessary to determine if the sensors were capable of 
detecting amounts below the lethal dose.  

The first simulant tested was methyl salicylate. The PRM array had two functioning polymers on 
it: PECH and PNVP. The theoretical detection limit was 23.67 ppm for PECH and 2.46 ppm 
PNVP. The effects of mustard gas can start at 12 CT (1 CT = 1 mg-min/m3) for eyes,

150. LCT50 is the CT required to kill 50% of 

both the LCT50 and the ICT50 ppm limit. The chemiresistor contained four polymers PECH, 
PNVP, PIB, and PEVA. PNVP showed no response to the simulant so the data was not included. 
The limits of detection for the other polymers were: 0.066 ppm, 1.6 ppm, and 0.41 ppm, 
respectively, for PECH, PIB, and PEVA. The chemiresistor was able to detect the simulant under 
the LCT50 and ICT50 ppm values.  

The second simulant test used DMMP. Sarin gas has an LCT50 of 42-74 and ICT50 30-60 for 
Rhesus Monkeys with 2 minute and 10 minute exposures. The limit of detection for the two 
PRM array was 54.15 ppm and 190.21 ppm for PECH and PNVP, respectively. The PECH 
polymer is borderline for detecting the simulant under the LCT50 value and the PNVP doe

p
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The second evaluation was to determine the stability of the chemiresistor and PRM in the 
presence of different chemical vapors. The stability of each sensor was measured by calculating 
the coefficient of variation. At the 28, 80, and 141 ppm concentration of methyl salicylate, the 
chemiresistor had a higher coefficient of variation by an order of magnitude compared to the 
PRM. On exposure to different concentrations of DMMP the chemiresistor had a higher 
coefficient of variation by up to two orders of magnitude. The standard deviation of the sensors 
was taken before chemical vapor exposure to determine the noise of the sensor. In each case the 
standard deviation and the coefficient of variation of the PRM was less then the chemiresistor.  
In summary, the PRM appeared to be more stable than the chemiresistor, but the chemiresistor 
was more sensitive (and more rugged) than the PRM. 

5. P

.1. Overview of Preconcentrators 

nalytical instruments, like gas chromatography, are not able to detect these low 
concentrations directly, so specialized materials called adsorbent resins were developed to act as 
room temperature adsorbers of many molecules. These materials are usually high surface area 
powders and have absorption properties that are catalogued 
[http://www.sisw

reconcentrator Testing and Development 

5

Preconcentrators have been used for many years in analytical chemistry applications for 
collecting molecules (called analytes) that are present in very low concentrations, often in air or 
water. The a

 

eb.com/index/referenc/resins.htm].  The most important prope
 of air passing through a packed column and then 

rty is the ability 

lease all the analyte molecules when the column is heated to a specified high temperature, 

fect features of currently available adsorbent resins, portable 
systems for doing quantitative analysis of multianalyte, low concentration air samples (in 

fairly complicated. The Zellers’ group at the University of 
on and testing of such portable systems (Tian et 

 we feel there are many applications where the information gathered by a hybrid 

to absorb almost all the analyte from a stream
re
often a few hundred degrees Celsius.  There are no perfect absorbers for all analyte molecules.  
The adsorption characteristics of a given resin will depend on the specific analyte. Even at room 
temperature, most analytes that have been loaded onto the resin will desorb at a low rate when 
the analyte concentration is zero above the absorber.  

Because of these less-than-per

industrial hygiene for example), are 
Michigan has been active in the design, fabricati
al., 2003).  To get quantitative analysis over wide ranges of concentrations in mixtures of 
analytes with variable relative humidity, they find they need pumps with well defined pumping 
volumes through the packed preconcentrator column, chromatographic separation columns 
which need to be heated, scrubbers and detector arrays, along with the associated plumbing. 

We are investigating a much simpler system in which a micromachined, hot plate 
preconcentrator is coupled to a chemiresistor array. There are no pumps and valves, so 
preconcentration occurs by analyte diffusion and convection to the resin (or phase) on the 
microhotplate (Hughes et al., 2000). This simple, low-power system will probably never be able 
to achieve the kind of quantitative analysis of analyte mixtures of more complex portable 
instruments, but
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preconcentrator/chemiresistor array can be valuable. One example is the “smoke alarm” mode 
where the hybrid is deployed and is monitored in almost real time for a leak or breakthrough of 
analyte (often a VOC) into a well or chemical processing facility. Operators are then alerted 
without the need for quantitative information about exact concentrations (which may be 
changing rapidly in any case).  

 

Our hybrid concept is closer to Solid Phase Microextraction (SPME) where preconcentration of 
analyte occurs on a thin fiber coated with adsorbent resin, often a polymer (Zhang et al., 1984). 
The loading of the SPME fiber occurs by diffusion and convection, which can be in air, water, 
soil or headspace of a sample bottle. Quantitation of the concentration of analyte is not achieved 
by complete stripping of the analyte from a measured volume as in the tube preconcentrators 
discussed above, but by equilibration of the adsorbent phase (resin) with sample volume. The 
sample volume is kept large enough so that the extraction does not lower the concentration by 
much. The fiber is then withdrawn into a pencil like holder and transported to a commercial 
instrument like a GC o accommodate the 
fiber and heat it quick es C is common). A 
arrier gas flows the desorbed analyte molecules into the GC.  In this way the collection step can 
e separated from the expensive commercial analytical instrument. Our microhotplate combines 

angmuir adsorption isotherm. It gives a concentration dependent loading of the layer, 
along with temperature dependent desorption and saturation of layer at high loading 
concentrations. It was derived for physical adsorption on surfaces, but has been often applied to 
more com  
p l 
an be expressed in the form of a differential equation for the rate of loading (or occupation) of 
e sites on the layer. Let Θ be the fraction of loading sites filled, with Θ =1 the maximum 

loading of the layer at high loading concentration and low temperature.  The expression becomes 
oncentration of analyte in 

h increases exponentially with 

. The injection port of the GC is specially designed t
ly to a specified high temperature (a few hundred degre

c
b
the heater and the adsorbent resin into one tiny device that can be heated much faster and with 
much less power than other types of preconcentrator. The small size means that it must be 
located very near the chemiresistor array for efficient sensing to occur.  

5.1.1. Model of adsorption and desorption from adsorbent layers on the microhotplate 

The simplest model that captures the main features observed with these adsorbent resins is the 
famous L

plex cases such as the resins where the analyte molecules are adsorbed into bulk
hases like the polymer support and pores of the high surface area resin. The Langmuir mode

c
th

dΘ/dt = kf(1-Θ)- krΘ, with kf the rate of loading, proportional to the c
the vapor contacting the layer. The kr is the desorption rate whic
temperature (with an activation energy which depends strongly on which material and analyte is 
used). From this equation it can be seen that there will be a steady state at some level of Θ that 
depends on the concentration. The kf goes to zero when the hotplate is removed from the loading 
area and the concentration of analyte goes to zero and then only the kr term is operative and the 
analyte slowly desorbs from the layer depending on the temperature.  

The rate equation can be integrated to give the loading as a function of the time of exposure to a 
given concentration of analyte:  Θ = a/b –(1/b)exp[ln(a)-bt], b is the sum (kf +kr), and a= kf. The 
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values of kf and kr can be extracted from a set of data that compares the transient chemiresistor 
signal with a variety of loading times and loading concentrations.  

The same microhotplates with similar phases on them are being developed for the Sandia 
MicroChemLab (Manginell et al., 2000). In that system, there is a pump that draws air samples 

5.2. Fabrication of Preconcentrators 

across the microhotplate preconcentrator and then uses a heat pulse to desorb whatever has been 
adsorbed into a micromachined chromatograpic column. The column elutes onto an array of 
chemical sensors, which could be chemiresistors, but are usually SAW devices with polymer 
coatings. The MicroChemLab is smaller and lower power consuming than the systems with tube 
preconcentrators, but may be less quantitative in analysis of certain mixtures of analytes.  The 
following sections will describe our efforts to integrate the micro-hotplate preconcentrator with 
the chemiresistor sensor in a passive mode that does not require any pumps or valves. 

The fabrication of the micro-hotplate preconcentrator (Manginell et al., 2000) utilized a KOH-
etched 4 inch wafer (yield ~200 hot-plates) with a silicon nitride coating.  The KOH-etching 
produces a 1-micron thick silicon nitride membrane, which has a very low thermal mass.  A 
binding agent was created by mixing .5% Polyisobutylene (0.92 g/ml PIB) in 1 ml of TCE 
(1.4642 g/ml TCE) by mass.  This binding agent was then deposited onto the hot-plate with 65m 
x 510m x ~5’ of High Pressure PEEK tubing (Upchurch, P/N 1543) in combination with 10-32 
female-female LUER, Teezel (Upchurch, P/N P-659) and BD 10ml Syringe, LUER-LOK™ 
Latex Free (Upchurch, P/N B-310).  Two different applications were used.  In some cases the 
binding agent was spread over the total surface of the silicon nitride membrane and in others one 
dot of binding agent was applied to the surface of the silicon nitride membrane (Figure 42). 

 

 

Figure 42. Polymer deposition onto silicon-nitride membrane of preconcentrator (see 
www.sandia.gov/sensor/PC_deposition_7-1-03.mpg (4.2 MB) for a video of the deposition). 

 
Carboxen 1003 40/60 mesh (Supelco, P/N 10471) was ball milled to ≤325 mesh and was 
deposited on top of the binding agent.  The preconcentrators were then placed in an oven at 
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~100ºC for 1-2 hours to allow for the adhesion of Carboxen 1003 to the polymer binding agent. 
(Figure 43). 

 

Figure 43. Preconcentrator with Polymer and Carboxen 1003. 

 
ires were then soldered to the preconcentrator utilizing a solder (62% Tin, 36% Lead, 2% 

elting point of 179ºC (350ºF).  This solder allows for a smooth and consistent 
flow of solder onto the platinum pads.  A smooth and consistent solder flow is very important to 

ch could lead to erratic and inconsistent readings, or a lack of 
heating voltage being applied.   

0. The resistance was 
ed by the T-Type thermocouple to establish a 

the preconcentrator responds to temperature in a 

 

W
Silver) with a m

avoid a weak/cold solder joint whi

5.3. Preconcentrator Heating 

Tests were conducted on the preconcentrator to identify the temperature response, linearity, and 
stability, as well as to identify the actual temperature achieved when 5 volts was applied for a 
prescribed duration.  Four preconcentrators and a T-Type thermocouple were placed in an oven.  
The oven was set to ~110ºC and allowed to stabilize.  The oven was then turned off and 
permitted to drop to room temperature (~23ºC).  During this process the resistance of the 
preconcentrator and the thermocouple was monitored using the Agilent 34970A datalogger.  The 
associated data was collected and plotted using Microsoft® Excel 200
plotted as a function of temperature record
calibration curve.  As can be seen in Figure 44 
linear manner.  
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 conditions.  Figure 45 shows all four 
preconcentrator temperatures as a function of time before, during, and after the heating.  All four 
reach a temperature of ~300ºC very rapidly and are fairly steady.  After the power supply was 
turned off, the preconcentrator temperature dropped back down to ambient temperatures very 
quickly. 
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Figure 44. Temperature vs. preconcentrator resistance. 

 
 
The preconcentrators were then connected to a power supply that was adjusted to supply 5 volts 
for 10 seconds.  The resistance value was calculated from the measured current and voltage 
utilizing Ohms Law and then plugged into the temperature-calibration curve fit to calculate the 
temperature of the preconcentrator under energized

PC Temperature
(5 volts applied for 10 seconds)

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35

Time (Seconds)

Te
m

pe
ra

tu
re

 (C
)

PC_09
PC_10
PC_11
PC_12

 

Figure 45. Preconcentrator tem fore, during, and after heating. perature as a function of time be
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5.4. Two-Piece Preconcentrator/Chemiresistor Testing 

Tests were conducted at the IMRL facility to determine the response of a chemiresistor sensor to 
m-xylene with and without preconcentration.  Results showed that by adding a microfabricated 
preconcentrator to a chemiresistor sensor, detection limits of m-xylene were decreased by more 
than two orders of magnitude, from 13.5 ppm to 61.8 ppb, without significantly increasing the 
complexity of the sensing system. 

Controlled chemical exposures were performed through the use of custom gas cylinders of m-
xylene with analytically verified concentrations or gas-washing bottles filled with liquid m-
xylene.  A range of concentrations are generated by diluting and controlling gas flows through a 
series of valves (SMC solenoid valve NVZ110 and Nupro/Swagelok stainless bellows valve SS-
4BK-1C) and mass flow controllers (Brooks Instrument 5850E mass flow controllers) operated 
through a LabVIEW interface on a Macintosh computer.  Analyte concentration levels were 

Preconcentrator devices are fabricated on a Bosch-etched silicon wafer, with p
heating elements supported by a thin silicon nitride membrane.  A solid analyte-ab
is dispersed in a thin dissolved polymer film used strictly for phase adhesion to the substrate.  
Individual preconcentrator substrates are also packaged in a 16-pin DIP for ease of electrical 

a small sensor system.  However, as effectiveness of the sensor is 
directly impacted by the proximity of the analyte source to the sensor itself, we hypothesized that 

etection limits could be additionally lowered by reducing the distance from the preconcentrator 
to the sensor.  Rather than working with a lateral diffusion distance from the two planar devices, 
we placed the two 16-pin DIPs in a face-to-face orientation to allow only a short vertical distance 
between the chemiresistor and the preconcentrat r.  Figure 46 shows a photograph of the custom 
housing designed for mating the two 16-pin DIPs in the lab.   

confirmed through the use of a RAE Systems ToxiRAE or ppbRAE photo-ionization detector. 

The chemiresistor sensor (A64) used in this study consisted of a four-chemiresistor array on a 
single silicon substrate with integrated on-chip platinum-wire temperature sensor and resistive 
heater bars for temperature control.  Arrays are packaged in a 16-pin DIP for ease of electrical 
connections.  Chemiresistor polymer solution preparation involves dissolving the polymer in a 
solvent and adding 40% by weight of 20-30 nm graphitized carbon particles.  The polymer 
solution is subjected to sonication from a point ultrasonic source to enhance ink uniformity, 
using 15 half-second pulses separated by one-second rest periods.  Solution deposition on the 
sensor silicon substrate is performed with an Asymtek Century Series C-708 automated fluid 
dispensing system. 

latinum-wire 
sorbent phase 

connections. Voltage pulses that are applied to heat the preconcentrator are controlled through 
manual triggering of a Systron Donner Model PLS 50-1 precision power supply. 

The use of two 16-pin DIPs to separately package the chemiresistor and the preconcentrator is a 
departure from previous work, where both devices were packaged within a single 32-pin DIP 
(Hughes et al., 2000).  Results from this work clearly showed the feasibility and the advantages 
of using the devices together in 

d

o
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Figure 46.  Chemiresistor and preconcentrator dies with custom housing for face-to-face mating.  
Both the chemiresistor die and preconcentrator die are packaged individually in 16-pin DIPs.  

5.4.1. Results and Discussion 

e sensor) and the typical temperature attained 
ncentrator for analyte thermal desorption (300°C in less than 1 millisecond, due to 

e small thermal mass of the silicon nitride membrane on the hotplate).   

5.4.1.1. Selection of Preconcentrator Phases 

From our initial screening, five preconcentrator phases were identified for further study:  
Carbosieve, Carbotrap, Carboxen 569, Carboxen 1000, and Tenax GR.  Each phase was prepared 
on an individual preconcentrator device and exposed to a flowing stream of 0.2% saturated vapor 
pressure of m-xylene (~21 ppm) for a five-minute period.  Subsequent to loading the 
preconcentrator phase with m-xylene, the devices were mated face-to-face with the chemiresistor 
using the custom housing, and pulsed with five volts for five seconds.  The magnitude of 
response of the chemiresistor sensor to all five phases, represented as an increase in 
chemiresistor resistance relative to the initial baseline resistance (∆R/Rb, %), is shown in Figure 
47.  As clearly shown, the Carboxen 1000 phase outperforms all other preconcentrator phases for 

 

Our work to date using the two-piece preconcentrator/chemiresistor configuration has focused on 
the detection of m-xylene (an aromatic hydrocarbon found in gasoline) as a representative 
environmental contaminant of interest.  We selected poly(ethylene-vinyl acetate) (PEVA) as our 
chemiresistor polymer, due to past experience with the responsive qualities of PEVA to m-
xylene exposures.  Commercially available preconcentrator phases were then considered for use 
in the study based on temperatures of absorption and desorption that would be consistent with 
environmental monitoring scenarios for analyte loading (~30°C under elevated temperature 
conditions to prevent moisture condensation on th
by the preco
th
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preconcentration of m-xylene, with an average ∆R/Rb of 143%, more than five-times the signal 
provided by any other preconcentration phase.  Carboxen 1000 was therefore selected for 
continued performance assessment. 

 

Figure 47.  Preconcentrator screening data for PEVA chemiresistor response to m-xylene vapor.   

 

5.4.1.2. Preconcentrator Enhancement of Chemiresistor Detection Limits 

In order to assess the performance improvement provided by a preconcentrator, a study of the 
detection limit for the unaided chemiresistor sensor was performed.  As mentioned previously, 
we had predicted the cap
saturated o three 

mes the standard deviation (σRb) of the sensor response during quiescent, unexposed (no 
chemical), ambient conditions.  This value was then divided by the average baseline resistance 

d to yield the relative change in resistance (3σRb/Rb,avg) that 
corresponds to a minimum detection limit above the noise threshold.  For the PEVA 

ability of chemiresistors to detect an analyte to be as low as 0.1% of the 
 vapor pressure.  The noise threshold of the sensor was estimated to be equal t

ti

(Rb,avg) during the quiescent perio

chemiresistor used in these experiments, 3σRb/Rb,avg = 0.249%.  The polynomial fit to calibration 
data (Figure 48) allows determination of a limit of detection of 13.5 ppm.  This detection limit of 
13.5 ppm corresponds to slightly less than 0.12% of the saturated vapor pressure of m-xylene 
(11,600 ppm under our typical laboratory conditions). 
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Figure 48.  Calibration curve for the unaided (no preconcentrator used) PEVA chemiresistor A64 
in response to m-xylene vapor. 

 
 
To assess the improvement in detection limits provided by preconcentration, the Carboxen 1000 
preconcentrator was exposed to a series of low concentration m-xylene streams, with 
preconcentration capability measured by the response of the PEVA chemiresistor.  When using 
the chemiresistor to detect extremely low concentrations of m-xylene through the assistance of a 
preconcentrator, as in this case, the thermal expansion of the PEVA polymer due to the heating 
of the preconcentrator device must be taken into consideration to avoid confusion with swelling 
caused by the presence of the analyte.  At the very low concentrations involved in a detection 
limit study, this is e mportant, as the temperature response of the chemiresistor begins 
to be on the order of the analyte response of th iresistor.  The necessary correction is 
accomplished by subtracting the response of the chemiresistor to an average blank heat pulse (no 
absorbed analyte) from the response of the chemiresistor to a corresponding analyte-loaded 
pulse.  Both the analyte-loaded pulse and the blank heat pulse are calculated as individual ∆R/Rb 
values, each with its respective baseline resistance value (to keep consistent with changes in 
ambient conditions that can impact the baseline), and simple subtraction of one value from the 
other correctly accounts for the temperature rise associated with the heat pulse.   

Applying similar logic to that previously used on the unaided chemiresistor, a detection limit was 
conceptually defined as a sensor signal that can be differentiated above the signal noise, 
quantitatively seen as a signal greater than or equal to three standard deviations above the mean 
noise level.  However, in this instance, the sensor signal, an analyte-loaded pulse, must be 
differentiated from the blank heat pulses, so the mean and standard deviation for the limit of 
detectio simple 
resist ce values.  As temperature correction must still be applied to remove the influence of the 

specially i
e chem

n are in reference to the set of blank heat pulse ∆R/Rb values, and not to 
an
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heat pulse, the sensor response corresponding to the limit of detection is calculated as the three 
standard deviations above the mean blank heat pulse, corrected by the mean blank heat pulse.  
The equation can be written as follows: 

 pulseheat  avg
pulseheat  avgb

pulseheat  avg
pulseheat  avgb

3
R

R3
R

R
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⎤
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⎝
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For the combination of the Carboxen 1000 preconcentrator and the PEVA-40-C chemiresistor, 
3σavg heat pulse = 0.153%.  Using the polynomial fit to data for preconcentrator exposures over a 
range of 0 to 2500 ppb (with an R-squared value of 0.9946) (Figure 49), the limit of detection at 
three standard deviations above the mean is 61.8 ppb.  Comparing both detection limits at three 
standard deviations above the mean, preconcentration of m-xylene therefore decreased the 
detection limit to less than 1/200th of the limit without preconcentration, an improvement of more 
than two orders of magnitude.  

 

 
 

Figure 49.  m-Xylene calibration curve for a PEVA chemiresistor coupled with a Carboxen 1000 
preconcentrator.  Each m-xylene exposure was for five minutes, followed by a five second, five 

volt pulse to the preconcentrator.  

 

Ongoing tests have shown that the Carboxen 1000 preconcentrator is similarly capable of 
enhancing the chemiresistors’ detection limits to other volatile organic compounds such as 
trichloroethylene and isooctane.  Work is currently underway to integrate the preconcentrator 
and chemiresistor into the same probe described in Section 3.3.  The next section describes these 
efforts. 
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5.5. Integrated Chemiresistor/Preconcentrator Probe  

In the previous section, the preconcentrator was packaged in a 16-pin DIP separate from the 
chemiresistor.  For field applications, an integrated housing containing both the chemiresistor 
and preconcentrator is desired so that a single field-deployable probe can be used.  The following 
sections describe the construction, calibration, and testing methods that were used for the 
integrated probe. 

5.5.1.  Construction of Field-Deployable Integrated Preconcentrator/Chemiresistor 
Probe 

A manifold was designed to mate the preconcentrator against the chemiresistor in a face-to-face 
configuration.  The manifold was designed and manufactured utilizing PEEK™ polymer 
(Polyetheretherketone).  The PEEK™ polymer was chosen because of its superior strength, 
ability to withstand high temperatures (up to 300ºC), and resistance to chemical solvents.  The 
preconcentrator was epoxied in the PEEK™ manifold to create an assembly that can be easily 
fitted with the chemiresistor (Figure 50).  The preconcentrator/PEEK manifold assembly was 
then mated to the 16-pin DIP with epoxy. The chemiresistor/preconcentrator package was then 
placed into the stainless-steel waterproof package and the PC wires were connected to two of the 
unused wires within the sensor cable (Figure 51). 

 

 

Figure 50.  Manifold assembly for integration of the preconcentrator with the chemiresistor 
waterproof package (see Figure 7). 
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Figure 51. Preconcentrator manifold assembly integrated with the chemiresistor. 

 

5.5 ting 

Thi as then calibrated and tested.  Figure 52 
sho iresistor assembly.  Two gas cylinders, one 
with dry air and one containing a chemical of interest (e.g., TCE, m-Xylene), were used in 
con c  on each output to allow for multiple concentrations by controlling 
the d dry air mixed at equal amounts on each 
flow en monitored by an 
MT ree different flow 
stre sure equal flow through each apparatus, adjustable flow control valves were 
plac aratus in conjunction with three flow meters down stream from the 
apparatus. Each sensor is placed into an apparatus and monitored by a Campbell Scientific, 
CR ontrol system.  The CR5000 also controls the 5volts applied to the 
preconcentrator by turning on and off the CR5000 switched 12volt output.  The switched 12volt 
out lator(P/N:NTE960, Specs: Vo:5V, Io:1A , 
PD: from the CR5000, is applied to the input of 
the gulator generates an output of 5 volts, which is applied to the 
pre c

.2. Calibration and Tes

s integrated preconcentrator/chemiresistor probe w
e preconcentrator/chemws the setup used to test th

jun tion with flow meters
 output of each bottle (e.g., TCE (50ppm bottle) an

 meter would generate a concentration of 25ppm.  The concentration is th
I 200 Micro Gas Chromatograph.  The flow is then divided into thM
ams.  To as

 ed before each app

5000 Measurement and c

put ran through a 3 terminal positive voltage regu
n the switched 12 volts, 15W, Vin:35V Max). Whe

re regulator, the voltage 
con entrator.    
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Gas Chromatograph Flow Meters Gas Cylinders 

TCE Dry Air 

Sensor Probes 

6-inch Steel Tubes 
Input flow regulated 

into each tube  

Campbell CR5000Output Flow 
Monitored Then Sent 

To Fume Hood  

Sensor Cables 

 
Figure 52.  Calibration and testing setup for the preconcentrator/chemiresistor assembly. 

 

 series of purge (pre-fire) pulses were needed to clear the preconcentrator of any previously 
ses are 5 seconds in duration (for exact timing and processes see 

tration” 
pulse, data collection is initiated at a rate of 1 data point every second for 60 seconds.  Prior to 
the last pre-fire (<20msec) pulse the sample rate  stepped up to a rate of 1 data point every 20 
millisecond (50/sec) for 10 seconds for 500 data point ack down to 
a rate of 1 data point e oints over a 4 minute 
and 30 second period.  Varying the data collection rate allows us to insure that we catch the pulse 

eek while voltage is being applied to the preconcentrator.  Additionally, it also enables us to 

 
A
accumulated chemicals.  All pul
Section 12.1)  As shown in Figure 53, the process starts with a series of five pre-fire pulses to 
purge the preconcentrator.  Data is collected during the pre-fire period.  After the fifth pre-fire 
pulse a 15-minute load time is started. One minute prior to the “Subtraction or Concen

is
s. The sample rate is stepped b

very second for 200 seconds for a total of 760 data p

p
keep the total number of data points to a minimum for processing purposes. 
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Figure 53.  One of six total cycles used during calibration of the preconcentrator. 

 
Figure 54 shows all six cycles of the experiment.  The first cycle consists of five pre-fire pulses 

oad at which time a subtraction pulse is initiated.  The subtraction 
pulse is a resistance measurement, with 5 volts applied, taken over a period of time while 
xposing the PC to dry air.  This subtraction pulse is then stored into memory for future use. As 

   After the subtraction 
pulse is complete, the chemiresistor is allowed to stabilize for ~5 minutes.  Following this 
stabilization period, five pre-fire pulses are initiated and a 15-minute exposure to the chemical 
as begins.  At the conclusion of the 15-minute load time, an exposure pulse is in

exposure pulse is a resistance measurement, with 5 volts applied, taken over a period of time 
while exposing the preconcentrator to a chemical of interest.  This exposure pulse is then 
subtracted from the subtraction pulse and the difference is the influence of the chemical of 

followed by a 15-minute l

e
soon as the subtraction pulse is complete (5 volt supply turned off), the chemical gas flow is 
started, which exposes the preconcentrator to the chemical of interest.  The chemical gas 
continues to flow through the apparatus for the duration of the experiment.

g itiated.  The 

interest on the preconcentrator and chemiresistor.  With that in mind, the preconcentrator can be 
exposed to multiple concentrations and a calibration curve can be generated. 
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5.5.3. Calculation of Confidence Level 

 
The determination of confidence was calculated by taking the standard deviation of a population 
of 50 data points while dry air was supplied.  The 1σ value (1 Standard Deviation) was 
multiplied by two to create a 2σ value and by three to create a 3σ value.  These values were used 
to calculate the limit of detection at a specific confidence level where 1σ: 68%, 2σ: 95%, 3σ: 
99.7%.  As seen in figure 1 only four of the fifty data points fell outside the mean ±1σ value.  In 
addition, all fifty values fell within the within the Mean ±2σ and the Mean ±3σ values.  Figure 
55 (lower left) shows the actual σ value and its associated tolerance span for each Mean 
±(1,2,3)σ. 

One of our concerns was that the individual pulses prior to the TCE pulses might be outside of 
the established 3σ values.  Figure 55 (lower right) shows that only one of our individual 
subtraction pulses was outside the 3σ values that were established during the 50-noise/detection 
limit pulses.  We also wanted to identify if there was a normal distribution of Max ∆
during the 50-noise/detec ears that within 1σ there 
is a normal distribution of values across the range. 

 
Figure 54.   All six cycles with one subtraction pulse and five exposure pulses. 

 

R/Rb values 
tion limit pulses.  As seen on the graph, it app
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(E18 response to fifty 5-second heating pulses of PC13 in dry air)
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Mean Value: 3.05E-03

1σ: 2.09E-04 (Confidence Level: 68%) 
 Mean ± 1σ = 2.84E-03 – 3.26E-03 
 

2σ: 4.19E-04 (Confidence Level: 95%) 
 Mean ± 2σ = 2.63E-03 – 3.47E-03 
 

3σ: 6.28E-04 (Confidence Level: 99.7%) 
Mean ± 3σ = 2.42E-03 – 3.68E-03 

The four individual dry fire Max ∆R/Rb values taken 
were as follows: 
 

3.32E-03: Falls within 2σ (500ppb) 
3.11E-03: Falls within 1σ (1ppm run) 
5.00E-03: Falls outside 3σ (5ppm run) 

Figure 55. E18-PC13 PEVA histogram of 50 data points with dry air supplied during periodic 

TCE concentration as a function of ∆R/Rb.  A power trend line 
(y=cxb, where c and b are constants) was applied to the data points.  The 3σ value was then 
applied (x) to the power curve line fit.  As seen in Figure 56, the limit of detection for E18-PC13 
is 2.2 ppm with a power-law fit. 

2.94E-03: Falls within 1σ (50ppm run) 

 
 

heating of the preconcentrator. 

 
 
 

5.5.4. Calibration Results. 

Calibration of the Chemireisistor/Preconcentrator sensor package consisted of exposing the 
sensor package to 50ppm, 5ppm, 100ppb, and 50ppb concentrations of TCE over a given amount 
of time.  The data was graphed in 
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Figure 56.  E18-PC13 PEVA calibration to TCE. 

ore-Tex membrane.  Both 
ethods consisted of the following: ~5ppm TCE in the gas phase, 15-minute load time, and 5-
cond pulse at 5-volts. 

 
Method #1

 

 
 

5.5.5. Hypothesis/Methods of Testing 

 
These tests were conducted with the intention of identifying the different responses between two 
testing methods.  The testing methods were conducted to identify the reabsorption behavior of 
the analyte gas onto the preconcentrator following single and multiple pre-fire pulses and to 
determine whether or not a preconcentrator completely covered with sorbent responds the same 
as a preconcentrator with only a dot of sorbent.  The testing methods were conduced with 
method #1: initial pre-fire pulse only, and method #2: 5 pre-fire pulses to allow the 
preconcentrator to purge any residual TCE to disperse through the G
m
se

: 

2. Five (5) pre-pulse 
3. 15-minute load time 
4. 10 baseline readings  
5. 5 second pulse at 5-volts (Dry-Heating pulse) 

1. Dry air applied 

6. TCE (~5ppm) started 
7. 15 minute load time 
8. 10 baseline readings 
9. 5-second pulse at 5-volt (TCE-Heating pulse) 
10. Repeat steps 6,7 four more times for a total of 5 TCE-Heating pulses. 
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Method #2 
1. Dry air applied 
2. Five (5) pre-pulse 
3. 15-minute load time 
4. 10 baseline readings 
5. 5 second pulse at 5-volts (Dry-Heating pulse) 
6. TCE (~5ppm) started 
7. Five (5) pre-pulses 
8. 15 minute load time 
9. 10 baseline readings 
10. 5-second pulse at 5-volt (TCE-Heating pulse) 
11. Repeat steps 6-8 four more times for a total of 5 TCE-Heating pulses. 

 
 

5.5.5.1. Results of Method #1 

This method utilized only one pre-fire pulse to purge the preconcentrator sorbent prior to the 
aseline pulse.  As can be seen in Figure 57 one there is apparent drift after the Concentration 

pulse. 
b

E18-PC13-PVTD DeltaR/Rb Difference
(TCE Pulse - Dry-Air Pulse)

Note: Each TCE Pulse was subtracted from the same initial dry-air pulse
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Figure 57. E18-PC13-PVTD response to Method #1. 

 
5.5.5.2. 

This method utilizes five pre-fire pulses to purge the PC sorbent prior to the dry fire pulse.  As 
seen in Figure 58 a purging pulse appears to create a much more stable and clean pulse.   

Results of Method #2 
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Figure 58. E18-PC13-PVTD response to Method #2 

 
 
The results of the ∆R/Rb Max values can be noted in Figure 59.  The response is greater without 
pre-fire pulses than with.  This could be due to resorbtion of material onto the Preconcentrator.  
Also noticed was that the polymer reached equilibrium more rapidly during method 2.  With 
these issues in mind it was decided that the five pre-fire pulses, prior to the subtraction pulse, 
would be the best method for future testing.  It was also noted that the preconcentrator that was 
completely covered with Carboxen 1003 provide erratic results compared to the dot deposition 
method of sorbent onto the preconcentrator. 
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Figure 59. E18-PC13-PVTD maximum changes in relative resistance. 
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5.5.6. Data Processing 

 
The data was gathered by collecting the resis ings (R) from the chemiresistor and tance read
subtracting the average of ten (10) baseline values taken just prior to the pre-fire pulse.  This 
baseline average (Rb) is then used to calculate ∆R/Rb, where ∆R = R–Rb. 

 
 ⎟⎟
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This process is done for both the subtraction and the concentration pulses.  Only one subtraction 

r conditions.  The subtraction is followed by a 15-minute load time, 
pulse is initiated.  Four more concentration pulses are completed and 

 with 5 volts for 5 
seconds and 15 minutes apart.  This test was conducted to identify the point at which the 

ights.  PC13 mounted on chemiresistor E18 
ch recurrent pulse, the preconcentrator ∆R/Rb dropped until 

pulse is taken under dry ai
and then the concentration 
subtracted from the initial subtraction and a new ∆R/RbDiff values is calculated 

5.5.7. Stabilization Testing 

The initial stabilization testing was performed after the preconcentrator was allowed to sit for 
more than 24 hours in ambient conditions.  The preconcentrator was pulsed

preconcentrator produced consistent pulse he
produced expected results. With ea
the Preconcentrator was purged and reached a stable and consistent reading.  PC14 mounted on 
chemiresistor E22 produced erratic results.  PC14 showed results that were not expected; with 
each recurrent pulse the preconcentrator did not drop and reach a stable and consistent reading 
(Figure 60).  From the plot, we determined that at the sixth pulse, the preconcentrator had 
reached a fairly stable condition.  At this point the preconcentrator would be considered purged 
and further loading could be performed.  
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Figure 60.  Stabilization test to determine number of purges required to clean the 

preconcentrator. 

 

he different load time testing was conducted to identify if different load times would affect the 
pulse height.  The test was conducted starting with a pre-fire process to ensure the 
preconcentrator was purged of any unknown airborne contaminants.   The preconcentrator was 
then allowed to load for a 60-minute duration and then pulsed.  This process continued in the 
follow order 30, 15, 5, 5, 15, 30, 60-minute load time.  Figure 61 shows the results of the test. 

 

 

5.5.8. Different Load-Time Testing 
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Figure 61.  Sensitivity to different load times. 
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PC13 mounted on chemiresistor E18 again produced expected results; with each pulse the 
preconcentrator ∆R/Rb increased as the load time increase.  PC14 (with the carbon spread over 
the entire membrane) mounted on chemiresistor E22 produced erratic results. 

Analysis using VERI 

Analysis of experimental data from an array of chemiresistors requires examination of multiple 
signals simultaneously – one from each of the polymeric films in the array.  Some early work in 
the analysis for chemiresistors focused on the use of three-dimensional plots, where each axis on 
the graph can represent the response of a single polymer film.  Through simple mathematical 
transformation of the individual and combined sensor response signals, each sensor detection 
event can be spatially represented for visual convenience on the surface of one-eighth of a unit 
sphere, as illustrated in Figure 62.   

The difference in the responses for the same load times may be attributed to the previous load 
time in the sequence.  For example, the response of the E18-PC13 60-minute load time shows a 
difference of ~.01 ∆R/Rb.  The load time prior to the first reading was 60 minute and the load 
time prior to the last reading was 30 minutes. 

The erratic reading of PC E22-PC14 could be attributed to the increased thermal mass of the 
preconcentrator at its outer edges.  The preconcentrator has very little thermal mass on the 
membrane itself, but at the outer edges of the preconcentrator the thermal mass increases due to 
the increased amount of silicon.  This could cause inconsistent heating of the preconcentrator, 
which would cause inconsistent purging of the TCE from the Carboxen and erratic readings by 
the chemiresistor. 

6. Data Analysis and Discrimination 

6.1. Discrimination 
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Figure 62.  Example of a three-dimensional plot showing combined response data from three 
chemiresistors in a particular sensor array to 12 different analytes. 

 

Obviously, however, this type of analysis is limited to three polymer films at a single time.   To 
address this issue, the Visual-Empirical Region of Influence (VERI) pattern recognition 
algorithm was used (http://www.sandia.gov/imrl/XVisionScience/Xusers.htm).  The VERI 
algorithm, developed at Sandia, allows determination of grouping for n-dimensional data in a 
manner consistent with human perception of data clusters through application of an established 
region of influence shape on a two-dimensional projection of the n-dimensional data.  With each 
chemical detection signal as a combination of responses from all n sensors, any subset of three 
detections can be placed on a hyperplane for analysis with the region of influence shape, shown 
in Figure 63.   

 

Figure 63.  The region of influence shape used in Sandia’s VERI algorithm for pattern 
recognition. 
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The two particular detections being analyzed for placement in a single group are placed in the 
center boxes of the VERI shape, with the size of the fixed shape scaled to correspond to the 
distance between the two points.  Every other detection is then individually examined for 
grouping with one of the other two points.  As shown in Figure 64, grouping of the two 
detections is dependent upon finding no other detection points that fall within the boundary of 
the VERI shape.  The algorithm can therefore be used to determine grouping of unknown sensor 
detection data by analyte or class of analyte, or to evaluate successful discrimination of a known 
set of analytes based on a particular subset of sensors.  Our use of the VERI algorithm 
specifically focused on the latter application, with the evaluation of an array to correctly identify 
different analytes.  We also used the VERI algorithm to determine optimum array size based on a 
particular data set.  In one particular study, we determined that an optimized array of four 
chemiresistors was able to correctly identify six different analytes more than 82% of the time.  
Complete details of these studies can be found in Davis et al. (2002). 

 

 

Figure 64.  Example of application of the VERI shape to four points of two-dimensional data for 
grouping determination. 

 
 

6.2. Partial-Least-Squares Data Analysis 

Analysis was also perfor rray calibration.  
Customary calibrat res of a particular 
analyte at a given concentration within a sequence of increasing concentrations, at a fixed 
temperature and relative hu ple).  Our analysis worked to 
determine the applicability of the tion d  a carefully controlled laboratory 
environment to the uncontrolled environment ty n the field.  For this work, partial 
least squares (PLS) was used as a multivariate data analysis method, allowing simultaneous 

med on the data obtained from chemiresistor a
ion methods typically involved a process of repeated exposu

midity (see Figure 65 for an exam
calibra ata obtained in

pically found i
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examination of all senso ata from emire nd associated temperature sensor.  
A key observation was atic calibration sequence allowed for 

nsor drift or hysteresis ed in the sensor analyte detection signal.  To try to minimize 

redict concentrations from the other calibration 
quence.  In every case, the PLS calibration model based on randomized calibration data was 
perior in predicting concentrations, both in different temperature and humidity conditions, as 

libration da
data.  The customary process for calibration was therefore revised to include randomized 
concentration sequences, to take advantage of this predictive robustness.  Details of this work 
can be found in Rivera et al. (2003). 

r d  the ch sistor sensors a
that the customarily used system

se to be includ
these effects, a randomized sequence of exposure concentrations was proposed for comparison to 
the systematic calibration sequence (see Figure 66 for example).  Using a cross-validative 
approach, the PLS calibration model determined from either the systematic or the randomized 
calibration sequence was used to try to p
se
su
well as for short or long term durations between collection of ca ta and predictive 

 

 

Figure 65.  Example of raw resistance plot from a single chemiresistor under the systematic 
calibration sequence. 
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Figure 66.  Example of raw resistance plot from a single chemiresistor under the randomized 
calibration sequence.  Note the reduction in drift and hysteresis. 

onitoring (RTDM) file 
was created to give a visual of the programs functions for demonstration purposes.  Figure 67 

ows a screen image of the created RTDM file. 

 

 

6.3. Multivariate Data Analysis using Statistica™ 

Section 4.1.1.3 provides a detailed discussion of the calibration process for the development of a 
multivariate regression model using Statistica™.  This section presents a demonstration of a 
chemiresistor that was calibrated and deployed with a multivariate factor-analysis model. 

The chemiresistor E4 was calibrated to water and acetone separately.  The results were analyzed 
using Statistica™ and the resulting model was programmed into a Campbell CR10X data logger 
(see Section 12.2 for a listing of the program).  A Real Time Data and M

sh
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Figure 67. Screen image of the RTDM file. 

 
The resistances of each of the four chemiresistors in the array are shown on the left of the screen, 
and the rapid response of the chemiresistors upon exposures to various chemicals can be 
observed.  The right side of the screen allows the user to see the program functions.  Also located 
on the right side are alarms that will turn on once the sensor is exposed to water and/or acetone.  
Figure 68 shows the response of the chemiresistor to an exposure of nail polish remover, which 
contains both acetone and water.  
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Figure 68.  Screen image of the RTDM file upon exposure to nail polish remover. 

 
If acetone or water alone is exposed to the chemiresistor the appropriate indicator will light up, 
and the calculated concentration will be displayed.  The buttons are linked to flags in the 
program that are triggered “high” once a threshold concentration has been exceeded.  The 
threshold concentrations are set relatively high for demonstration purposes.  This demonstration 
shows the chemiresistor’s ability to discriminate between analytes, quantify the concentrations, 
and provide a rapid response.  A video of the E4 chemiresistor demonstration can be viewed 
online at www.sandia.gov/sensor/E4_chemiresistor_demo.mpg.  

hree field studies were conducted to evaluate engineering requirements, long-term 
performance, and other issues associated with tion of the chemiresistor in actual 

7. Field Studies 
T

 the opera
environmental conditions.  The three sites include Edwards Air Force Base, CA, the Nevada Test 
Site, and the Chemical Waste Landfill, NM.  Results of the Edwards Air Force Base and Nevada 
Tests Site field tests have been recently documented (Ho et al., 2002; Ho et al., 2003b), so the 
focus of this section will be on the field tests at the Chemical Waste Landfill. 
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7.1. Edwards Air Force Base 

In FY02, field tests were conducted at Edwards Air Force Base to test the ruggedness, operation, 
and performance of the in-situ chemiresistor probe developed at Sandia.  In the first phase of 
testing, the housing was submerged beneath the water table at well 18-MW37.  The housing was 
lowered deeper and deeper beneath the water table until leaking was observed.  In the second and 
third phases of testing, a chemiresistor sensor was placed in the housing and connected via cable 
to a data logging station that operated continuously using solar power (Figure 69).  The sensor 
was lowered down the well and operated for a period of time in both the unsaturated and 
saturated zones.  Major findings and recommendations regarding these tests include the 
following. 

• The 304 stainless-steel housing showed signs of corrosion over the course of the 
tests.  The operation of the chemiresistor sensor was not adversely impacted, but 
the use of plastic housings (e.g., PEEK) may decrease the corrosion of the 
housing in oxidizing aqueous environments. 

• The Gore-Tex® polymer membrane prevented liquid water from entering the 
housing up to depths of ~30 ft. 

• The chemire riod in well 
18-MW37 using a Campbell Scientific data logger powered by a 12 amp-hour 
battery and 20-Watt solar panel.  Data were logged from the station manually 
using a laptop and serial connection; we recommend implementing a cell phone 

wireless communications device) for the capability to log data 
remotely and automatically. 

rations (> 1000 ppmv) are desired. 

• The results of all four polymers on the chemiresistor sensor chip showed 
instability during the field tests, even though the temperature and relative 
humidity were nearly imated concentrations 
using the chemiresistor  We speculate that the 
large water-vapor concentrations (100% relative-humidity environments) may 
have caused condensation and spurious readings (continual sorption and creep of 

e use of automated temperature control (or continuous heating) 
emperature above the local ambient may prevent condensation 

sistor sensor operated continuously over a four-month pe

modem (or other 

• The measured concentrations (using off-site laboratory analysis of grab samples) 
near the surface of the water table at well 18-MW37 were too low for detection by 
the chemiresistor, so direct comparisons could not be made.  The use of an 
integrated preconcentrator assembly to increase the detection limits of the 
chemiresistor is currently being investigated.  Additional tests in wells with higher 
concent

constant (~21ºC, 100% RH). Est
 readings were anomalously high. 

the polymers).  Th
to keep the chip t
and improve the stability. 

A complete description of these tests and the results are provided in Ho et al. (2002).  The report 
can be viewed online at www.sandia.gov/sensor/SAND2002-4135.pdf. 

 

 83 



 

     

Figure 69.  Left:  Lowering sensors down well 18-MW37.  Middle: View of cables from top of 
well casing.  Right: Downloading data from the data logger. (from Ho et al., 2002) 

icals onto polymer films to produce a change 

ent and testing of the sensor 
systems.  In addition, issues such as data processing, noise, and interferences from fluctuating 
environmental variables were also encountered and evaluated during the field tests. Results 
showed that both sensors could be operated remotely and continuously for long-term monitoring 
applications using commercial data-acquisit ms and custom-designed packaging.  Both 
the chemiresistor and SAW sensors experien g al and were impacted by 
fluctuations in temperature and humidity.  However, results from the chemiresistor showed that 
exp he 
f
c  
co

 A com
and Lohrstorfer (2002).  The final SAND report detailing the tests at the Nevada Test Site can be 

www.sandia.gov/sensor/SAND2003-0799.pdf

 

7.2. Nevada Test Site 

Microchemical sensors developed at Sandia National Laboratories were tested at the Nevada 
Test Site as part of the Advanced Monitoring Systems Initiative program. Two sensors, the 
chemiresistor sensor and the surface-acoustic-wave (SAW) sensor, were evaluated in the tests 
(Figure 70).  Both sensors rely on sorption of chem
in an electrical signal that can be recorded and calibrated, but different transduction mechanisms 
are used.  The primary purpose of the tests was to evaluate the feasibility of using these devices 
in potentially long-term, unattended applications such as long-term monitoring of subsurface 
contaminants.   

A complete monitoring system was developed that provided real-time monitoring of the sensors 
via the internet.  Engineering issues such as sensor packaging, data acquisition, power 
requirements, and telemetry were addressed during the developm

ion syste
ced drift in the si n

osure to large concentrations of contaminants (e.g., trichloroethylene) overwhelmed t
luctuations caused by temperature and humidity variations.   Results also showed that the 
hemiresistor sensor exhibited better stability and sensitivity than the SAW sensor for the
nditions and analytes that were tested, which was contrary to initial theoretical predictions. 

plete description of these tests and the results can be found in Ho et al. (2003a,b) and Ho 

viewed online at .  
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Figure 70.  Sandbox Test.  Left:  Placement of tubes for contaminant (center tube) and sensors.  
Right:  Sandbox with data-logging station in background. (from Ho et al., 2002)   

 

7.3. Chemical Waste Landfill 

7.3.1. Introduction 

A number of improvements that were recommended in the previous field tests were incorporated 
into a real-time in-situ chemiresistor monitoring syste at the Chemical Waste 
Landfill.  The suggested improvements include the use of multivariate data analysis to provide 
real-time processing and interpretation of the chemiresistor-array data.  In addition, localized 
heating was added to the chemiresistor chip to maintain the local temperature above the dew 
point in water-saturated environments. 

prevent condensation.  
 thermocouple and a pressure transducer are also deployed in the saturated-zone well to 
onitor groundwater temperature and water level.  A multivariate regression model was 

developed through rigorous calibrations of the chemiresistor sensors to different concentrations 
s programmed directly into the 

data logger so that data could be processed in real time (see Section 12.3 for the Campbell 23X 

m deployed 

The monitoring system at the Chemical Waste Landfill includes two chemiresistors to detect 
trichloroethylene (TCE): one is deployed 60 feet below the ground surface in the unsaturated 
zone, and the other chemiresistor is deployed near the water table approximately 500 feet below 
the surface.  A relative humidity sensor, thermocouple, and pressure transducer are also deployed 
in the unsaturated zone well to monitor changing environmental conditions.  In the saturated-
zone well, localized heating is implemented on the chemiresistor chip to 
A
m

of TCE under varying environmental conditions.  This model wa

program).  This system has been operating continuously since March of 2003.  A cost analysis of 
this field test indicated that the annual cost of remotely operating the in-situ chemiresistor sensor 
system is less than the costs associated with manually sampling two wells (with off-site 
laboratory analysis). 
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7.3.2. Data Logging and Processing 

To collect the sensor information at the Chemical Waste Landfill (CWL) the Campbell 
Datalogger CR23X was used.  Since the CWL is a remote site without convenient access to 
electrical outlets, a battery was used to power the CR23X.  An 80-amp hour battery 
manufactured by Interstate was used to power the CR23X.  The CR23X datalogger will operate 

the tripod (Figure 71).   

 

accurately on a range of 11 to 16VDC.  To ensure that the battery voltage of the datalogger 
remains above 11VDC, a 20-watt solar panel is used to recharge the battery.  The datalogger has 
constant power and collects data at preset intervals.  Once the data is collected the program turns 
on a cell phone that is housed inside the datalogger.  The CR23X interfaces with web posting 
software via the cell phone.  The CR23X, cell phone, and modem are all in a Campbell Scientific 
enclosure that is mounted on a tripod.  The solar panel and a Yagi antenna are also mounted on 

 
 remote data-logging stations next to well D3Figure 71.  Solar-powered  at the Chemical Waste 

Land

 
Two wells at the CWL were monitored for TCE concentration.  The first well monitored was D3 
with the chemiresistor E19.  The chemiresistor E19 had been calibrated for different 

We also monitor the temperature, humidity, and atmospheric pressure of the well D3 for use in 
the model.  The physical parameters were monitored with an Omega Engineering T-type 

fill. 

temperatures, humidity, and TCE concentrations following a multivariate calibration procedure 
found in Section 4.1.1.3.  The results were analyzed using Statistica™ and a multivariate model 
was entered into the program for the CR23X: 
 
 

TCE (ppm) = 2.26E+03 –2.19E+02*TempC + 3.82E+05*∆R/Rb PNVP*∆R/Rb PEVA

+ 2.40E+03*∆R/Rb PVTD*TempC + 1.43E+03*∆R/Rb PEVA*TempC + 2.99E+01*∆R/Rb PVTD*Vp – 
4.75E+04*∆R/Rb PIB *∆R/Rb PNVP*TempC + 8.07E+03*∆R/Rb PIB*∆R/Rb PVTD*∆R/Rb PEVA*TempC 

Where:  
TempC = Temperature of sensor in degrees Celsius 
Vp = Water vapor pressure of water in pascals 
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thermocouple, HX92 humidity probe, and a PX215 pressure transducer.  The parameters were 
used to report the in-situ conditions of the well and to correct for temperature and water vapor in 
the multivariate model.  The model generated by Statistica™ relies on a baseline value that was 
establ ce of 
w  
exposing esponse.  

able 7 shows the power functions for the water calibration of the chemiresistor E19. 

re calibration for chemiresistor E19. 

ymer Calibration Equation 

ished at 9 ºC in dry conditions (0% relative humidity).  To compensate for the presen
ater vapor, an additional calibration to water vapor alone was performed. This was done by

 chemiresistor E19 to known concentrations of water vapor and plotting the r
T
 

Table 7.  Vapor pressu

 Pol
PIB y = 3E-06x0.9584

PNVP y = 6E-07x1.7798

PVTD y = 3E-06x1.1034E19 

PEVA y = 4E-07x1.3308

x = Water vapor pressure (Pa) 
y =  (∆R/Rb) 

 
The vapor pressure of the system at the time that the baseline is recorded is plugged into the 
water vapor calibration for each polymer.  The result is plugged into the following equation to 

 

 

generate a vapor-pressure-corrected baseline. 

Vapor-pressure-corrected baseline Ω
1+⎟⎟

⎠
⎜
⎝ Rb

⎞⎛
Ω

= R  
⎜ ∆ ionVPCalibratR

(9) 

Wh
R 

 
The program then takes the vapor pressure corrected baseline and corrects for the temperature.  

tem  the calibration apparatus in the oven and flowing dry air 
cro r to 
su ture 

cali E19. 

r the chemiresistor E19 

ere: 
Ω = Baseline resistance of polymer, not corrected.  

To compensate for the effects of temperature the response of the chemiresistor was calibrated for 
perature.  This was done by placing

a ss the sensors.  The dry air passes through a 50ft of copper tubing prior to the senso
in re that the temperature of the air is equal to that of the oven.  Table 8 shows the tempera

brations for each polymer on the chemiresistor 
 

Table 8.  Temperature calibration equations fo

 Polymer Calibration Equation 
PIB y = 0.2279x + 125.53
PNVP y = 0.167x + 97.305 
PVTD y = 0.3871x + 222.32

E19 

PEVA y = 0.624x + 147.02 
x = Temperature ºC 
y = Resistance (Ohms) 
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The program uses the slope of the temperature calibration equations for each sensor to 
compensate for the temperature of the ambient environment: 

por Corrected Baseline = VPCorrected – Slope*(Ambient Temp -9 ºC)  
  (10) 

 
The eline is then recorded by the datalogger and used in the 

 
ope n.  Two 
com sducer 
and the temperatu

The ible pressure 
tran le, and a chemiresistor.  The pressure and temperature were monitored 

 T-
typ r the 
che .    
The following equation shows the model generated by Statistica™ for chemiresistor E25, which 
is c

b PECH – 3.82E+07*∆R/Rb PECH*∆R/Rb PIB –  

Sen  on the chip in 100% 
ment 

of M
g the 

pro  
sinc  
~25ºC, slightly above the am

he  on 
the tific 
AM  
the LogerNet software offered by Cam

tions 
of The 
bas the 
resi dicted chemical concentration is 

 
com r 
significant changes that may occur in concentration over short durations.  

 
 Temperature & Va

 temperature and vapor corrected bas
Statistica™ model to predict the chemical concentration in the well.  The chemiresistor E19

rated successfully and without incident for the duration of the field demonstratio
mercial sensors malfunctioned in the well D3.  They were the PX215 pressure tran

re/humidity probe.  These sensors were replaced with functional ones.  
 

 second well monitored was MW2BL.  The well was monitored with a submers
sducer, thermocoup

with a CS400 submersible pressure transducer from Campbell Scientific and a submersible
e thermocouple, respectively.   A total of three chemiresistors were deployed to monito
mical concentration of this well (two malfunctioned because of water leaking into the probe)

urrently operating in the well. 

 
TCE (ppm) = -3.45E+00 + 1.56E+05*∆R/R
1.88E+06*∆R/Rb PECH*∆R/Rb PEVA + 5.79E+05**∆R/Rb PNVP **∆R/Rb PEVA + 4.62E+07*∆R/Rb PIB*∆R/Rb PEVA 

 
 

sors were calibrated with the heater bar activated to yield ~25ºC locally
humidity conditions.  All calibration techniques were chosen to represent the in-situ environ

W2BL.  This eliminated the need to mathematically correct the baseline for temperature and 
humidity.   Chemiresistor E25 was deployed after E20 and E21 failed due to water breachin

be. This sensor was placed approximately 10 ft above the water level and has been operating
e March 2003. A constant 3 volts is applied to the heater bar to maintain the temperature at

bient groundwater temperature of ~20ºC.  A chronology of 
deployment events is listed in Section 12.4. 

T  multiple sensors used in the field demonstration occupied all of the differential channels
CR23X.  Additional channels were made available through the use of a Campbell Scien
16/32 relay mutliplexer.   The CR23X is programmed using the Edlog program found with

pbell Scientific. The program has a prescribed threshold 
of 5000-ppm TCE.  This is done to avoid false positives that can be caused by rapid fluctua

water vapor or temperature. The multivariate calibrations rely on a ∆R/Rb values.  
eline value, Rb, is calculated once a week at midnight by taking a two-minute average of 
stances of each polymer/carbon composite.  The pre

calculated using this baseline value for one week.   The baseline is recalculated every week to
pensate for any drift that may occur.   As a result, this system is designed to monito
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7.3

A w

at t the 
loca

 

.3. Web Posting 

eb site was created to post the data collected from the Chemical Waste Landfill in near-real-
time (Figure 72).  The website displays many different aspects of the monitoring station located 

he Chemical Waste Landfill (CWL), such as current subsurface sensor readings, maps of 
tion and wells, live video of the site (SNL internal use only), and photos of the sensors. 

.  

 

Figure 72.  Web site containing near-real-time data collected from the Chemical Waste Landfill 
(www.sandia.gov/sensor/cwl). 

 

A u
loca s 
(LoggerNet Version 2.1, Real Tim

tware, 
RT
and are 
app r to set-up, configure, and retrieve data, locally and remotely, from 

pro ieval.  The Setup and Connect 
feature of L

nique aspect of the web site is the ability to display near-real-time data from a remote 
tion.  This is accomplished by utilizing two Campbell Scientific, Inc. software package

e Data Monitor (RTDM) Version 1.6) and a cellular 
transceiver with an external RJ11C telephone interface.  A computer with LoggerNet sof

DM software, and a Hayes-compatible phone modem is connected to a standard phone line 
 used to call the cellular equipped data-logging station every hour.  The LoggerNet softw
lication allows the use

multiple data-loggers.  The Edlog feature of LoggerNet allows the user to create unique 
grams that can collect, process, and store data for future retr

oggerNet allows the user to connect to the logger on a specified schedule allowing 
the user to collect data without human initiation. 
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RTDM is a software application that allows the user to create a unique data display.  Through th
 of RTDM Designer (Figure 73), the user can create an object-oriented form, which ca
lay data from a data (*.dat) file. Items such as numeric and text displays, charts/gra

e 
use n 
disp phs, 
lar  

 

a ms, and diagnostic data can be display and manipulated based on the creators needs.

 
Figure 73.  Screen image of RTDM Design Center. 

 
RTDM monitors the source data file and when th
informa
initiate
Photog
can the

e source data file is updated, RTDM updates the 
tion contained within a currently running form.  Once the data is updated, RTDM 

s a Timed Output Image, which creates a Graphics Interchange Format (GIF) or Joint 
raphic Experts Group (JPG) file and posts it to a specified path.  These GIF or JPG files 
n displayed via the web (Figure 74). 
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Figure 74.  Screen image of subsurface data posted to www.sandia.gov/sensor/cwl.  

 

8. Alternative Chemiresistor Designs and Applications 

8.1. Chemicouples™ 

The Chemicouple™ is an alternative chemiresistor design that relies on the capillary action of 
the ink to distribute the carbon/polymer composite onto the electrodes.  The major benefit of this 
design is that it does not rely on a manual topical deposition technique that tends to yield large 
variations in the deposited polymer.  A crude Chemicouple™ was constructed by cutting equal 
lengths of 30-gauge wire and then stripping both ends.  The shielded part of the wire was then 
super-glued together.  One side of the exposed wires was trimmed to 5 mm. The trimmed end is 
then fully submerged in the polymer/carbon ink and let dry (Figure 75). 
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Figure 75.   (Left) Chemicouple™ prior to the polymer/carbon coating.  (Right) Chemicouple™ 

after dipping in polymer/carbon ink. 

 
 

icouple™ resistance is 
te stable. A significant advantage of the Chemicouples™ is that 

ey are extremely easy and cheap to manufacture.   

A set of 4 Chemicouples™ were soldered into a 16-pin socket.  The sensitivity of the 
Chemicouples™ was tested by placing the socket in a modified Nalgene bottle and exposing 
them first to dry air and then to 1000-ppm TCE.  All of the Chemicouples™ in the socket 
responded in a similar manner during the introduction of TCE.  Figure 76 shows the response of 
two of the Chemicouples™ on the socket.  A notable increase in the Chem
recorded, and the response is qui
th

 
Figure 76.  Chemicouple™ response to 1000-ppm TCE. 
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8.2. ChemSticks™ 

on/polymer ink for more uniform 
distribution and better repeatability.  Figure 77 shows some conceptual sketches of the 

ChemSticks™ are similar in design to the Chemicouples™, except that the leads are fabricated 
on a solid surface.  The solid is envisioned to be a thin object, such as a glass or ceramic rod.  
The ChemSticks™ could be dipped directly into the carb

ChemStick™ design (SNL Technical Advance SD-7373).  A cooperative research and 
development agreement (CRADA) is currently investigating the manufacture and performance of 
these devices. 

 50 or 100 micron 
separation (front 

and back) 

 
 

50 or 100 micron 
separation (± 2%)

Gold on the sides 

to the gold 

to provide “pads” 
for soldering.  

Alternatively, the 
wires could be 

soldered directly 

~ 5 mm? 

regions on the 
end of the glass 

rod~ 3 mm 

wires soldered to 
gold leads on 
glass rod 

 

Figure 77.  ChemStick™ designs. 

 

8.3. Bioresistors™ 

An increasing demand for real-time, rugged, inexpensive, and easy-to-use biological sensors has 
arisen in recent years. There is a national security concern over detecting both airborne and 
aqueous biological warfare agents, and there is a strong desire in the environmental safety and 
health arena to develop quick and simple methods for detecting biological contaminants such as 
Cryptosporidium and Giardia in the nation’s water supply. However, existing methods for 
detecting biological warfare and water contaminants can be costly and time consuming. Some of 
the methods include manual sampling and lab analysis, SAW sensors, fluorimetry, and 
cantilever-based sensors. These methods have several shortcomings. The manual method 
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requires significant time and labor costs, SAWs require delicate high-frequency electronics, and 
microcantilevers are not currently field deployable.  

Our recent activities have produced an alternative approach to developing biological sensors 

lar imprinting methods (Jenkins et al., 2003) and the use of polymer-based 
chemiresistor sensors (Ho and Hughes, 2002 and U.S. Patent 6,017,440) have been studied 

 has significant potential that will 

We have recently developed methods to build and test a molecular imprinted polymer-based 
hemiresistor. This involves using thin-filmed polymer layers with molecular imprinting that will 

allow the biomolecules to absorb into the polymer. Another approach is based on 
biofunctionalization of the metal resist and silicon surface. This involves direct binding of the 
sensing layer onto the chemiresistor and monitoring the change in resistance as the antigen binds 
to the sensing layer. The biomolecules of interest for this study are avidin-biotin, BSA-aBSA, 
and, time permitting, a viral simulant. 

The imprinted polymer-based sensors were assembled by taking two monomers of a polymer and 
then polymerizing the monomers around the target molecule. Once the polymer was formed the 
target molecule was removed from the polymer via dissolution using a flushing solution. This 
leaves an imprint of the molecule in the polymer (Figure 78). In effect this creates a plastic 
antibody or binding site that is unique for the target molecule. The conductive medium used in 
the polymer was lithium ions. Lithium ions are biologically more compatible than the carbon 
particles that are currently used in the chemiresistors.   

using molecular imprinting with polymer-based conductometric sensors (chemiresistors).  
Although molecu

previously, the combination of molecular imprinting with polymer-based chemiresistor sensors 
has not been widely investigated. We believe this approach
provide new avenues for the development of biological sensors, and a Technical Advance that 
describes the proposed processes and methods has been submitted (Kooser et al., 2003). 

c

                          

Figure 78. Illustration of molecular imprinting by polymerizing monomers around a target 
biomolecule (e.g., bovine serum albumin).  The left images show the target biomolecules mixed 
with the polymer matrix.  The right image shows the polymer structure after the biomolecules 
have been washed out, leaving behind an imprint (or hollow regions) in the polymer. These 

imprints provide a geometrically specific site for the target biomolecule to rebind into.  

 

 

A preliminary experiment was conducted  to determine the feasibility of using a polymer-based 
sensor for detecting biological agents.  A thin-film molecular imprinted biochemiresistor was 
made using a 50-micron gap chemiresistor with polyvinyl acetate (PVAc) polymer mixed with 
lithium perchlorate (Figure 2). Bovine serum albumin (BSA) was added to the polymer mixture. 

washing 
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This polymer was deposited along the length of the chemiresistor wire. The BSA was washed out 
int.   The preliminary results (Figure 79) show 

ymer-based sensing methods hold promise in providing unique 
detection of biological agents in water.  Experiments are continuing to investigate methods of 
molecular imprinting and biofunctionalization. 

of the polymer with water, leaving behind an impr
that molecular-imprinted pol
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Figure 79. Response of the imprinted polymer to water and bovine serum albumin. The polymer 

emiresistor chip and then s  
 bovine serum albumin was 

tly different in 
rection then that of the clean

t Sour

g in-situ monitoring is th e presence of 
acterize the contaminant in te position and location in 

 is the ability to exploit the transient nature of 
 in the subsurface to prov cation of a 
ak.  Time-dependent conce ensor can be 

ermine the location of the c se through comparisons with 
s of contaminant transport i inant 

rves” are derived from the diffusion equation, and the distance between the 
nt source is optimized t  the predicted and 

was deposited on the ch ubmerged in water. 100 µL of clean water was
acts,added to the existing water to determine any imp  and then the

added to the water. The response for the bovine 
both magnitude a

serum albumin was significan
nd di  water. 

 
 

8.4. Characterization of Contaminan ce Location 

A desirable feature durin e capability to not only detect th
contaminants, but to also char rms of its com
situ.  A benefit of in-situ, real-time monitoring
contaminant transport

le
ide estimations of the source lo

recorded by the in-situ scontaminant spill or ntrations 
used to inversely det ontaminant relea
theoretical prediction n porous media.  Predictions of contam
“breakthrough cu
sensor and the contamina o yield the best fit between

Molecular imprinted 
polymer on a 
chemiresistor chip 
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observed breakthrough curve.  Details of this analysis are provided in Ho and Hughes (2002), 
mmarized here. 

ed to test this con one-
al sand-filled tube with the contaminant source on one end and the sensor on the other 

shows the experimental apparatus ed to 
nd the concentrations w  
apor concentration was  compared 

ifferent distances between the contam

 20 cm experiment align 
red 

dicted results that assume a 
 cm (Figure 80).  Slight deviations in  curves may be 

e mo orption of the vapors onto the 
tten the breakthr rtheless, a simple visual 

cal br e sufficient to 
tion. ation methods 

ion bas , 
ds can be used to determine ltiple 

and only the results are su

An experiment was perform cept.  The experiment consisted of a 
dimension
end.  Figure 79 . 

ere recorded by the sensor.  The breakthrough
ction of time and

 At time zero, the contaminant was add
the reservoir on one end a
curve of the contaminant v  recorded as a fun
to predicted values assuming d inant source and the sensor.   

 
 

 
Results indicate that the measured time-varying c
most closely with the predicted results that assume

oncentr
 a distance of 20 cm.  Similarly, the measu

e

ations for the

concentrations for the 36 cm experiment most clo
 of 40

sely match the pr
distance
due to additional factors not considered in th

d to fla

 the experimental breakthrough
del such as ads

sand, which would ten ough curves.  Neve
inspection of the experimental and theoreti

ti at th
eakthrough curves appears to b

ter-estimes m e e distance to the source-term loca  More rigorous parame
c  u d to better quantify the locatan be se ed on the analytical predictions. In addition
triangulation metho  the contaminant-source location in mu
dimensions. 

 
Figure 79.  One-dimensional column experimen ckage in t used to test chemiresistor sensor pa

porous media (from Ho and Hughes, 2002). 
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Figure 80.  Plot of normalized concentratio

bol
n

nalytical solution are 
 Hughes, 2002). 

 be used to gauge he “return on 
 on investment includes s, 

ations, presentations, i edia 
position Sandia as a recog ately 
e through continued rese  

e intellectual property, scientific p ations, and 

ations and Technical Ad

, M.W. Jenkins, R.C. Hugh
tile compounds, Sandia Nati

cterizing
tion filed 

 and
rs, Sandia Nati

 as a function of time for the 1-D column 
of the aexperiment.  The data points are shown as sym s, and the results 

shown as solid lines for three assumed distances (from Ho and

 

9. Return on Investment 
One of the metrics that can  the success of a project is t
investment.”  The return not only direct revenue from external source
but also scientific public ntellectual property, partnerships, and m
coverage, all of which 

al revenu
n

arch, proposals, and/or licenses. This section
entations, collabor

ized leader in this field and may ultim
yield addition
summarizes th ublications, pres
additional revenue that have been generated from this LDRD project. 

9.1. Patent Applic vances 

• SD-6976, Ho, C.K. es, Waterproof microsensor for in-situ 
monitoring of vola onal Laboratories Patent Application filed 
5/2002. 

• SD-6894, Ho, C.K., Method for chara  subsurface volatile contaminants, Sandia 
National Laboratories Patent Applica 10/24/02. 

• SD-7097, Ho, C.K., Automated monitoring
s using in-situ senso

 remediation system for volatile subsurface 
na Lacontaminant o l boratories Patent Application filed 

10/24/02. 
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• , Portable vapor dSD-7307, Ho, C.K. iffusion c

fo
03. 

o, C.K., Confined cavity chemiresi
ed 

 chemiresistors f ational 
 

iresistor 
tories Technical 

d Presentations 

R.C. Hughes, and M.L. T review), Enhanced 
ne Using a Preconcentrato tor Sensor, submitted to 

d Actuators B: Chemical. 

.G. Pitt, L.K. McGrath, and C.K. Ho, 2003 (in preparation with BYU), Resistivity 
 of carbon-polymer composites i arbon 

metry, will be submitted mical. 

surface Monitoring of TCE Using an In-Situ 
 accepted for publication

. Davis, and C.K. H , 
e tri

tal design, humidit uators B: 

organic 

r E. .F. Lohrstorfer, 
emonstrations of Chemiresistor a crochemical 

t Site, SAND2003-0

 R.C. Hughes, 2002, In-Situ Chem ime 
Volatile Organic Compounds in Soil and Groundwater, 2002, , 2, 23-34. 

ohrstorfer, 2002, Demonst rosensors for 

ce, Reno, NV, August 4-8, 2002, ISBN: 0-89448-664-0.

oefficient meter, Sandia National Laboratories 
Patent Application filed 10/24/02. 

• 

Laboratories Patent Application filed 1/23/
SD-7095, Ho, C.K., Circular chemiresistors r microchemical sensors, Sandia National 

• 

National Laboratories Patent Application fil
SD-7372, H stors for microchemical sensors, Sandia 

1/23/03. 

• S 7373, Ho, C.K., MD- ulti-pin or

inted chem

 microchemical sensors, Sandia N
Laboratories Patent Application filed 1/23/03.

• SD-7542, Kooser, A.S., C.K. Ho, and L.K. McGrath, Molecular-impr
sensors for chemical and biological detection, Sandia National Labora
Advance filed 8/19/03. 

9.2. Publications an

9.2.1. Publications 

• Davis, C.E., C.K. Ho, homas, 2003 (in 
Detection of m-Xyle r with a Chemiresis
Sensors an

• Hua, L. W
measurements n chemical sensors: impact of c
concentration and geo  to Sensors and Actuators B: Che

• Ho, C.K. and C.F. Lohrstorfer, 2003, Sub
Che
Remediation, 3/03. 

miresistor Sensor,  in Groundwater Monitoring and 

• Riv
polymeric chemiresistor arrays to quantitat

era, D., M.K. Alam, C.E o 2003, Characterization of the ability of 
chloroethylene using partial least squares 

(PLS): effects of experimen y, and temperature, Sensors and Act
Chemical, v. 92, no. 1-2, 110-120. 

• Ho, C.K., E.R. Lindgren, K.S. Rawlinson, L.K. McGrath, and J.L. Wright, 2003, 
Development of a surface acoustic wave sensor
compounds, Sensors, 3, 236-247. 

 for in-situ monitoring of volatile 

• Ho, C.K., J. W ight, L.K. McGrath, R. Lindgren, K.S. Rawlinson, and C
2003, Field D nd Surface Acoustic Wave Mi
Sensors at the Nevada Tes 799, Albuquerque, NM. 

• Ho, C.K., and iresistor Sensor Package for Real-T
SensorsDetection of 

• 

Subsurface Monitoring of Volatile Organic Compounds, SAND2002-1968C, In Proceedings 
of the Spectrum 2002 Conferen

Ho, C.K. and C.F. L ration of Chemiresistor Mic
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• Ho, C.K., L.K. McGrath, and J. May, 2002, FY02 Field Evaluations of an In-Situ 
s Air Force Base, CA, SAND2002-4135, Albuquerque, NM. 

Hughes, M.L. Thomas, C.K. Ho, Data Analysis Methods for Real-Time 
nsor, SAND2002-0591C, in proceedings of the Sensors Expo 

A, May 20-23, 2002, 179-191. 

ucero, M.T. Itamura, M. Kelley, and P. 
mical Sensors for In Situ Monitoring and Characterization of 

AND2001-1093C, In Proceedings of the 2001 Containment and 
ference, Orlando, FL, June 10-13, 2001. 

s, 2001, Review of Chemical Sensors for In-
e Contaminants, SAND2001-0643, Sandia National Laboratories, 

uous Monitoring of Volatile Organic Compounds in the Subsurface 
iresistor Sensor, invited presentation to be made at the 2004 North 

ampa Bay, FL, January 13-16, 2004. 

ent of an In-Si
ds in Air, Soil, and Water, SAND2003-1709A, abstract 

FAME (Frontiers in Assessment Methods for the Environment) Symposium, 

eal-Time Subsurface Hydrocarbon 
ND2002-4095A, invited presentation at the 

ting, New Orleans, LA, March 23-27, 2003. 

In-Situ Chemiresistor Sensors for Monitoring 
 at the 2003 CUPA Conference, Anaheim, 

.E. Davis, 2003, Chemiresistor Microsensor Arrays for 
 Chemicals, invited presentation at Seventeenth International 
al Chemistry, Phoenix, AZ, January 21-24, 2003. 

 M.K. Alam, C.K. Ho, C.E. Davis, R.J. Simonson, and W.G. Yelton, 2003, 
ented Least Squares Techniques and Hybrid Least Squares Techniques for Calibration 

miresistor and Surface Acoustic Wave Sensors, SAND2003-0784A, 
Pittsburg Analytical Conference, Orlando, FL, March 10-13, 2003. 

• Ho, C.K., L.K. McGrath, and J. Wright, 2003, Field Tests of a Chemiresistor Sensor for In-
Situ Monitoring of Vapor-Phase Contaminants, SAND2003-0328A,  presented at the 2003 
EGS-AGU-EGU Joint Assembly, Nice, France, April 6-11, 2003, Albuquerque, NM. 

• McGrath, L.K. and C.K. Ho, 2002, Automated Temperature Control for the Chemiresistor 
Sensor, 7th Annual Sandia Student Internship Program Symposium, Albuquerque, NM, 
8/1/02. 

Chemiresistor at Edward

• Davis, C.E. R.C. 
VOC Chemiresistor Se
Conference, San Jose, C

• Ho, C.K., R.C. Hughes, M.W. Jenkins, D.A. L
Reynolds, 2001, Microche
Volatile Contaminants, S
Remediation Con

• Ho, C.K., M.T. Itamura, M. Kelley, R.C. Hughe
Situ Monitoring of Volatil
Albuquerque, NM. 

9.2.2. Presentations 

• Ho, C.K., 2004, Contin
Using an In-Situ Chem
American Environmental Field Conference, T

• Ho, C.K., 2003, Developm tu Chemiresistor Sensor for Continuous Monitoring 
o olatile Organic Compounf V
presented at 
Minneapolis, MN, August 10-13, 2003. 

• Ho, C.K., 2003, From Chemiresistor Sensors to R
Monitoring Systems:  Lessons Learned, SA
National American Chemical Society Mee

• Ho, C.K., L.K. McGrath, an
invited presentation
d J. May, 2003,  

Subsurface Contaminants, 
CA, 2/5/03. 

• Hughes, R.C., C.K. Ho, and C
Detecting Volatile Organic
Forum on Process Analytic

• Rivera, D.A.,
Augm
Maintenance of Che
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Ma, I.T. and C.K. Ho, 2002, Factors that Impact the Response of the Chemiresistor Sensor, 
7th Annual Sandia Student Internship Program Symposium, Albuquerque, NM, 8/1/02. 

, Deployment of a real-time microchemical sensor 
ase, SAND2002-2069P, poster 

and presentation at the New Mexico Water Research Symposium, 8/13/2002, Socorro, NM. 
m, C.K. Ho, and C.E. Davis, 2002, Application of Multivariate 

miresistor Array D sented at 
hemistry and Spectroscopy Society Meeting, October 13-17, 

entation to Sandia
 water-quality monitoring, Albuq

nator eal-time 
ooperative Monito

 long-term re cademy of 
 Research Needs for Managing Transuranic and Mixed 

tor sensor and need for long-term monitoring. 

ototype in-situ ch  
taff and m ors to monitor 
vironment

2001, Evaluation O  
d, abstract/presentation at Geo  Meeting, 
v. 5-8, 2001, SAND2002-2203

 2001, Impact of M
orous Media, SAN resented at the 

A, D 1.

ct, we ha ons, images, 
ia relations) t

ASCE Civil Eng Engineering 
Magazine, Science Daily M

eapons Compl vironmental 
t, Scientific Ameri , and more.  
ese articles has generated numerous commercial contacts and has 

e fie ochemical sensors for environmental 

enue 

 opportunities  
e microchemical sensor.  G ted visits to Shell 

• 

• Ho, C.K., L.K. McGrath, and J. May, 2002
for groundwater quality monitoring at Edwards Air Force B

• Rivera, D.A., M.K. Ala
Calibration Methods to Che ata, SAND2002-2971A, abstract pre
the Federation of Applied C
2002, Providence, RI. 

• Ho, C.K., 2002, Invited pres  Leadership Council on microsensors for real-
time soil- and uerque (4/02). 

• Ho, C.K., 2001, Invited presentation to Se  Bingaman on microsensors for r
water-quality monitoring, C ring Center, Albuquerque (2/19/01). 

• Ho, C.K., 2001, Invited to discuss
Sciences Committee on Long-Term

search needs with the National A

Waste at DOE Sites.  Presented chemiresis

• Ho, C.K., 2001, Presented pr emiresistor sensor to WIPP audience
(Westinghouse, LANL, DOE, SNL s

y en
anagers)  to evaluate use of sens

VOC concentrations in repositor s, Carlsbad, NM,  7/18/01. 

• McLain, A.A and C.K. Ho, f Diffusion In Porous Media Using A Novel
Detection Metho
Boston, MA, No

logical Society of America Annual
A, Vol. 33, No. 6. 

• McLain, A.A and C.K. Ho,
 P

oisture Content and Grain Size on 
Hydrocarbon Diffusion in D2001-3081A, abstract/poster p

 AGU 2001 Fall Meeting, San Francisco, C ecember 10-14, 200

9.3. Media Coverage 

During the course of this LDRD 
 med

proje ve contributed writing, illustrati
and/or interviews (through SNL

Magazine, 
o over 30 articles in ABQ Tribune, Sandia Lab 

neering Magazine, Chemical News, Geotimes i
Magazine, Sensors agazine, Poptronics Magazine, Red Herring 

 Water News, EnMagazine, Technology Review, W ex Monitor, US
Laboratory Washington Repor

th
can, Information Week Magazine

The publicity resulting from 
positioned Sandia as a recognized leader in th
monitoring. 

ld of micr

9.4. Technology Transfer and Rev

• Explored collaboration with numerous companies to potentially
commercializ ave presentations and hos
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International, Hogentogler, Lighthouse Wo , Ardesta, Hach 
tems, Team  

s, Semorex, Inc., and other com

ental Manage
EEL to use ou EEL’s 
to detect biolo 0K, 
) 

 D  
act  

nce of the chemir

ed  
in-s sites. 

dia as ring 
 in FY02 and FY03 t

the Nevada Test S

nta -situ 
mic e for 

www.sand

rldwide Solutions, Coca-Cola
Co, Veeder-Root, RAE Sys  Specialty Products, MesoSystems, L&M
Technologie panies. 

• Awarded DOE EMSP (Environm ment and Science Program) that was 
sors in INjointly proposed with IN r in-situ chemiresistor sen

mesoscale experiments 
06~$140K

gical degradation of TCE. (FY04~$5
FY05~$40K, FY

• A CRADA (Cooperative Research and
company in FY03 to investigate manuf

evelopment Agreement) was initiated with a
uring and design methods that would improve

the stability and performa esistor sensors. (~$50K) 

• A Work for Others contract was award
FY02 to FY04 to deploy and test our 

to Sandia from Edwards Air Force Base from
itu chemiresistors at their contaminated 

(~$80K) 

• A DOE contract was awarded to San  part of DOE/Nevada’s Advanced Monito
nd surface-Systems Initiative o test our in-situ chemiresistor a

acoustic-wave sensors at ite. (~$300K) 

• We were asked by Sandia’s Environme
chemiresistor sensor system at the Che

l Restoration department to deploy our in
ce a web sital Waste Landfill and produ

real-time monitoring of the site ( ia.gov/sensor/cwl). (~$30K) 

• Received funding from Brigham Young U 03 to 
tection of TCE in their istor 

 New Mexico Sm  for 
 Scientific 

tivities conducted as o 
onitoring of subsurface contaminants.  Many 

lopment, field testing, 
port and ot his 

t has been t ng and evaluation of the 
prove the or sensors.  

oth nsing Lab and at the IMRL 
mized an
 of the ch the 

niversity and INEEL in FY02 and FY
resprovide in-situ de research experiments using our chemi

sensors ($5K). 

Awarded funding from• 

with Voss
all Business Assistance Program in 2001

proposal developed to develop remote in-situ sensing system for 
DOE SBIR/STTR grant. ($5K) 

10. Summary 
This report documents the ac  part of a three-year Sandia LDRD project t
develop microchemical sensors for real-time m
aspects of the chemiresistor sensor deve  from design and fabrication to 
have been described in detail in this re her cited publications produced as part of t
project. 

A significant aspect of this projec he laboratory testi
chemiresistor to understand and im performance of the chemiresist
Numerous experiments were performed at b  the In-Situ Se
Chemiresistor Lab.  Polymers were opti

ature control
d selected for our particular applications and 
emiresistor chip was developed to improve analytes of interest.  Temper
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accuracy and stability of the chemiresistor sens
carbon type on the sensitivity and noise of th

ors nd 
e che the 

tions.  Theoretical models for p osites were employed to 
hemiresistors.  mit of detection of our 

owed that without preconcentra of detection to TCE was ~10 
e limits of detect e were found to be lowered by 

econcentrators to enhance the apparent sensitivity of the 
ant part of this L he preconcentrators 

long with tests that response of the 
rated preconcentrator s also designed and 

o determ could be used to provide 
arget put variables.  The 

ion of Influence method wa  
odels generated by Statis eployed. 

dies were also conducted to test tor 
ronmental field conditions.  Tests at Edwards Air Force Base, CA, the 

Waste L ere performed to determine 
loym

ssing, and information dissem  
m chemiresistors and other sensors deployed at the Chemical 
sensor/cwl

.  An analysis of the carbon concentration a
miresistor was also performed to determine 

optimal combina olymer/carbon comp
nalysis of the lipredict the resistivity of our c A

chemiresistors sh tion, the limit 
n for m-xylenppmv.  With preconcentration, th io

over two orders of magnitude. 

The design and testing of pr
was also a significchemiresistors DRD.  The fabrication of t

was described in detail, a
reconcentrators.  An integ

evaluated the heating and 
p /chemiresistor probe wa
tested for field use. 

Data analysis methods were evaluated t ine approaches that 
both discrimination and quantification of t analytes with multiple in
Visual Empirical Reg s investigated along with partial-least squares. 
Multivariate regression m tica™ were also developed and d

Three field stu the performance of the in-situ chemiresis
sensor in actual envi
Nevada Test Site, and the Chemical andfill, NM w
engineering requirements for sensor dep ent, data acquisition, power requirements, 

ination.  These tests culminated in a web sitetelemetry, data proce
that posts near-real-time data fro

aste Landfill (www.sandia.gov/W ). 

lternative designs and applications were investig ternatives to 
e chemiresistor.  These included the Chemicoup ioresistor.™  
 addition, a new method of characterizing s was also 

emonstrated using analytical predictions of conta e subsurface 
mbined with measured in-situ contaminant vapo

icant accomplishments from 
paten  advances, a 

ozen scientific publications, nearly 20 invited an  coverage in 
and news publications, a ts, and 

ersities and othe

A ated that produced some novel al
th le,™ the ChemStick,™ and the B
In subsurface contaminant location
d minant mass diffusion through th
co r concentrations. 

Finally, a “return on investment” was presented th
this LDRD project.  These included seven 

at listed the signif
t applications and eight technical

d d contributed presentations, media
RADA, Work for Others contracover 30 magazines C

collaborations with academic univ r national laboratories. 
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12. Appendices 

gram for Integrated Preco istor Data 

************ 
0314m1.CR5  * 
m            

e L. Wright   * 
   * 
   * 

r   * 
************ 

0 
 
 

Five00Scans+Two00Scans 

668 
431 
259 
2.31 
19.26 
88.76 

er(2) 
 
 
er 
(Twelve) : Units 

e(Twelve) : Units 

) 
e) 
elve) 
welve) 
) : Units PRMMax()=Ohms  
): Units FRMMax()=Ohms 
e) 
e) 
lve) 
lve) 
(Twelve) 
x(Twelve) 
nits RTDOhms()=Ohms 

) 
 

 ChipSlope(3) 
 ChipYInter(3) 

OhmsAve(3) 

8),BeginTest 

ec(6),TempArray(SixtyScans,Twelve),

e Data Table 
ta,True,800)'DataCycles*FRMSca

 
istor(),IEEE4) 

ta Data Table 
e,800)'DataCycles*FRMSca

CardOut (0,10000) 
Sample(Twelve,DeltaR(),IEEE4) 
Sample(Twelve,DeltaRR(),IEEE4) 
Sample(6,TimeStampuSec(),IEEE4) 
EndTable 
 
'Fire Data Table 
DataTable(FRMData,True,800)'DataCycles*FRMScan
s) 
CardOut (0,10000) 
Sample(Twelve,Resistor(),IEEE4) 
EndTable 
 
'Fire Delta Data Table 
DataTable(FRMDelta,True,800)'DataCycles*FRMSca
ns) 
CardOut (0,10000) 
Sample(Twelve,DeltaR(),IEEE4) 
Sample(Twelve,DeltaRR(),IEEE4) 
EndTable  
 
'Posprocess Data Table 
DataTable(PostPro,True,800)'DataCycles*FRMScan
s) 
CardOut (0,10000) 
Sample(Twelve,DeltaRDiff(),IEEE4) 
Sample(Twelve,DeltaRRDiff(),IEEE4) 
Sample(6,TimeStampuSec(),IEEE4) 
EndTable 
 
'Baseline Data Table 
DataTable(RBaseL,True,10) 
CardOut (0,100) 
Sample(Twelve,RBaseLine(),IEEE4) 
EndTable 
 
'RTD Data Table 
DataTable(RTD,true,10) 
CardOut (0,100) 
Sample (3,RTDOhms(),IEEE4) 
Sample (3,RTDTemp(),IEEE4) 
EndTable 
 

12.1. CR5000 Pro ncentrator/Chemires
Collection 

'*******************
'* PCProgram_Ver6_03
'* PC Testing Progra
* 
'* Written By: Jerom
'* {CR5000}  
'* Date: 3/14/03 
'* CR5000 Data logge
'*******************
'Constance 
Const SixtyScans=60 
Const Five00Scans=50
Const Two50Scans=250
Const Two00Scans=200
Const DataCycles=1 
Const Twelve=12 
Const 
FRMScans=SixtyScans+
Const Multi=1 
Const Offset=0 
Const Chip1Slope=1.4
Const Chip2Slope=1.4
Const Chip3Slope=1.4
Const Chip1YInter=31
Const Chip2YInter =3
Const Chip3YInter =2
'Public Variables 
Public Pre-fireCount
Public PRMCounter(2)
Public FRMCounter(2)
Public PostProcCount
Public Resistor
Resistor()=Ohms 
Public RBaseLin
RBaseLine()=Ohms 
Public DeltaR(Twelve
Public DeltaRR(Twelv
Public DeltaRDiff(Tw
Public DeltaRRDiff(T
Public PRMMax(Twelve
Public FRMMax(Twelve
Public PRMMaxD(Twelv
Public FRMMaxD(Twelv
Public PRMMaxDRR(Twe
Public FRMMaxDRR(Twe
Public DeltaRDiffMax
Public DeltaRRDiffMa
Public RTDOhms(3): U
Public RTDTemp(3) 
Public RTDRTempAve(3

c RTDTempAve(3)Publi
Public
Public
Public RTD
Public TypeT_TC 

ic PanelDegC Publ
Public Flag(
 
'Dim 

Dim i,j,k 
Dim 
TimeStampuS
SumR 
 
'Data Tables 

ur'Pre-fire Meas
DataTable(PFRMDa
ns) 
CardOut (0,10000)

lve,ResSample(Twe
EndTable 
 
'Pre-fire Measure Del
DataTable(PFMDelta,Tru
ns) 
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'Temperature Data Table 

Sample (3,RTDTempAve(),IEEE4) 
ample (3,RTDOhmsAve(),IEEE4) 
ample (1,TypeT_TC,IEEE4) 

MaxDRR(),IEEE4) 

12,DeltaRRDiffMax(),IEEE4) 

) 

 
C Subroutine: 

tyScans) 
)=Pre-

2)=1 Then 

Then 

r(2)=1 Then 

-fireCounter(2)>5 Then 

>5 Then 

r(2)>5 Then 

elve,AutoRange,1,I
0,- 

,Pre-
to- 
ts. 

Measure   

__________ 
 Subroutine: 

had this set 

 PRMCounter(2)=0 
=1 to 12 
MMax(i)=0 

  PRMMaxDRR(i)=0 

 

,AutoRange,1,I
,200,250,1.0- 

r(2),1) 
 
. 

Then 

istor(i) 

 For i=1 To Twelve 

  For j=(SixtyScans-9) To SixtyScans 
   PRMCounter(1)=PRMCounter(1)+0.0001 
   SumR=SumR+TempArray(j,i) 
  Next j 

-
(SixtyScans-9-1)) 
 Next i 
 For i=1 To SixtyScans 
  PRMCounter(1)=PRMCounter(1)+0.0001 
  For j=1 To Twelve 
   DeltaR(j)=TempArray(i,j)-
RBaseLine(j) 

0 Then DeltaR(j)=0 
(j) 
Then 

axDRR(j) Then 

mp(8-

ans) 
(1)+1 
(2)+1 

or(),Twelve,AutoRange,1,I

ounter(2),1) 
ve to 
. 

BaseLine(i) 
taR(i)=0 

DataTable(Temp,true, 10) 
CardOut (0,100) 

 For i
  PR

S
S
EndTable 
 
'Max Data Table 
DataTable(MaxVal,true,10) 
CardOut (0,1000) 
Sample (12,PRMMax(),IEEE4) 
ample (12,PRMMaxD(),IEEE4) S

Sample (12,PRM
Sample (12,FRMMax(),IEEE4) 
ample (12,FRMMaxDRR(),IEEE4) S

Sample (12,FRMMaxD(),IEEE4) 
Sample (12,DeltaRDiffMax(),IEEE4) 
ample (S

EndTable 
 
'Pre-fire Data Table (Purge Pulses
DataTable(Pre-fire,true,100) 
CardOut (0,1000) 
Sample(12,Resistor(),IEEE4) 
EndTable 
 

______________'_________________
'Pre-fires to clear P
ub Pre-fire S

 Flag(1)=True 
 For i=1 To 5 
  Pre-fireCounter(1)=Pre-
fireCounter(1)+1 

 Pre-fireCounter(2)=0  
  Scan(1,Sec,0,30)'Six

eCounter(2   Pre-fir
fireCounter(2)+1 
   If Pre-fireCounter(
SW12(1) 
   If Pre-fireCounter(2)=1 
Flag(7)=True 
   If Pre-fireCounte
Flag(8)=False 
   If Pre
W12(0) S

   If Pre-fireCounter(2)
Flag(7)=False 
   If Pre-fireCounte
Flag(8)=True 

  
 Resistance(Resistor(),Tw

lse,200,25x1,3,1000,False,Fa
   1.0,0.0) 
   'Move(Resistor(),Twelve
fireCounter(2),1) 'Tracer data! Be sure 

emen   remove to use real measur
re    CallTable Pre-fi

   Call (RTDMeasure) RTD
  NextScan 
 Next i 
lag(1)=False F

Flag(2)=True 
EndSub  
'_______________________________

ent'Pre-fire Resistance Measurem
ub PreRMeasure S

 Flag(2)=False 
 Flag(3)=True 
 PRMCounter(1)=0'1 Note Mark 
to 1 

 Next i 
 Scan(1,Sec,SixtyScans,SixtyScans) 

   PRMCounter(1)=PRMCounter(1)+1
nter(2)+1  PRMCounter(2)=PRMCou

 
stor(),Twelve Resistance(Resi

x1,3,1000,False,False
 ,0.0)    

 
),Twelve,PRMCounte 'Move(Resistor(

'Tracer data! Be sure to remove-
ts  to use real measuremen

 CallTable(PFRMData)  
  For i=1 to 12 

  If Resistor(i)>PRMMax(i)  
PRMMax(i)=Resistor(i) 
  
 TempArray(PRMCounter(2),i)=Res
  Next i 
 NextScan 

  SumR=0 

  RBaseLine(i)=SumR/(SixtyScans

   If DeltaR(j)<
   DeltaRR(j)=DeltaR(j)/RBaseLine

)    If DeltaR(j)>PRMMaxD(j
PRMMaxD(j)=DeltaR(j) 
   If DeltaRR(j)>PRMM

R(j) PRMMaxDRR(j)=DeltaR
  Next j 

 For k=1 To 6  
  

)=PFRMData.TimeSta TimeStampuSec(k
k,SixtyScans+1-i) 
  Next k 

 CallTable(PFMDelta)  
 Next i 
 SW12(1) 
 Flag(7)=True 
 Flag(8)=False 
 PRMCounter(1)=SixtyScans 
 PRMCounter(2)=0 

,Five00Sc Scan(20,mSec,Five00Scans
  PRMCounter(1)=PRMCounter

2)=PRMCounter  PRMCounter(
 

Resistance(Resist 
x1,3,1000,False,False,200,250,1.0- 
  ,0.0) 
 

MC 'Move(Resistor(),Twelve,PR
racer data! Be sure to remo'T

  use real measurements
Twelve   For i=1 To 

   DeltaR(i)=Resistor(i)-R
0 Then Del   If DeltaR(i)<
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   DeltaRR(i)=DeltaR(i)/RBaseLin
i) 

e(i) 
Then 

axD(i) Then 

aRR(i)>PRMMaxDRR(i) Then 
(i) 

n SW12(0) 
250 Then 

,AutoRange,1,I
.0- 

ure to remove to- 

Line(i) 

e(i) 
Then 

Then 

Then 

able(PFMDelta) 
PFRMData) 

i)=0 

Measurement Subroutine: 

0 

ns) 
(1)+1 
(2)+1 

ge,1,I

MCounter(2),1) 
ve to- 

 

 
Then 

) 

esistor(i) 

er(1)+0.0001 

aR(j)/RBaseLine(j) 
DeltaR(j)>FRMMaxD(j) Then 

R(j) 
Then 

eStamp(8-

ns,Five00Scans) 

Range,1,I

e,FRMCounter(2),1) 
 sure to remove to- 
measurements. 

) 
Then DeltaR(i)=0 

i)/RBaseLine(i) 
r(i)>FRMMax(i) Then 

Then 

axDRR(i) Then 

 

   If Resistor(i)>PRMMax(
PRMMax(i)=Resistor(i) 
   If DeltaR(i)>PRMM

) PRMMaxD(i)=DeltaR(i
   If Delt

MMaxDRR(i)=DeltaRRPR
  Next i 
  If PRMCounter(2)>250 The
  If PRMCounter(2)>
Flag(7)=False 
  If PRMCounter(2)>250 Then Flag(8)=True 
  CallTable(PFMDelta)  
  Cal FRMData) lTable(P
 NextScan 
 PRMCounter(2)=0 
 Scan(1,Sec,Two00Scans,Two00Scans) 
  PRMCounter(1)=PRMCounter(1)+1 
  PRMCounter(2)=PRMCounter(2)+1 
 
 Resistance(Resistor(),Twelve

se,200,250,1x1,3,1000,False,Fal
  ,0.0) 
 
 'Move(Resistor(),Twelve,PRMCounter(2),1) 
'Tracer data! Be s
  use real measurements. 
  For i=1 To Twelve 
   DeltaR(i)=Resistor(i)-RBase
   If DeltaR(i)<0 Then DeltaR(i)=0 
   DeltaRR(i)=DeltaR(i)/RBaseLin

MMax(i)    If Resistor(i)>PR
PRMMax(i)=Resistor(i) 
   If DeltaR(i)>PRMMaxD(i) 
PRMMaxD(i)=DeltaR(i) 

  If DeltaRR(i)>PRMMaxDRR(i)  
PRMMaxDRR(i)=DeltaRR(i) 
  Next i 

 CallT 
  CallTable(
 NextScan 
 CallTable(RBaseL) 
 For i=1 To Twelve 
  RBaseLine(
  DeltaR(i)=0 
  DeltaRR(i)=0 
 Next i 
Flag(3)=False 
Flag(4)=True 
EndSub 
'______________________________________ 
'Fire Resistance 
Sub RMeasure 
 Flag(4)=False 

  Flag(5)=True
 FRMCounter(1)=0 
 FRMCounter(2)=
 For i=1 to 12 
  FRMMax(i)=0 
  FRMMaxDRR(i)=0 
 Next i    

ySca Scan(1,Sec,SixtyScans,Sixt
  FRMcounter(1)=FRMCounter
  FRMcounter(2)=FRMCounter
 
 Resistance(Resistor(),Twelve,AutoRan
x1,3,1000,False,False,200,250,1.0- 
  ,0.0) 
 
 'Move(Resistor(),Twelve,FR

racer data! Be sure to remo'T

  use real measurements.
)   CallTable(FRMData

  For i=1 To Twelve
   If Resistor(i)>FRMMax(i) 
FRMMax(i)=Resistor(i
  

TempArray(FRMCounter(2),i)=R 
  Next i 
 NextScan 
 For i=1 To Twelve 
  SumR=0 
  For j=(SixtyScans-9) To SixtyScans 
   FRMCounter(1)=FRMCount
   SumR=SumR+TempArray(j,i) 
  Next j 
  RBaseLine(i)=SumR/(SixtyScans-
(SixtyScans-9-1)) 
 Next i 
 For i=1 To SixtyScans 
  FRMCounter(1)=FRMCounter(1)+0.0001 
  For j=1 To Twelve 
   DeltaR(j)=TempArray(i,j)-
RBaseLine(j) 

0 Then DeltaR(j)=0    If DeltaR(j)<
   DeltaRR(j)=Delt
   If 
FRMMaxD(j)=Delta
   If DeltaRR(j)>FRMMaxDRR(j) 
FRMMaxDRR(j)=DeltaRR(j) 
  Next j 
  For k=1 To 6 
  
 TimeStampuSec(k)=FRMData.Tim
k,SixtyScans+1-i) 
  Next k 
  CallTable(FRMDelta) 
 Next i 
 SW12(1) 
 Flag(7)=True 
 Flag(8)=False 
 FRMCounter(1)=SixtyScans 
 FRMCounter(2)=0 
 Scan(20,mSec,Five00Sca
  FRMCounter(1)=FRMCounter(1)+1 
  FRMCounter(2)=FRMCounter(2)+1 
 
 Resistance(Resistor(),Twelve,Auto
x1,3,1000,False,False,200,250,1.0- 
  ,0.0) 
 

or(),Twelv 'Move(Resist
'Tracer data! Be

 use real  
  For i=1 To Twelve 
   DeltaR(i)=Resistor(i)-RBaseLine(i

  If DeltaR(i)<0  
   DeltaRR(i)=DeltaR(
   If Resisto
FRMMax(i)=Resistor(i) 
   If DeltaR(i)>FRMMaxD(i) 
FRMMaxD(i)=DeltaR(i) 
   If DeltaRR(i)>FRMM
FRMMaxDRR(i)=DeltaRR(i) 
  Next i 
  If FRMCounter(2)>250 Then SW12(0) 
  If FRMCounter(2)>250 Then
Flag(7)=False 
  If FRMCounter(2)>250 Then Flag(8)=True 
  CallTable(FRMDelta) 

 CallTable(FRMData)  
 NextScan 
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 FRMCounter(2)=0 
 Scan(1,Sec,Two00Scans,Two00Scans) 
  FRMcounter(1)=FRM (1)+1 Counter
  FRMCounter(2)=FRMCounter(2)+1
 

),Twelve,Auto

 

Range,1,I
250,1.0,- 

tor(),Twelve,FRMCounter(2),1) 
ove to 
. 

      
Then 

D(i) Then 

DRR(i) Then 

eL) 

ocCounter+1 
elve 

aRR(j,FRMScans
R- 
ns+1-i) 

taRDiffMax(j) 
) 
<0 Then 

x(j)- 

Then 

(),3,AutoRange,13,Ix4,3,
50,1.0,0.0) 

)-

TDOhmsAve(1),3,RTDOhms(1),5) 
TDRTempAve(1),3,RTDTemp(1),5) 

i) 

250) 

PanelDegC

mp) 

 

 from total amount of time 
of readings 

hip2Slope  

otal amount of 
 of- 

r1) 

ark(FRMData) 
FMDelta) : 

ta) : FileMark(FRMData) 

 Resistance(Resistor(
x1,3,1000,False,False,200,

 0.0)  
 
 'Move(Resis
'Tracer data! Be sure to rem
  use real measurements
  For i=1 to Twelve 
   DeltaR(i)=Resistor(i)-RBaseLine(i) 
   If DeltaR(i)<0 Then DeltaR(i)=0 

R(i)/RBaseLine(i)   DeltaRR(i)=Delta
Resistor(i)>FRMMax(i) 

   NextScan 
D)    If 

FRMMax(i)=Resistor(i) 
   If DeltaR(i)>FRMMax

R(i) FRMMaxD(i)=Delta
   If DeltaRR(i)>FRMMax

MMaxDRR(i)=DeltaRR(i) FR
  Next i 
  CallTable(FRMDelta) 
  CallTable(FRMData) 
 NextScan 
 CallTable(RBas
 For i=1 To Twelve 
  RBaseLine(i)=0 
  DeltaR(i)=0 
  DeltaRR(i)=0 
 Next i 
Flag(5)=False 
Flag(6)=True 
EndSub 
'_______________ 

b PostProcess Su
 PostProcCounter=0 
 For i=1 To FRMScans 

 PostProcCounter=PostPr 
  For j=1 to Tw
  
 DeltaRDiff(j)=FRMDelta.DeltaR(j,FRMScans+1
-i)-PFMDelta.DeltaR- 
   (j,FRMScans+1-i) 
  

MDelta.Delt DeltaRRDiff(j)=FR
+1-i)-PFMDelta.DeltaR

Sca   (j,FRM
   If DeltaRDiff(j)>Del
Then DeltaRDiffMax(j)=DeltaRDiff(j
   If DeltaRDiff(j)
DeltaRDiff(j)=0 

  If DeltaRRDiff(j)>DeltaRRDiffMax(j)  
Then DeltaRRDiffMa
   =DeltaRRDiff(j) 
   If DeltaRRDiff(j)<0 
DeltaRRDiff(j)=0 
  Next j 
  CallTable(PostPro) 
 Next i 
CallTable MaxVal 
EndSub 
'______________ 
Sub RTDMeasure 
 Scan(1,Sec,1,5) 
 
 Resistance(RTDOhms
2500,False,False,200,2

 For i=1 To 3  

  
 RTDTemp(i)=(ChipSlope(i)*RTDOhms(i)
ChipYInter(i) 
  Next i 
  AvgRun(R

 AvgRun(R 
 NextScan 
 For i=1 To 3 

ve(i)=RTDRTempAve(  RTDTempA
 Next i 
 Scan(1,Sec,1,1) 
  PanelTemp(PanelDegC,
 
 TCDiff(TypeT_TC,1,mV20C,20,TypeT,
,True,0,250,Multi,Offset) 

 CallTable(RT
 CallTable(Te
EndSub 
 
'Minus 270 for count times 

b Timer1 Su
Scan (1,Sec,3,630)
NextScan 
EndSub 
 
'Minus 60 seconds
'between pulses because of 60 
prior to reading 
Sub Timer2 
Scan (1,Sec,3,840) 
NextScan 
EndSub 
'_ 
BeginProg 
  '_ 

ChipSlope(1)=Chip1Slope  
 ChipSlope(2)=C
 ChipSlope(3)=Chip3Slope 

)=Chip1YInter  ChipYInter(1
 ChipYInter(2)=Chip2YInter 
 ChipYInter(3)=Chip3YInter  
 Flag(8)=True        
'________________ 
 Scan(20,mSec,3,0) 'Control Scan 
 'Remember 1 minute prior to pulse should 
be subtracted. 
 If IfTime (670,1440,min) Then  
  'Cycle #1 
  Call (Pre-fire) 

conds from t  'Minus 60 se
time between pulses because of 60
  readings prior to reading 

mer2)   Call (Ti
  Call (PreRMeasure) 

 'Minus 270 for count times  
  Call (Time
  Call (RMeasure) 
  Call (PostProcess) 
  FileMark(PFRMData) : FileM
  FileMark(P
FileMark(FRMDelta) 
  FileMark(PostPro) 
 
  'Cycle #2 
  Call (Pre-fire) 
  Call (Timer2) 
  Call (RMeasure) 

 Call (PostProcess)  
  FileMark(PFRMDa

 108 



 

  FileMark(PFMDelta) : 

 
-fire) 
er2) 
asure) 

ta) : FileMark(FRMData) 
: 

 
-fire) 
er2) 
asure) 
tProcess) 
PFRMData) : FileMark(FRMData) 
FMDelta) : 

ta) : 

tests, Control 
_____ 

program 

e-fire) 
eRMeasure) 

MDelta) : 

FileMark(FRMDelta) 
PostPro)   FileMark(

 
  'Cycle #3
  Call (Pre
  Call (Tim
  Call (RMe
  Call (PostProcess) 
  FileMark(PFRMDa
  FileMark(PFMDelta) 
FileMark(FRMDelta) 
  FileMark(PostPro) 
 
  'Cycle #4
  Call (Pre
  Call (Tim
  Call (RMe
  Call (Pos

 FileMark( 
  FileMark(P
FileMark(FRMDelta) 
  FileMark(PostPro) 
 
  'Cycle #5 
  Call (Pre-fire) 
  Call (Timer2) 
  Call (RMeasure) 
  Call (PostProcess) 

ta) : FileMark(FRMData)   FileMark(PFRMDa
  FileMark(PFMDel
FileMark(FRMDelta) 
  FileMark(PostPro)        
 EndIf 
 NextScan 
 'Timing 
Scan______________________________
 'Scan(20,mSec,3,0) 'Test 
operation: 

 If BeginTest=True Then Move(Flag(),3,- 
1,1) 
   If Flag(1) Then Call(Pr
   If Flag(2) Then Call(Pr
   If Flag(3) Then  
   Call(RMeasure) 
   Call(PostProcess) 
   FileMark(PFRMData) : 
FileMark(FRMData) 
   FileMark(PF
FileMark(FRMDelta) 
   FileMark(Delta) 
   BeginTest=False 
  EndIf 
 'NextScan 
 
EndProg 
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12.2. E4 Chemiresistor Demo Program 

      * 

conds) 
 (P10) 

c [ Vbatt     ] 

he 

(P4);This reads PECH in 

 

ion 

 Rf[X/(1-X)] (P59) 
ps 

      ] 

 (SE) (P4);This reads PNVP in 

ow Range 

 

      ] 

s 
c [ PNVP      ] 

(P4);This reads PIB in 

Channel 
l reps w/Exchan 2 

nits 0.01 sec) 
on 

 Rf[X/(1-X)] (P59) 

B       ] 
(Rf) 

EVA in 

w Range 

 

[ PEVA      ] 
t 

) 
s 

A      ] 
er (Rf) 

eads 

 Br Range 

 

 
set 

RTDOhms   ] 

 

t (P91) 

 F value will change the amount of 
untdown will take. 

 

;{CR10X} 
;E4 Demo Program             * 
;Written By: Lucas McGrath & * 
;             Jerome Wright  * 

                           * ; 
;CR10X Data logger     
;***************************** 
 
*Table 1 Program 

01: 1         Execution Interval (se  
1:  Batt Voltage

: 1        Lo 1
 
;The following instructions read t
chemiresistor E4 
 
2:  Excite-Delay (SE) 

 mV
 1: 1        Reps 
 2: 5        2500 mV Slow Range 
 3: 1        SE Channel 
 4: 1        Excite all reps w/Exchan 1

: 0        Delay (units 0.01 sec)  5
 6: 2500     mV Excitat
 7: 22       Loc [ PECH      ] 
 8: .0004    Mult 
 9: 0        Offset 
 
3:  BR Transform

: 1        Re 1
 2: 22       Loc [ PECH
 3: 746.9    Multiplier (Rf) 
 
4:  Excite-Delay
mV 

: 1        Reps  1
 2: 5        2500 mV Sl
 3: 2        SE Channel 
 4: 1        Excite all reps w/Exchan 1
 5: 0        Delay (units 0.01 sec) 

: 2500     mV Excitation  6
 7: 23       Loc [ PNVP
 8: .0004    Mult 
 9: 0        Offset 
 

  BR Transform Rf[X/(1-X)] (P59) 5:
 1: 1        Rep

: 23       Lo 2
 3: 822.1    Multiplier (Rf) 
 

  Excite-Delay (SE) 6:
mV 
 1: 1        Reps 

 mV Slow Range  2: 5        2500
 3: 3        SE 
 4: 2        Excite al

: 0        Delay (u 5
 6: 2500     mV Excitati
 7: 24       Loc [ PIB       ] 
 8: .0004    Mult 
 9: 0        Offset 

 
7:  BR Transform
 1: 1        Reps 

: 24       Loc [ PI 2
 3: 300      Multiplier 
 
8:  Excite-Delay (SE) (P4);This reads P
mV 

: 1        Reps  1
 2: 5        2500 mV Slo
 3: 4        SE Channel 
 4: 2        Excite all reps w/Exchan 2
 5: 0        Delay (units 0.01 sec) 

: 2500     mV Excitation  6
 7: 25       Loc 

: .0004    Mul 8
 9: 0        Offset 
 

Rf[X/(1-X)] (P599:  BR Transform 
 1: 1        Rep
 2: 25       Loc [ PEV

: 823.2    Multipli 3
 
10:  Full Bridge w/mv Excit (P9);This r
the RTD 
 1: 1        Reps 

: 14       250 mV Fast Ex Range  2
 3: 14       250 mV Fast
 4: 4        DIFF Channel 
 5: 3        Excite all reps w/Exchan 3
 6: 250      mV Excitation 

: 26       Loc [ RTDOhms   ]  7
 8: 261.23   Mult

: 0.0      Off 9
 
;Instructions 12-13 apply the RTD 

 E4 calibibration for
 
11:  Z=X*F (P37) 

: 26       X Loc [  1
 2: 1.8156   F 
 3: 59       Z Loc [ RTDOhmsM  ] 
 
12:  Z=X+F (P34) 

: 59       X Loc [ RTDOhmsM  ]  1
 2: -354.33  F 
 3: 60       Z Loc [ RTDTempC  ] 
 
;The following instructions calculate a

seline ba
 

:  If Flag/Por13
 1: 26       Do if Flag 6 is Low 
 2: 30       Then Do 
 
;The following instruction sets the amount of 
time that the countdown will take. 

hange the;C
time that the co
 

   14:  Z=F x 10^n (P30)   
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      1: -165     F 
      2: 00       n, Exponent of 10 

w ] 

et Flag 7 Low 

 

eline flag to 

conds --) 

 -- Interval (same units as 

  Do (P86) 
lag 8 High 

econds --) 

ame units as 

ag 8 Low 

resitor and 

(P4) 

w Range 

reps 

1 sec units) 
on 
HM   ] 

1-X)] (P59) 

HM   ] 
     Multiplier (Rf) 

P4) 

n 
 
 reps 

 sec units) 
on 

OHM   ] 
    Mult 

1-X)] (P59) 

    Loc [ PNVPOHM   ] 
(Rf) 

P4) 

ow Range 

reps 

1 sec units) 
ion 
M    ] 

(1-X)] (P59) 

M    ] 
(Rf) 

(P4) 

w Range 

     Excite all reps 

 sec units) 
on 
HM   ] 

1-X)] (P59) 

OHM   ] 
    Multiplier (Rf) 

2) 

     First Source Loc [ 

nation Loc [ 

alues in Avg 

nstruction make sure that the 

es not get stuck in the 

struction sets the Flag 6 

 

 Flag 6 High 

r the 
counter 

      3: 74       Z Loc [ Count_Do
 

   15:  Do (P86)   
      1: 27       S
 
     16:  Do (P86) 
      1: 18       Set Flag 8 High 
 
     17:  Beginning of Loop (P87)
      1: 1        Delay 
      2: 15       Loop Count 
 

4 cause the bas;Instructions 19-2
blink for the RTDM software. 
 
          18:  If time is (P92) 
           1: 0     -- Minutes (Se

to a in
           2: 2    
above) 
           3: 30       Then Do 
 
               19:
                1: 18       Set F
 
          20:  End (P95) 
 

time is (P92)           21:  If 
           1: 1     -- Minutes (S
into a 
           2: 2     -- Interval (s
above) 

     Then Do            3: 30  
 
               22:  Do (P86) 
                1: 28       Set Fl
 

        23:  End (P95)   
 
;Instructions 25-34 Read the chemi
calculate a baseline 
 

ite-Delay (SE)           24:  Exc
           1: 1        Reps 
           2: 5        2500 mV Slo
           3: 1        SE Channel 
           4: 1        Excite all 
w/Exchan 1 
           5: 0        Delay (0.0
           6: 2500     mV Excitati
           7: 47       Loc [ PECHO
           8: .0004    Mult 

         9: 0.0      Offset   
 
          25:  BR Transform Rf[X/(
           1: 1        Reps 
           2: 47       Loc [ PECHO
           3: 0.0 
 
          26:  Excite-Delay (SE) (
           1: 1        Reps 
           2: 00       Range Optio

     SE Channel           3: 2   
           4: 1        Excite all
w/Exchan 1 
           5: 0        Delay (0.01
           6: 2500     mV Excitati

         7: 48       Loc [ PNVP  
           8: .0004

           9: 0.0      Offset 
 
          27:  BR Transform Rf[X/(

     Reps            1: 1   
           2: 48   
           3: 0.0      Multiplier 
 
          28:  Excite-Delay (SE) (

         1: 1        Reps   
           2: 5        2500 mV Sl
           3: 3        SE Channel 
           4: 2        Excite all 
w/Exchan 2 

     Delay (0.0           5: 0   
           6: 2500     mV Excitat
           7: 49       Loc [ PIBOH
           8: .004     Mult 
           9: 0.0      Offset 
 
          29:  BR Transform Rf[X/
           1: 1        Reps 
           2: 49       Loc [ PIBOH
           3: 0.0      Multiplier 
 
          30:  Excite-Delay (SE) 
           1: 1        Reps 
           2: 5        2500 mV Slo
           3: 4        SE Channel 
           4: 2   
w/Exchan 2 
           5: 0        Delay (0.01
           6: 2500     mV Excitati
           7: 50       Loc [ PEVAO

4    Mult            8: .000
           9: 0.0      Offset 
 
          31:  BR Transform Rf[X/(
           1: 1        Reps 

         2: 50       Loc [ PEVA  
           3: 0.0  
 
          32:  Running Average (P5
           1: 4        Reps 
           2: 47  
PECHOHM   ] 
           3: 27       First Desti
PECHavg_1 ] 
           4: 15       Number of V
Window 
 
     33:  End (P95) 
 
;The following i
baseline flag 

s low so that it do;i
on position. 
 
     34:  Do (P86) 
      1: 28       Set Flag 8 Low 
 
;The following in
high the loop will not 
;start again until Flag 6 is low.
 

)      35:  Do (P86
      1: 16       Set
 
36:  End (P95) 
 
;The following 2 instructions are fo

unter, the first adds one to the co
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;the second instruction turns the value into a 
isplayed on the demo 

P89) 
oc [ Count_Do2 ] 

: 1        = 
: 0.0      F 

(P92) 
) into a 

ts as above) 
: 30       Then Do 

7       Set Flag 7 High 

into a 
 as above) 

 delta R/Rb 

[ PECHavg_1 ] 

 

CH      ] 
Havg_1 ] 
PECH   ] 

 -- X Loc [ NumPECH   ] 

Havg_1 ] 
taPECH ] 

 

e delta R/Rb 

dversely 

H ] 

 of 10 
  -- Z Loc [ deltaPECH ] 

 y-value for 

outine 3 

ltaPNVP ] 

eltaPIB  ] 
C3        ] 
c3PIB     ] 

c [ deltaPEVA ] 
        ] 

PECHxPNVP ] 

c [ PIBxPEVA  ] 

:  Z=X+Y (P33) 

postive value that is d
screen. 
 
37:  Z=Z+1 (P32) 
 1: 74       Z Loc [ Count_Dow ] 
 

:  Z=X*F (P37) 38
 1: 74       X Loc [ Count_Dow ] 
 2: -1       F 
 3: 75       Z Loc [ Count_Do2 ] 
 
39:  If (X<=>F) (

: 75       X L 1
 2
 3
 4: 26       Set Flag 6 Low 
 
;Instructions 41-46 cause the reading 
resistances flag to blink. 
 
40:  If time is 
 1: 0     -- Minutes (Seconds --

: 2        Interval (same uni 2
 3
 
     41:  Do (P86) 
      1: 1
 
42:  End (P95) 
 
43:  If time is (P92) 
 1: 1     -- Minutes (Seconds --) 

val (same units 2: 2        Inter
 3: 30       Then Do 
 
     44:  Do (P86) 
      1: 27       Set Flag 7 Low 
 
45:  End (P95) 
 
 
 
 
 
 
 
 
 
 
;Instructions 47-51 calculate the
values for each polymer. 
 
 

:  If (X<=>F) (P89) 46
 1: 27       X Loc 
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     47:  Beginning of Loop (P87)
      1: 0        Delay 
      2: 4        Loop Count 
 

-Y (P35)           48:  Z=X
           1: 22    -- X Loc [ PE
           2: 27    -- Y Loc [ PEC
           3: 51    -- Z Loc [ Num
 

        49:  Z=X/Y (P38)   
           1: 51   

           2: 27    -- Y Loc [ PEC
           3: 55    -- Z Loc [ del
 
 
     50:  End (P95)
 
 
51:  End (P95) 
 
 
;Instructions 52-56 make a negativ
value equal to zero. 
;A negative delta R/Rb value can a

ration. effect the concent
 
52:  Beginning of Loop (P87) 
 1: 0        Delay 
 2: 4        Loop Count 
 
     53:  If (X<=>F) (P89) 
      1: 55    -- X Loc [ deltaPEC
      2: 4        < 
      3: 0        F 

    4: 30       Then Do   
 
          54:  Z=F x 10^n (P30) 
           1: 0        F 
           2: 00       n, Exponent
           3: 55  
 
     55:  End (P95) 
 
56:  End (P95) 
 
;Instructions 57-73 calculate the
water 
 
57:  Do (P86) 
 1: 3        Call Subr
 
58:  Z=X*Y (P36) 
 1: 55       X Loc [ deltaPECH ] 
 2: 62       Y Loc [ C1        ] 
 3: 66       Z Loc [ c1PECH    ] 
 
59:  Z=X*Y (P36) 
 1: 56       X Loc [ de
 2: 63       Y Loc [ C2        ] 
 3: 67       Z Loc [ c2PNVP    ] 
 
60:  Z=X*Y (P36) 
 1: 57       X Loc [ d

: 64       Y Loc [  2
 3: 68       Z Loc [ 
 

:  Z=X*Y (P36) 61
 1: 58       X Lo
 2: 65       Y Loc [ C4
 3: 69       Z Loc [ c4PEVA    ] 
 
62:  Z=X+Y (P33) 
 1: 66       X Loc [ c1PECH    ] 

2PNVP    ]  2: 67       Y Loc [ c
 3: 70       Z Loc [ 
 
63:  Z=X+Y (P33) 
 1: 68       X Loc [ c3PIB     ] 

oc [ c4PEVA    ]  2: 69       Y L
 3: 71       Z Lo
 
64
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 1: 70       X Loc [ PECHxPNVP ] 
 2: 71       Y Loc [ PIBxPEVA  ] 
 3: 72       Z Loc [ all_added ] 
 
65:  Z=X+Y (P33) 
 1: 72       X Loc [ all_added ] 

c [ C0        ]  2: 61       Y Lo
 3: 73       Z Loc [ y_water   ] 

8) 
water   ] 

the display 
an be 

31) 
er   ] 

r_ppm ] 

ts the water 
elow threshold 

al to zero. 

:  If (X<=>Y) (P88) 
: 73       X Loc [ y_water   ] 

6) 
ow 

  n, Exponent of 10 
r_ppm ] 

 

taPECH ] 

oc [ c1PECH    ] 

ltaPNVP ] 

] 
 ] 

oc [ deltaPEVA ] 
] 

PEVA    ] 

oc [ c2PNVP    ] 
] 

oc [ c4PEVA    ] 
 ] 

 ] 

(P88) 
] 

the display 
ulated value (can 

 

the Acetone 
eshold ppm 

alue to zero. 

 of 10 
etonPPM ] 

101 set output flag high and 

ompacity so 

it to run 

ag 0) 

50 

 
66:  If (X<=>Y) (P8
 1: 73       X Loc [ y_
 2: 3        >= 
 3: 80       Y Loc [ min_water ] 

n Do  4: 30       The
 
     67:  Do (P86) 
      1: 11       Set Flag 1 High 
 
; The following instruction sets 
ppm equal to the calculated ppm (c
different) 
     68:  Z=X (P
      1: 73       X Loc [ y_wat

    2: 76       Z Loc [ Wate  
 
69:  End (P95) 
 
;The following instructions se
flag low if the y-value drops b

m and sets display value equpp
 
70
 1
 2: 4        < 
 3: 80       Y Loc [ min_water ] 
 4: 30       Then Do 
 
     71:  Do (P8
      1: 21       Set Flag 1 L
 
     72:  Z=F x 10^n (P30) 
      1: 0.0      F 
      2: 00     
      3: 76       Z Loc [ Wate
 
73:  End (P95) 
 

alculate the y-value ;Instructions 114-122 c
for acetone 
 
74:  Do (P86) 
 1: 4        Call Subroutine 4
 

:  Z=X*Y (P36) 75
 1: 55       X Loc [ del
 2: 62       Y Loc [ C1        ] 
 3: 66       Z L
 
76:  Z=X*Y (P36) 
 1: 56       X Loc [ de
 2: 63       Y Loc [ C2        ] 
 3: 67       Z Loc [ c2PNVP    ] 
 
77:  Z=X*Y (P36) 
 1: 57       X Loc [ deltaPIB  

        2: 64       Y Loc [ C3
 3: 68       Z Loc [ c3PIB     ] 
 

 78:  Z=X*Y (P36)
 1: 58       X L
 2: 65       Y Loc [ C4        

 3: 69       Z Loc [ c4
 
79:  Z=X+Y (P33) 

oc [ c1PECH    ]  1: 66       X L
 2: 67       Y L
 3: 70       Z Loc [ PECHxPNVP 
 
80:  Z=X+Y (P33) 
 1: 68       X Loc [ c3PIB     ] 
 2: 69       Y L
 3: 71       Z Loc [ PIBxPEVA 
 
81:  Z=X+Y (P33) 
 1: 70       X Loc [ PECHxPNVP ] 
 2: 71       Y Loc [ PIBxPEVA  ] 

oc [ all_added ]  3: 72       Z L
 
82:  Z=X+Y (P33) 

l_added 1: 72       X Loc [ al
 2: 61       Y Loc [ C0        ] 
 3: 78       Z Loc [ y_acetone ] 
 
83:  If (X<=>Y) 
 1: 78       X Loc [ y_acetone 
 2: 3        >= 
 3: 79       Y Loc [ min_aceto ] 
 4: 30       Then Do 
 
     84:  Do (P86) 
      1: 12       Set Flag 2 High 
 

tion assigns ;The following instruc
value of acetone to the calc
be different) 
     85:  Z=X (P31) 
      1: 78       X Loc [ y_acetone ]
      2: 77       Z Loc [ AcetonPPM ] 
 
86:  End (P95) 
 
;The following 3 instructions set 
flag low if the ppm drops below thr
and sets the display v
 
87:  If (X<=>Y) (P88) 
 1: 78       X Loc [ y_acetone ] 
 2: 4        < 
 3: 79       Y Loc [ min_aceto ] 

n Do  4: 30       The
 
     88:  Do (P86) 
      1: 22       Set Flag 2 Low 
 

P30)      89:  Z=F x 10^n (
    1: 0.0      F   

      2: 00       n, Exponent
oc [ Ac      3: 77       Z L

 
90:  End (P95) 
 
;Instructions 91-
stores data in area 2 
;area 2 has been set to low byte c
that the data logger does not 

1 and cause ;fill up storage area 
slowly. 
 
91:  Do (P86) 
 1: 10       Set Output Flag High (Fl
 

:  Set Active Storage Area (P80)^20592
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 1: 2        Final Storage Area 2 

CH      ] 

^29453 

s --) into a 
nits as above) 

lag 0) 

P77)^7187 
ute,Seconds (midnight 

 

] 

0)^1974 

erval (seconds) 

outine 3 
r water 

 

 ] 

^n (P30) 

0 
 ] 

 F 
  n, Exponent of 10 

C4        ] 

P85) 

 n, Exponent of 10 
 C0        ] 

t of 10 
       ] 

 Z Loc [ C2        ] 

 

 
        ] 

 Z Loc [ C4        ] 

 of 10 
n_water ] 

0^n (P30) 
    1: 5.0      F 
    2: 3        n, Exponent of 10 

Res_2_mVc 1 0 0 

 2: 111      Array ID 
 
93:  Sample (P70)^14867 
 1: 4        Reps 

: 22       Loc [ PE 2
 

05 94:  Sample (P70)^144
 1: 1        Reps 
 2: 60       Loc [ RTDTempC  ] 
 
95:  Sample (P70)
 1: 1        Reps 
 2: 74       Loc [ Count_Dow ] 
 
96:  If time is (P92) 
 1: 1        Minutes (Second
 2: 60       Interval (same u
 3: 10       Set Output Flag High (F
 
97:  Resolution (P78) 

: 01       High Resolution  1
 

:  Real Time (98
 1: 0221     Day,Hour/Min
= 2400) 
 
99:  Sample (P70)^2714
 1: 4        Reps 
 2: 22       Loc [ PECH      
 
100:  Sample (P70)^8978 
 1: 1        Reps 

 [ RTDOhms   ]  2: 26       Loc
 

1:  Sample (P710
 1: 4        Reps 
 2: 55       Loc [ deltaPECH ] 
 

able 2 Program *T
  02: 0         Execution Int
 
*Table 3 Subroutines 
 

 Subroutine (P85) 1:  Beginning of
 1: 3        Subr

oefficients fo;C
     2:  Z=F x 10^n (P30)
      1: 0        F 
      2: 0        n, Exponent of 10 

c [ C0             3: 61       Z Lo
 
     3:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 00       n, Exponent of 10 
      3: 62       Z Loc [ C1        ] 
 
     4:  Z=F x 10
      1: 1.2      F 
      2: 5        n, Exponent of 1
      3: 63       Z Loc [ C2       
 
     5:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 00       n, Exponent of 10 
      3: 64       Z Loc [ C3        ] 
 

0^n (P30)      6:  Z=F x 1
      1: 0       

    2: 00       
      3: 65       Z Loc [ 

 
7:  End (P95) 
 
8:  Beginning of Subroutine (

ne 4  1: 4        Subrouti
;Coefficients for acetone 
     9:  Z=F x 10^n (P30) 

    1: 1.23     F   
      2: 2       
      3: 61       Z Loc [
 
     10:  Z=F x 10^n (P30) 
      1: 1.20     F 
      2: 6        n, Exponen
      3: 62       Z Loc [ C1 
 
     11:  Z=F x 10^n (P30) 
      1: 2.06     F 

  n, Exponent of 10       2: 4      
      3: 63      
 
     12:  Z=F x 10^n (P30)
      1: 1.11     F 

xponent of 10      2: 6        n, E
      3: 64       Z Loc [ C3
 
 
     13:  Z=F x 10^n (P30) 
      1: 3.66     F 

  n, Exponent of 10       2: 4      
      3: 65      
 
; Threshold limit for water 
 

P30)      14:  Z=F x 10^n (
    1: 1.5      F   

      2: 03       n, Exponent
oc [ mi      3: 80       Z L

 
; Threshold limit for acetone 
 
     15:  Z=F x 1
  
  
      3: 79       Z Loc [ min_aceto ] 
 
16:  End (P95) 
 
End Program 
 
-Input Locations- 
1 Vbatt     1 0 1 

Sen_1_mVm 1 0 0 2 
3 Sen_2_mVm 1 0 0 
4 Sen_3_mVm 1 0 0 
5 Sen_4_mVm 1 0 0 
6 Res_1_mVc 1 0 0 
7 
8 Res_3_mVc 1 0 0 
9 Res_4_mVc 1 0 0 
10 Ref1_Kohm 1 0 0 
11 uA_1c     1 0 0 
12 Ref2_Kohm 1 0 0 
13 uA_2c     1 0 0 
14 Ref3_Kohm 1 0 0 
15 uA_3c     1 0 0 
16 Ref4_Kohm 1 0 0 
17 uA_4c     1 0 0 
18 negkohms1 1 0 0 
19 negkohms2 1 0 0 

 negkohms3 1 0 0 20
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21 negkohms4 1 0 0 
22 PECH      1 4 2 
23 PNVP      1 3 2 
24 PIB       1 3 2 
25 PEVA      1 3 2 
26 RTDOhms   1 2 1 

 PEC27 Havg_1 5 3 1 
28 PNVPavg   9 0 1 
29 PIBavg    9 0 1 
30 PEVAavg   17 0 1 
31 PECHmv_1  1 0 0 
32 PNVPmv_2  1 0 0 
33 PIBmv_1   1 0 0 
34 PEVAmv_2  1 0 0 
35 PECH_RESM 1 0 0 
36 PNVP_RESM 1 0 0 
37 PIB_RESM  1 0 0 
38 PEVA_RESM 1 0 0 
39 uA_PECH   1 0 0 
40 uA_PNVP   1 0 0 
41 uA_PIB    1 0 0 
42 uA_PEVA   1 0 0 

 negPECH   1 0 0 43
44 negPNVP   1 0 0 
45 negPIB    1 0 0 
46 negPEVA   1 0 0 
47 PECHOHM   5 2 2 
48 PNVPOHM   1 2 2 
49 PIBOHM    5 2 2 
50 PEVAOHM   1 2 2 
51 NumPECH   1 1 1 
52 NumPNVP   1 0 0 
53 NumPIB    1 0 0 
54 NumPEVA   1 0 0 
55 deltaPECH 1 4 2 
56 deltaPNVP 1 3 0 
57 deltaPIB  1 3 0 
58 deltaPEVA 1 3 0 

 RTDOhmsM  1 1 1 59
60 RTDTempC  1 1 1 
61 C0        1 2 2 
62 C1        1 2 2 
63 C2        1 2 2 
64 C3        1 2 2 
65 C4        1 2 2 
66 c1PECH    1 2 2 
67 c2PNVP    1 2 2 
68 c3PIB     1 2 2 
69 c4PEVA    1 2 2 
70 PECHxPNVP 1 2 2 
71 PIBxPEVA  1 2 2 
72 all_added 1 2 2 
73 y_water   1 3 1 
74 Count_Dow 1 2 2 

 Count_Do2 1 1 1 75
76 Water_ppm 1 0 2 
77 AcetonPPM 1 0 2 
78 y_acetone 1 3 1 
79 min_aceto 1 2 1 
80 min_water 1 2 1 
81 _________ 1 0 0 
-Program Security- 
0000 
0000 
0000 
-Mode 4- 
-Final Storage Area 2- 
300 
-CR10X ID- 
0 

R10X Power Up- -C

3 
-CR10X Compile Setting- 
3 
-CR10X RS-232 Setting- 
-1 
-DLD File Labels- 
0 

inal Storage Labels- -F
0,Day_RTM,7187 
0,Hour_Minute_RTM 
0,Seconds_RTM 
1,PECH~22,2714 
1,PNVP~23 
1,PIB~24 
1,PEVA~25 
2,RTDOhms~26,8978 
3,deltaPECH~55,1974 
3,deltaPNVP~56 
3,deltaPIB~57 
3,deltaPEVA~58 
4,111,20550 
5,PECH~22,14867 
5,PNVP~23 

PIB~24 5,
5,PEVA~25 
6,RTDTempC~60,14405 
7,Count_Dow~74,29453 

 115 



 

12.3. CR23X Program for Chemical Waste L

 (seconds) 

  Do (P86) 
tine 1 

e polymers 

ge 

its) 

 

e 

/Exchan 2 
its) 

nits) 

andfill 

 

;{CR23X} 
 ;

*Table 1 Program 
  01: 60        Execution Interval

 (P10) 1:  Batt Voltage
 1: 1        Loc [ Vbatt     ] 
 
2:
 1: 1        Call Subrou
 

ctions read th;The following instru
n E19 o

 
4) 3:  Excite-Delay (SE) (P

 1: 1        Reps 
2: 15       5000 mV, Fast Ran 

 3: 1        SE Channel 
 4: 1        Excite all reps w/Exchan 1 
5: 0        Delay (0.01 sec units)  

 6: 5000     mV Excitation 
   ]  7: 34       Loc [ E19_PIB

 8: .0002    Mult 
 9: 0.0      Offset 
 
4:  BR Transform Rf[X/(1-X)] (P59) 
 1: 1        Reps 
 2: 34       Loc [ E19_PIB   ] 
 3: 132.41   Multiplier (Rf) 
 
5:  Excite-Delay (SE) (P4) 
 1: 1        Reps 
 2: 15       5000 mV, Fast Range 
 3: 2        SE Channel 

 w/Exchan 1  4: 1        Excite all reps
 5: 0        Delay (0.01 sec un

: 5000     mV Excitation  6
 7: 35       Loc [ E19_PNVP  ] 
 8: .0002    Mult 
 9: 0.0      Offset 
 
:  BR Transform Rf[X/(1-X)] (P59) 6

 1: 1        Reps 
 ]  2: 35       Loc [ E19_PNVP 

 3: 149.70   Multiplier (Rf) 
 
7:  Excite-Delay (SE) (P4) 
 1: 1        Reps 
 2: 15       5000 mV, Fast Range 
 3: 3        SE Channel 
 4: 1        Excite all reps w/Exchan 1 

 units)  5: 0        Delay (0.01 sec
 6: 5000     mV Excitation 

: 36       Loc [ E19_PVTD  ] 7
 8: .0002    Mult 
 9: 0.0      Offset 
 
8:  BR Transform Rf[X/(1-X)] (P59) 
1: 1        Reps  

 2: 36       Loc [ E19_PVTD  ] 
  3: 299.31   Multiplier (Rf)

 
9:  Excite-Delay (SE) (P4) 
 1: 1        Reps 
 2: 15       5000 mV, Fast Range 

 3: 4        SE Channel 
 4: 1        Excite all reps w/Exchan 1 
 5: 0        Delay (0.01 sec units) 
 6: 5000     mV Excitation 
 7: 37       Loc [ E19_PEVA  ] 
 8: .0002    Mult 
 9: 0.0      Offset 
 
10:  BR Transform Rf[X/(1-X)] (P59) 
 1: 1        Reps 
 2: 37       Loc [ E19_PEVA  ] 
 3: 199.25   Multiplier (Rf) 
 
;The following instructions read E21 
 
11:  Excite-Delay (SE) (P4) 
 1: 1        Reps 
 2: 15       5000 mV, Fast Rang
 3: 13       SE Channel 
 4: 2        Excite all reps w/Exchan 2 
 5: 1        Delay (0.01 sec units) 
 6: 5000     mV Excitation 
 7: 204      Loc [ E25_PECH  ] 
 8: .0002    Mult 
 9: 0.0      Offset 
 
12:  BR Transform Rf[X/(1-X)] (P59) 
 1: 1        Reps 
 2: 204      Loc [ E25_PECH  ] 
 3: 199.60   Multiplier (Rf) 
 
13:  Excite-Delay (SE) (P4) 
 1: 1        Reps 
 2: 15       5000 mV, Fast Range 
 3: 14       SE Channel 
 4: 2        Excite all reps w
 5: 1        Delay (0.01 sec un
 6: 5000     mV Excitation 
 7: 205      Loc [ E25_PNVP  ] 
 8: .0002    Mult 
 9: 0.0      Offset 
 
14:  BR Transform Rf[X/(1-X)] (P59) 
 1: 1        Reps 
 2: 205      Loc [ E25_PNVP  ] 
 3: 199.00   Multiplier (Rf) 
 
15:  Excite-Delay (SE) (P4) 
 1: 1        Reps 
 2: 15       5000 mV, Fast Range 
 3: 15       SE Channel 
 4: 2        Excite all reps w/Exchan 2 
 5: 1        Delay (0.01 sec u
 6: 5000     mV Excitation 
 7: 206      Loc [ E25_PIB   ] 
 8: .0002    Mult 
 9: 0.0      Offset 
 
16:  BR Transform Rf[X/(1-X)] (P59) 
 1: 1        Reps 

 ]  2: 206      Loc [ E25_PIB  
 3: 214.92   Multiplier (Rf) 
 
17:  Excite-Delay (SE) (P4) 
 1: 1        Reps 
 2: 15       5000 mV, Fast Range 
 3: 16       SE Channel 
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 4: 2        Excite all reps w/Exchan 2 
 5: 1        Delay (0.01 sec units) 
 6: 5000     mV Excitation 
 7: 207      Loc [ E25_PEVA  ] 

: .0002    Mult  8
 9: 0.0      Offset 
 
18:  BR Transform Rf[X/(1-X)] (P59) 
 1: 1        Reps 
 2: 207      Loc [ E25_PEVA  ] 
 3: 174.03   Multiplier (Rf) 
 
19:  Full Bridge w/mv Excit (P9);This reads 
E19's RTD 
 1: 1        Reps 
 2: 14       1000 mV, Fast, Ex Range 
 3: 14       1000 mV, Fast, Br Range 
 4: 3        DIFF Channel 
 5: 3        Excite all reps w/Exchan 3 
 6: 1000     mV Excitation 
 7: 31       Loc [ RTDohms   ] 

: 261.11   Mult  8
 9: 0.0      Offset 
 
20:  Full Bridge w/mv Excit (P9);This reads 

st, Br Range 

chan 3 

19's RTD 

7) 

its) 
 

 

ow 

 

pe_D3 ] 

tation (P22) 

.01 sec units) 
 sec 

  35:  Volt (SE) (P1) 

 60 Hz Reject, Fast 

oltage 

: 0        mV Excitation 

E25's RTD 
 1: 1        Reps 
 2: 14       1000 mV, Fast, Ex Range 
 3: 14       1000 mV, Fa
 4: 9        DIFF Channel 
 5: 3        Excite all reps w/Ex
 6: 1000     mV Excitation 
 7: 185      Loc [ E21RTDohm ] 
 8: 235.76   Mult 
 9: 0.0      Offset 
 
;Instructions 10-11 calculate E

mperature te
 
21:  Z=X*F (P37) 
 1: 31       X Loc [ RTDohms   ] 
 2: .0035    F 
 3: 33       Z Loc [ RTDTempM  ] 
 
22:  Z=X+F (P34) 
 1: 33       X Loc [ RTDTempM  ] 
 2: 17.093   F 
 3: 32       Z Loc [ RTDTempC  ] 
 
;Instru  ctions 12-13 calculate E21's RTD
temperature 
 
23:  Z=X*F (P37) 
 1: 185      X Loc [ E21RTDohm ] 
 2: 1.7005   F 
 3: 190      Z Loc [ E21RTD_M  ] 
 
24:  Z=X+F (P34) 
 1: 190      X Loc [ E21RTD_M  ] 
 2: -362.96  F 
 3: 191      Z Loc [ E21_TempC ] 
 
25:  Panel Temperature (P17) 
 1: 6        Loc [ T_ref     ] 
 
;The following instuctions are for the 
multiplexer 
 
26:  Do (P86) 
 1: 42       Set Port 2 High 
 

27:  Beginning of Loop (P8
 1: 0        Delay 
 2: 2        Loop Count 
 

   28:  Do (P86)   
      1: 73       Pulse Port 3 
 
     29:  Delay w/Opt Excitation (P22) 
      1: 1        Ex Channel 
      2: 0        Delay W/Ex (0.01 sec un
      3: 1        Delay After Ex (0.01 sec
units) 
      4: 0        mV Excitation
 
     30:  Thermocouple Temp (DIFF) (P14) 
      1: 1        Reps 

 Hz Reject, Sl      2: 21       10 mV, 60
Range 
      3: 12       DIFF Channel 
      4: 1        Type T (Copper-Constantan)
      5: 6        Ref Temp (Deg. C) Loc [ 

ref     ] T_
      6: 251   -- Loc [ T_Ty
      7: 1.0      Mult 
      8: 0.0      Offset 
 
31:  End (P95) 
 
32:  Beginning of Loop (P87) 
 1: 0        Delay 
 2: 2        Loop Count 
 
     33:  Do (P86) 
      1: 73       Pulse Port 3 
 
     34:  Delay w/Opt Exci
      1: 1        Ex Channel 

    2: 0        Delay W/Ex (0  
      3: 1        Delay After Ex (0.01
units) 
      4: 0        mV Excitation 
 
   
      1: 1        Reps 
      2: 25       5000 mV,
Range (same as code 45) 
      3: 23       SE Channel 
      4: 10    -- Loc [ PSIVolts  ] 
      5: 1.0      Mult 
      6: 0.0      Offset 
 
36:  End (P95) 
 

 the v;The following instruction read
off of the solar panel 
 
37:  Beginning of Loop (P87) 
 1: 0        Delay 
 2: 1        Loop Count 
 
     38:  Do (P86) 
      1: 73       Pulse Port 3 
 
     39:  Delay w/Opt Excitation (P22) 
      1: 1        Ex Channel 
      2: 0        Delay W/Ex (0.01 sec units) 
      3: 1        Delay After Ex (0.01 sec 
units) 

    4  
 
     40:  Volt (Diff) (P2) 
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      1: 1        Reps 
      2: 25       5000 mV, 60 Hz Reject, Fast 
Range (same as code 45) 
      3: 12       DIFF Channel 
      4: 283      Loc [ SolarVolD ] 
      5: .001     Mult 

    6  : 0.0      Offset 

SolarWatt ] 

ions read the HX92AC 

st Range 

mAmps   ] 

30) 

rt the 

SIamps   ] 

re and 
ate Vp 

D3 ] 

tVpPa   ] 

ated 

 
41:  End (P95) 
 
42:  Do (P86) 
 1: 52       Set Port 2 Low 
 
;The following instruction convert the divided 
solar panel voltage into its actual voltage 
;and precicts the wattage 
 
43:  Z=X*F (P37) 
 1: 283      X Loc [ SolarVolD ] 
 2: 4.14396  F 
 3: 284      Z Loc [ SolarVolt ] 
 
44:  Z=X*F (P37) 
 1: 284      X Loc [ SolarVolt ] 
 2: 1.17     F 
 3: 285      Z Loc [ 
 
45:  Z=X*F (P37) 
 1: 11       X Loc [ HeatBarV  ] 
 2: .001     F 
 3: 11       Z Loc [ HeatBarV  ] 
 
46:  Z=X-Y (P35) 
 1: 32       X Loc [ RTDTempC  ] 
 2: 251      Y Loc [ T_Type_D3 ] 
 3: 99       Z Loc [ RTD_Ttype ] 
 
;The follwoing instruct
and convert the output to Rh 
 
47:  Volt (SE) (P1) 
 1: 1        Reps 
 2: 25       5000 mV, 60 Hz Reject, Fa
(same as code 45) 
 3: 22       SE Channel 
 4: 9        Loc [ RHVolts   ] 
 5: 1.0      Mult 
 6: 0.0      Offset 
 
48:  Z=X/Y (P38) 
 1: 9        X Loc [ RHVolts   ] 
 2: 118      Y Loc [ RhRefR    ] 
 3: 119      Z Loc [ RhmAmps   ] 
 

:  Z=X+F (P34) 49
 1: 119      X Loc [ Rh
 2: -4       F 
 3: 120      Z Loc [ RhAmps_mi ] 
 
50:  Z=X*F (P37) 
 1: 120      X Loc [ RhAmps_mi ] 
 2: 6.25     F 
 3: 14       Z Loc [ HX92RH    ] 
 
51:  If (X<=>F) (P89) 
 1: 14       X Loc [ HX92RH    ] 
 2: 3        >= 
 3: 100      F 
 4: 30       Then Do 
 
     52:  Z=F x 10^n (P

      1: 100      F 
      2: 0        n, Exponent of 10 
      3: 14       Z Loc [ HX92RH    ] 
 
53:  End (P95) 
 
54:  If (X<=>F) (P89) 
 1: 14       X Loc [ HX92RH    ] 

: 4        <  2
 3: 0        F 
 4: 30       Then Do 
 
     55:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 0        n, Exponent of 10 
      3: 14       Z Loc [ HX92RH    ] 
 
56:  End (P95) 
 
;The following Insturctions will conve
PSI Volts into PSI 
 
57:  Z=X/Y (P38) 

: 10       X Loc [ PSIVolts  ]  1
 2: 286      Y Loc [ PSIRefR   ] 
 3: 12       Z Loc [ PSIamps   ] 
 
58:  Z=X*F (P37) 
 1: 12       X Loc [ P
 2: .9375    F 
 3: 16       Z Loc [ PSIVoltM  ] 
 
59:  Z=X+F (P34) 

SIVoltM  ]  1: 16       X Loc [ P
 2: -3.75    F 
 3: 15       Z Loc [ PX215_PSI ] 
 
60:  Z=X*F (P37) 

: 15       X Loc [ PX215_PSI ]  1
 2: 6894.76  F 
 3: 253      Z Loc [ PX215_Pa  ] 
 
;The following  instructions calculate 
Saturated Vapor Pressu
;multiply it by the humidity to calcul
Pa of the system 
 
61:  Saturation Vapor Pressure (P56) 

re Loc [ T_Type_ 1: 251      Temperatu
 2: 128      Loc [ SatVpKpa  ] 
 
62:  Z=X*F (P37) 
 1: 128      X Loc [ SatVpKpa  ] 

: 1000     F  2
 3: 129      Z Loc [ Sa
 
63:  Z=X*F (P37) 
 1: 14       X Loc [ HX92RH    ] 
 2: .01      F 
 3: 130      Z Loc [ HX92Rh001 ] 
 
64:  Z=X*Y (P36) 
 1: 129      X Loc [ SatVpPa   ] 
 2: 130      Y Loc [ HX92Rh001 ] 
 3: 131      Z Loc [ Vp_Ambien ] 
 

calculate the Satur;Instuctions 48-54 
Vapor Pressure of TCE 
 

:  Polynomial (P55) 65
 1: 1        Reps 
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 2: 251      X Loc [ T_Type_D3 ] 
 3: 301      F(X) Loc [ D3sTCE_Pa ] 
 4: 2153.8   C0 
 5: 139.53   C1 
 6: 4.0333   C2 
 7: .0575    C3 
 8: .0003    C4 
 9: 0        C5 
 
66:  Polynomial (P55) 
 1: 1        Reps 
 2: 252      X Loc [ T_TypeMW2 ] 
 3: 305      F(X) Loc [ MWsTCE_Pa ] 
 4: 2153.8   C0 
 5: 139.53   C1 
 6: 4.0333   C2 
 7: .0575    C3 
 8: .0003    C4 
 9: 0.0      C5 
 
67:  Z=X/Y (P38) 
 1: 301      X Loc [ D3sTCE_Pa ] 
 2: 253      Y Loc [ PX215_Pa  ] 

: 302      Z Loc [ D3sTCE_PX ]  3
 
68:  Z=X/Y (P38) 
 1: 305      X Loc [ MWsTCE_Pa ] 
 2: 253      Y Loc [ PX215_Pa  ] 
 3: 306      Z Loc [ M
 

WsTCE_PX ] 

: 307      X Loc [ MWsTCEppm ] 
Loc [ Million   ] 
oc [ MWsTCEppm ] 

ulate 
e 

l reps w/Exchan 4 
ion 

 

ll Bridge (P6) 

Range 

xchan 4 

    ] 

ma     ] 

 
] 

 

: 28       Z Loc [ HEAD_FT   ] 

FT   ] 

s calculate the 

or 

) 
 Loc [ HEAD_FT   ] 

20ft ] 

calculate delta 

IB  ] 

umPIB    ] 

 

69:  Z=F x 10^n (P30) 
 1: 1        F 
 2: 6        n, Exponent of 10 

illion   ]  3: 303      Z Loc [ M
 
70:  Z=X*Y (P36) 
 1: 302      X Loc [ D3sTCE_PX ] 
 2: 303      Y Loc [ Million   ] 

: 304      Z Loc [ D3sTCEppm ]  3
 
71:  Z=X*Y (P36) 
 1
 2: 303      Y 
 3: 307      Z L
 
;The following instructions read and calc
the Head Ft of the CS400 Submersible Pressur
Transducer 
 
72:  Full Bridge (P6) 
 1: 1        Reps 
 2: 12       50 mV, Fast Range 

el  3: 6        DIFF Chann
: 4        Excite al 4

 5: 860      mV Excitat
 6: 25       Loc [ MA_MEAS   ]
 7: .01      Mult 
 8: 0.0      Offset 
 
73:  Fu
 1: 1        Reps 
 2: 12       50 mV, Fast 
 3: 5        DIFF Channel 
 4: 4        Excite all reps w/E

on  5: 860      mV Excitati
 6: 26       Loc [ mv_ma 
 7: .5       Mult 
 8: 0.0      Offset 
 
74:  Z=X/Y (P38) 

[ mv_ 1: 26       X Loc 

 2: 25       Y Loc [ MA_MEAS   ]
         3: 27       Z Loc [ MV

 
75:  Z=X*F (P37) 
 1: 27       X Loc [ MV        ]

: 3.0241   F  2
 3
 

:  Z=X+F (P34) 76
 1: 28       X Loc [ HEAD_FT   ] 
 2: -1       F 
 3: 28       Z Loc [ HEAD_
 
77:  Z=X+F (P34) 
 1: 27       X Loc [ MV        ] 
 2: -.2647   F 

nus  ]  3: 29       Z Loc [ MV_Mi
 
78:  Z=X*F (P37) 
 1: 29       X Loc [ MV_Minus  ] 
 2: 1.3115   F 

: 30       Z Loc [ PSIG_CS40 ]  3
 

ction;The following instur
depth of water level 
;and head of water above the chemireist
 
79:  Z=X-Y (P35) 
 1: 258      X Loc [ D_PressFt ] 
 2: 28       Y Loc [ HEAD_FT   ] 
 3: 254      Z Loc [ D_GW_ft   ] 
 
80:  Z=X*F (P37) 
 1: 254      X Loc [ D_GW_ft   ] 
 2: .3048    F 
 3: 255      Z Loc [ D_GW_m    ] 
 
81:  Z=X-Y (P35

: 28       X 1
 2: 259      Y Loc [ D_ChemiFt ] 
 3: 256      Z Loc [ Hh2oE20ft ] 
 
82:  Z=X*F (P37) 
 1: 256      X Loc [ Hh2oE
 2: .3048    F 
 3: 257      Z Loc [ Hh20E20m  ] 
 
 
 
 
 
 
 
 
;The following instructions 

 R/Rb for E19 polymers
 
83:  If (X<=>F) (P89) 
 1: 95       X Loc [ base_P
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     84:  Z=X-Y (P35) 
      1: 34       X Loc [ E19_PIB   ] 
      2: 95       Y Loc [ base_PIB  ] 
      3: 104      Z Loc [ N
 

      85:  Z=X/Y (P38)
      1: 104      X Loc [ NumPIB    ]
      2: 95       Y Loc [ base_PIB  ] 
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      3: 105      Z Loc [ d
 

eltaPIB  ] 

9_PNVP  ] 
] 

  X Loc [ NumPNVP   ] 
 ] 
] 

TD ] 

] 

] 
 

se_PEVA ] 
] 

se_PEVA ] 
eltaPEVA ] 

calculate delta 

lE25PECH ] 
 

25PECH  ] 
] 
 

  Z Loc [ nE25PNVP  ] 

 ] 
 

] 

IB  ] 

5_PIB   ] 
] 
 

25PIB   ] 
lE25PIB  ] 

  Z Loc [ nE25PEVA  ] 

X/Y (P38) 
      X Loc [ nE25PEVA  ] 

 Loc [ BlE25PEVA ] 
 Loc [ E25DPEVA  ] 

ructions apply the model 
concentration 

ng the T_Type Thermocouple 

broutine 3 

86:  End (P95) 
 
87:  If (X<=>F) (P89) 

: 96       X Loc [ base_PNVP ]  1
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     88:  Z=X-Y (P35) 
      1: 35       X Loc [ E1
      2: 96       Y Loc [ base_PNVP 
      3: 106      Z Loc [ NumPNVP   ] 
 

 (P38)      89:  Z=X/Y
      1: 106    
      2: 96       Y Loc [ base_PNVP
      3: 107      Z Loc [ deltaPNVP 
 
90:  End (P95) 
 

:  If (X<=>F) (P89) 91
 1: 97       X Loc [ base_PV
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     92:  Z=X-Y (P35) 
      1: 36       X Loc [ E19_PVTD  
      2: 97       Y Loc [ base_PVTD ] 
      3: 108      Z Loc [ NumPVTD   ] 
 
     93:  Z=X/Y (P38) 
      1: 108      X Loc [ NumPVTD   
      2: 97       Y Loc [ base_PVTD ]
      3: 109      Z Loc [ deltaPVTD ] 
 
94:  End (P95) 
 
95:  If (X<=>F) (P89) 
 1: 98       X Loc [ base_PEVA ] 
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     96:  Z=X-Y (P35) 

19_PEVA  ]       1: 37       X Loc [ E
      2: 98       Y Loc [ ba
      3: 110      Z Loc [ NumPEVA   
 
     97:  Z=X/Y (P38) 

    1: 110      X Loc [ NumPEVA   ]   
      2: 98       Y Loc [ ba

oc [ d      3: 111      Z L
 
98:  End (P95) 
 
;The following instructions 
R/Rb for E21 polymers 
 
99:  If (X<=>F) (P89) 

Loc [ BlE25PECH ]  1: 209      X 
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     100:  Z=X-Y (P35) 

5_PECH  ]       1: 204      X Loc [ E2
oc [ B      2: 209      Y L

      3: 213      Z Loc [ nE25PECH  ]

 
     101:  Z=X/Y (P38) 
      1: 213      X Loc [ nE
      2: 209      Y Loc [ BlE25PECH 
      3: 217      Z Loc [ E25DPECH  ]
 

2:  End (P95) 10
 

) 103:  If (X<=>F) (P89
 1: 210      X Loc [ BlE25PNVP ] 
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     104:  Z=X-Y (P35) 
      1: 205      X Loc [ E25_PNVP  ] 

   Y Loc [ BlE25PNVP ]       2: 210   
      3: 214    
 
     105:  Z=X/Y (P38) 

E25PNVP       1: 214      X Loc [ n
      2: 210      Y Loc [ BlE25PNVP ]

    3: 218      Z Loc [ E25DPNVP    
 
106:  End (P95) 
 
107:  If (X<=>F) (P89) 
 1: 211      X Loc [ BlE25P
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     108:  Z=X-Y (P35) 
      1: 206      X Loc [ E2
      2: 211      Y Loc [ BlE25PIB  
      3: 215      Z Loc [ nE25PIB   ]
 

   109:  Z=X/Y (P38)   
      1: 215      X Loc [ nE

oc [ B      2: 211      Y L
      3: 219      Z Loc [ E25DPIB   ] 
 
110:  End (P95) 
 
111:  If (X<=>F) (P89) 
 1: 212      X Loc [ BlE25PEVA ] 
 2: 3        >= 
 3: 1        F 
 4: 30       Then Do 
 
     112:  Z=X-Y (P35) 
      1: 207      X Loc [ E25_PEVA  ] 

    2: 212      Y Loc [ BlE25PEVA ]   
      3: 216    
 
     113:  Z=

    1: 216  
      2: 212      Y
      3: 220      Z
 
114:  End (P95) 
 
;The following inst
for predicting TCE 
;for the chip E19 
;They calculate usi
in Well D3 
 
115:  Do (P86) 
 1: 3        Call Su
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116:  Z=X*Y (P36) 
 1: 122      X Loc [ B1        ] 

 T_Type_D3 ] 
 B1X       ] 

 B2        ] 
 deltaPNVP ] 
 B2PNVP    ] 

 B2PNVP    ] 
 deltaPEVA ] 
 B2X       ] 

 B3        ] 
 deltaPVTD ] 
 B3PVTD    ] 

 B3PVTD    ] 
 T_Type_D3 ] 
 B3X       ] 

 B4        ] 
 deltaPEVA ] 
 B4PEVA    ] 

 B4PEVA    ] 
 T_Type_D3 ] 
 B4X       ] 

 B5        ] 
 deltaPVTD ] 
 B5PVTD    ] 

 B5PVTD    ] 
 Vp_Ambien ] 
 B5X       ] 

 B6        ] 
 deltaPIB  ] 
 b6PIB     ] 

 b6PIB     ] 
 deltaPNVP ] 
 b6PIBPNVP ] 

b6PIBPNVP ] 
 T_Type_D3 ] 
 B6X       ] 

 B7        ] 
 deltaPIB  ] 
 B7PIB     ] 

 B7PIB     ] 
 deltaPVTD ] 
 B7PIBPVTD ] 

 B7PIBPVTD ] 
 deltaPEVA ] 
 B7PibPPEV ] 

 B7PibPPEV ] 
 T_Type_D3 ] 
 B7X       ] 

 B0        ] 
 B1X       ] 
 B0_B1     ] 

B2X       ] 
B3X       ] 
B2_B3     ] 

B4X       ] 
B5X       ] 
B4X_B5Xa  ] 

B4X_B5Xa  ] 
B6X       ] 
B4_B5_B6  ] 

B4_B5_B6  ] 
B7X       ] 
B4B5B6B7  ] 

B0_B1     ] 
B2_B3     ] 
B0B1B2B3  ] 

B0B1B2B3  ] 
B4B5B6B7  ] 
TCE_ppm   ] 

TCE_ppm   ] 

TCE_ppmR  ] 

) 
TCE_ppmR  ] 

 (P30) 

Exponent of 10 
oc [ TCE_ppmR  ] 

) 
TCE_ppmR  ] 

 Flag 15 High 

 2: 251      Y Loc [
 3: 161      Z Loc [
 
117:  Z=X*Y (P36) 
 1: 123      X Loc [
 2: 107      Y Loc [
 3: 152      Z Loc [
 
118:  Z=X*Y (P36) 
 1: 152      X Loc [
 2: 111      Y Loc [
 3: 162      Z Loc [
 
119:  Z=X*Y (P36) 
 1: 124      X Loc [
 2: 109      Y Loc [
 3: 153      Z Loc [
 
120:  Z=X*Y (P36) 
 1: 153      X Loc [
 2: 251      Y Loc [
 3: 163      Z Loc [
 
121:  Z=X*Y (P36) 
 1: 125      X Loc [
 2: 111      Y Loc [
 3: 154      Z Loc [
 
122:  Z=X*Y (P36) 
 1: 154      X Loc [
 2: 251      Y Loc [
 3: 164      Z Loc [
 
123:  Z=X*Y (P36) 
 1: 126      X Loc [
 2: 109      Y Loc [
 3: 155      Z Loc [
 
124:  Z=X*Y (P36) 
 1: 155      X Loc [
 2: 131      Y Loc [
 3: 165      Z Loc [
 
125:  Z=X*Y (P36) 
 1: 127      X Loc [
 2: 105      Y Loc [
 3: 156      Z Loc [
 
126:  Z=X*Y (P36) 
 1: 156      X Loc [
 2: 107      Y Loc [
 3: 157      Z Loc [
 
127:  Z=X*Y (P36) 
 1: 157      X Loc [ 
 2: 251      Y Loc [
 3: 166      Z Loc [
 
128:  Z=X*Y (P36) 
 1: 151      X Loc [
 2: 105      Y Loc [
 3: 158      Z Loc [
 
129:  Z=X*Y (P36) 
 1: 158      X Loc [
 2: 109      Y Loc [
 3: 159      Z Loc [
 
130:  Z=X*Y (P36) 

 1: 159      X Loc [
 2: 111      Y Loc [
 3: 160      Z Loc [
 
131:  Z=X*Y (P36) 
 1: 160      X Loc [
 2: 251      Y Loc [
 3: 167      Z Loc [
 
132:  Z=X-Y (P35) 
 1: 121      X Loc [
 2: 161      Y Loc [
 3: 169      Z Loc [
 
133:  Z=X+Y (P33) 
 1: 162      X Loc [ 
 2: 163      Y Loc [ 
 3: 170      Z Loc [ 
 
134:  Z=X+Y (P33) 
 1: 164      X Loc [ 
 2: 165      Y Loc [ 
 3: 168      Z Loc [ 
 
135:  Z=X-Y (P35) 
 1: 168      X Loc [ 
 2: 166      Y Loc [ 
 3: 171      Z Loc [ 
 
136:  Z=X+Y (P33) 
 1: 171      X Loc [ 
 2: 167      Y Loc [ 
 3: 172      Z Loc [ 
 
137:  Z=X+Y (P33) 
 1: 169      X Loc [ 
 2: 170      Y Loc [ 
 3: 173      Z Loc [ 
 
138:  Z=X+Y (P33) 
 1: 173      X Loc [ 
 2: 172      Y Loc [ 
 3: 132      Z Loc [ 
 
139:  Z=X+F (P34) 
 1: 132      X Loc [ 
 2: 0.0      F 
 3: 174      Z Loc [ 
 
140:  If (X<=>F) (P89
 1: 174      X Loc [ 
 2: 4        < 
 3: 5000     F 
 4: 30       Then Do 
 
     141:  Z=F x 10^n
      1: 0.0      F 
      2: 00       n, 
      3: 174      Z L
 
142:  End (P95) 
 
143:  If (X<=>F) (P89
 1: 174      X Loc [ 
 2: 3        >= 
 3: 5000     F 
 4: 30       Then Do 
 
     144:  Do (P86) 
      1: 115      Set
 

 121 



 

145:  End (P95) 
 
146:  If (X<=>Y) (P88) 

TCE_ppm   ] 

D3sTCEppm ] 

oc [ D3sTCEppm ] 
oc [ TCE_ppm   ] 

ctions apply the model 
E in ppm 
r E25 

routine 5 

ltipliers for the 

E25DPECH  ] 
E25DPEVA  ] 
dPECHxdPE ] 

E25DPIB   ] 
E25DPEVA  ] 
dPIBxdPEV ] 

E25DPEVA  ] 
E25DPNVP  ] 
dPEVAxdPN ] 

E25DPECH  ] 
E25DPIB   ] 
dPIBXdPEC ] 

C1        ] 
E25DPECH  ] 
C1_PECH   ] 

2        ] 
dPIBXdPEC ] 
C2_X      ] 

C3        ] 
dPECHxdPE ] 
C3_X      ] 

C4        ] 
dPEVAxdPN ] 
C4_X      ] 

C5        ] 
dPIBxdPEV ] 
C5_X      ] 

C0        ] 
C1_PECH   ] 
C0_C1     ] 

C2_X      ] 
C3_X      ] 
C2_C3     ] 

C4_X      ] 
C5_X      ] 
C4_C5     ] 

C0_C1     ] 
C2_C3     ] 
C0C1C2C3  ] 

0C1C2C3  ] 
C6_C7     ] 
E25TCEppm ] 

E25TCEppm ] 

E25_ppm_R ] 

) 
E25_ppm_R ] 

 (P30) 

Exponent of 10 
oc [ E25_ppm_R ] 

) 
E25_ppm_R ] 

 Flag 14 High 

) 
E25TCEppm ] 

MWsTCEppm ] 

oc [ MWsTCEppm ] 
oc [ E25TCEppm ] 

 1: 132      X Loc [ 
 2: 3        >= 
 3: 304      Y Loc [ 
 4: 30       Then Do 
 
     147:  Z=X (P31) 
      1: 304      X L
      2: 132      Z L
 
148:  End (P95) 
 
 
 
 
;The following instru
for the predicting TC
;for the chemiresisto
 
149:  Do (P86) 
 1: 5        Call Sub
 
 
 
;The following are mu
equation 
 
150:  Z=X*Y (P36) 
 1: 217      X Loc [ 
 2: 220      Y Loc [ 
 3: 288      Z Loc [ 
 
151:  Z=X*Y (P36) 
 1: 219      X Loc [ 
 2: 220      Y Loc [ 
 3: 289      Z Loc [ 
 
152:  Z=X*Y (P36) 
 1: 220      X Loc [ 
 2: 218      Y Loc [ 
 3: 310      Z Loc [ 
 
153:  Z=X*Y (P36) 
 1: 217      X Loc [ 
 2: 219      Y Loc [ 
 3: 309      Z Loc [ 
 
 
154:  Z=X*Y (P36) 
 1: 222      X Loc [ 
 2: 217      Y Loc [ 
 3: 308      Z Loc [ 
 
155:  Z=X*Y (P36) 
 1: 223      X Loc [ C
 2: 309      Y Loc [ 
 3: 311      Z Loc [ 
 
156:  Z=X*Y (P36) 
 1: 224      X Loc [ 
 2: 288      Y Loc [ 
 3: 312      Z Loc [ 
 
157:  Z=X*Y (P36) 
 1: 225      X Loc [ 
 2: 310      Y Loc [ 
 3: 313      Z Loc [ 
 
158:  Z=X*Y (P36) 

 1: 226      X Loc [ 
 2: 289      Y Loc [ 
 3: 314      Z Loc [ 
 
159:  Z=X+Y (P33) 
 1: 221      X Loc [ 
 2: 308      Y Loc [ 
 3: 243      Z Loc [ 
 
160:  Z=X+Y (P33) 
 1: 311      X Loc [ 
 2: 312      Y Loc [ 
 3: 244      Z Loc [ 
 
161:  Z=X+Y (P33) 
 1: 313      X Loc [ 
 2: 314      Y Loc [ 
 3: 245      Z Loc [ 
 
162:  Z=X+Y (P33) 
 1: 243      X Loc [ 
 2: 244      Y Loc [ 
 3: 247      Z Loc [ 
 
163:  Z=X+Y (P33) 
 1: 247      X Loc [ C
 2: 246      Y Loc [ 
 3: 249      Z Loc [ 
 
164:  Z=X+F (P34) 
 1: 249      X Loc [ 
 2: 0.0      F 
 3: 250      Z Loc [ 
 
165:  If (X<=>F) (P89
 1: 250      X Loc [ 
 2: 4        < 
 3: 5000     F 
 4: 30       Then Do 
 
     166:  Z=F x 10^n
      1: 0.0      F 
      2: 00       n, 
      3: 250      Z L
 
167:  End (P95) 
 
168:  If (X<=>F) (P89
 1: 250      X Loc [ 
 2: 3        >= 
 3: 5000     F 
 4: 30       Then Do 
 
     169:  Do (P86) 
      1: 114      Set
 
170:  End (P95) 
 
171:  If (X<=>Y) (P88
 1: 249      X Loc [ 
 2: 3        >= 
 3: 307      Y Loc [ 
 4: 30       Then Do 
 
     172:  Z=X (P31) 
      1: 307      X L
      2: 249      Z L
 
173:  End (P95) 
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;The following instuctions check the system 

) 
RTD_Ttype ] 

 18 High ;Upper Limit 

) 
RTD_Ttype ] 

 18 High;Lower Limit 

89) 
1      X Loc [ E21_TempC ] 
       < 

   F 
 High 

=>F) (P89) 
c [ E21_TempC ] 

High 

att     ] 

g 17 Low 

) (P89) 
 [ Vbatt     ] 

17 High 

chemiresistor resistances 

9) 
19_PIB   ] 

g 16 High 

 
E19_PNVP  ] 

6 High 

(P89) 
oc [ E19_PVTD  ] 

6 High 

_PEVA  ] 

t Flag 16 High 

_PECH  ] 

 High 

5_PNVP  ] 

ag 13 High 

 
E25_PIB   ] 

 High 

(P89) 
 [ E25_PEVA  ] 

 High 

The following instructions give numerical 
alues to the flags 

 
 
188:  If Flag/Port (P91) 
 1: 112      Do if Flag 12 is High 
 2: 30       Then Do 
 
     189:  Z=F x 10^n (P30) 
      1: 1        F 
      2: 0        n, Exponent of 10 
      3: 282      Z Loc [ E21Rtdmal ] 
 
190:  End (P95) 
 
191:  If Flag/Port (P91) 
 1: 212      Do if Flag 12 is Low 
 2: 30       Then Do 
 
     192:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 0        n, Exponent of 10 
      3: 282      Z Loc [ E21Rtdmal ] 
 
193:  End (P95) 
 
194:  If Flag/Port (P91) 
 1: 113      Do if Flag 13 is High 
 2: 30       Then Do 
 
     195:  Z=F x 10^n (P30) 
      1: 1        F 
      2: 0        n, Exponent of 10 
      3: 261      Z Loc [ E21negRes ] 
 
196:  End (P95) 
 
197:  If Flag/Port (P91) 
 1: 213      Do if Flag 13 is Low 
 2: 30       Then Do 
 
     198:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 0        n, Exponent of 10 
      3: 261      Z Loc [ E21negRes ] 
 

for malfunctions 
 
174:  If (X<=>F) (P89
 1: 99       X Loc [ 
 2: 3        >= 
 3: 5        F 
 4: 118      Set Flag
Check Temperature 
 
175:  If (X<=>F) (P89
 1: 99       X Loc [ 
 2: 4        < 
 3: -5       F 
 4: 118      Set Flag
Check Temperature 
 

If (X<=>F) (P176:  
 1: 19
 2: 4 
 3: 24    
 4: 112      Set Flag 12
 
177:  If (X<
 1: 191      X Lo
 2: 3        >= 
 3: 27       F 
 4: 112      Set Flag 12 
 
 
 
 
 
178:  If (X<=>F) (P89) 

 [ Vb 1: 1        X Loc
  >=  2: 3      

 3: 11.5     F 
 4: 217      Set Fla
 
179:  If (X<=>F
 1: 1        X Loc
 2: 4        < 
 3: 11.5     F 

Flag  4: 117      Set 
 
;Checks for negative 
 
180:  If (X<=>F) (P8
 1: 34       X Loc [ E
 2: 4        < 
 3: 0        F 
 4: 116      Set Fla
 
181:  If (X<=>F) (P89)

c [  1: 35       X Lo
 2: 4        < 
 3: 0        F 
 4: 116      Set Flag 1
 
182:  If (X<=>F) 
 1: 36       X L
 2: 4        < 
 3: 0        F 
 4: 116      Set Flag 1
 
183:  If (X<=>F) (P89) 
 1: 37       X Loc [ E19
 2: 4        < 
 3: 0        F 
 4: 116      Se

 
184:  If (X<=>F) (P89) 
 1: 204      X Loc [ E25
 2: 4        < 
 3: 0        F 
 4: 113      Set Flag 13
 
185:  If (X<=>F) (P89) 

 [ E2 1: 205      X Loc
 2: 4        < 
 3: 0        F 
 4: 113      Set Fl
 
186:  If (X<=>F) (P89)

c [  1: 206      X Lo
 2: 4        < 
 3: 0        F 
 4: 113      Set Flag 13
 
187:  If (X<=>F) 
 1: 207      X Loc
 2: 4        < 
 3: 0        F 
 4: 113      Set Flag 13
 
;
v
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199:  End (P95) 

 1: 114      Do if Flag 14 is High 
    Then Do 

     201:  Z=F x 10^n (P30) 

Flag/Port (P91) 

1        F 
00       n, Exponent of 10 

 

Flag/Port (P91) 

 

218:  If Flag/Port (P91) 

 1: 117      Do if Flag 17 is High 

     219:  Z=F x 10^n (P30) 
      1: 1        F 
      2: 00       n, Exponent of 10 
      3: 113      Z Loc [ lowB_Volt ] 

221:  If Flag/Port (P91) 
 1: 217      Do if Flag 17 is Low 
 2: 30       Then Do 
 
     222:  Z=F x 10^n (P30) 

oc [ Temp_Malf ] 

226:  End (P95) 
 
227:  If Flag/Port (P91) 

nstructions turn the cell 
phone on and off 
 
230:  If time is (P92) 

231:  If time is (P92) 
 1: 30       Minutes (Seconds --) into a 
 2: 60       Interval (same units as above) 
 3: 51       Set Port 1 Low 
 

 

 
200:  If Flag/Port (P91) 

 2: 30       Then Do 
 

 2: 30   
 

      1: 1        F 
      2: 0        n, Exponent of 10 
      3: 260      Z Loc [ E21tcedet ] 
 
202:  End (P95) 

 
220:  End (P95) 
 

 
203:  If 
 1: 214      Do if Flag 14 is Low 
 2: 30       Then Do 
 
     204:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 00       n, Exponent of 10 
      3: 260      Z Loc [ E21tcedet ] 
 
205:  End (P95) 
 
 
206:  If Flag/Port (P91) 
 1: 115      Do if Flag 15 is High 
 2: 30       Then Do 
 
     207:  Z=F x 10^n (P30) 

      1: 0        F 
      2: 0        n, Exponent of 10 
      3: 113      Z Loc [ lowB_Volt ] 
 
223:  End (P95) 
 
224:  If Flag/Port (P91) 
 1: 118      Do if Flag 18 is High 
 2: 30       Then Do 
 
     225:  Z=F x 10^n (P30) 
      1: 1        F 
      2: 0        n, Exponent of 10 
      3: 114      Z L
 

      1: 
      2: 
      3: 175      Z Loc [ TCE_detec ] 
 
208:  End (P95) 
 
209:  If Flag/Port (P91) 
 1: 215      Do if Flag 15 is Low 
 2: 30       Then Do 
 
     210:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 0        n, Exponent of 10 
      3: 175      Z Loc [ TCE_detec ] 
 
211:  End (P95) 

 1: 218      Do if Flag 18 is Low 
 2: 30       Then Do 
 
     228:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 00       n, Exponent of 10 
      3: 114      Z Loc [ Temp_Malf ] 
 
229:  End (P95) 
 
 
 
;The following i

 
212:  If 
 1: 116      Do if Flag 16 is High 
 2: 30       Then Do 
 
     213:  Z=F x 10^n (P30) 
      1: 1        F 
      2: 00       n, Exponent of 10

 1: 0        Minutes (Seconds --) into a 
 2: 60       Interval (same units as above) 
 3: 41       Set Port 1 High 
 

      3: 112      Z Loc [ negResist ] 
 
214:  End (P95) 
 
215:  If Flag/Port (P91) 
 1: 216      Do if Flag 16 is Low 
 2: 30       Then Do 
 
     216:  Z=F x 10^n (P30) 
      1: 0        F 
      2: 0        n, Exponent of 10 
      3: 112      Z Loc [ negResist ] 
 
217:  End (P95) 
 

 
;The following instructions set the output 
flag high and samples the desired data 
 
232:  If time is (P92) 
 1: 0        Minutes (Seconds --) into a 
 2: 60       Interval (same units as above) 
 3: 10       Set Output Flag High (Flag 0) 
 
233:  Set Active Storage Area (P80)^16339 
 1: 1        Final Storage Area 1 
 2: 340      Array ID 
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234:  Resolution (P78) 
 1: 01       High Resolution 
 
235:  Real Time (P77)^29312 
 1: 1220     Year,Day,Hour/Minute (midnight = 
2400) 
 
236:  Sample (P7

252:  Sample (P70)^5298 
 1: 1        Reps 
 2: 191      Loc [ E21_TempC ] 
 
253:  Sample (P70)^17648 
 1: 1        Reps 

0)^20270 

    Loc [ E19_PIB   ] 

 1: 1        Reps 
    Loc [ TCE_ppmR  ] 

241:  Sample (P70)^22622 

     Reps 
     Loc [ T_ref     ] 

ple (P70)^25702 
    Reps 

 2: 28       Loc [ HEAD_FT   ] 

       Reps 

detec ] 
 

ple (P70)^25590 
    Reps 

 2: 204      Loc [ E25_PECH  ] 

 

 2: 249      Loc [ E25TCEppm ] 
 
254:  Sample (P70)^24801 
 1: 1        Reps 
 2: 250      Loc [ E25_ppm_R ] 

258:  Sample (P70)^15481 
 1: 1        Reps 
 2: 11       Loc [ HeatBarV  ] 
 

^19766 

262:  Sample (P70)^6967 
 1: 1        Reps 
 2: 307      Loc [ MWsTCEppm ] 
 
 

*Table 2 Program 
  02: 2         Execution Interval (seconds) 

vapor corrected baseline for E19 
 

 
     3:  If (X<=>F) (P89) 
      1: 38       X Loc [ Counter   ] 
      2: 3        >= 
      3: 7        F 

 1: 4        Reps 
 2: 34   
 
237:  Sample (P70)^5399 
 1: 1        Reps 
 2: 31       Loc [ RTDohms   ] 
 
238:  Sample (P70)^12677 
 1: 1        Reps 
 2: 32       Loc [ RTDTempC  ] 
 
239:  Sample (P70)^27880 
 1: 1        Reps 
 2: 132      Loc [ TCE_ppm   ] 
 
240:  Sample (P70)^17767 

 
255:  Sample (P70)^15517 
 1: 1        Reps 
 2: 252      Loc [ T_TypeMW2 ] 
 
256:  Sample (P70)^23308 
 1: 5        Reps 
 2: 253      Loc [ PX215_Pa  ] 
 
257:  Sample (P70)^22319 
 1: 2        Reps 
 2: 260      Loc [ E21tcedet ] 
 

 2: 174  
 

 1: 1        Reps 
 2: 251      Loc [ T_Type_D3 ] 

259:  Sample (P70)
 1: 1        Reps 

 
242:  Sample (P70)^3217 
 1: 1        Reps 
 2: 131      Loc [ Vp_Ambien ] 
 
243:  Sample (P70)^19800 
 1: 3        Reps 
 2: 13       Loc [ HX94Temp  ] 
 
244:  Sample (P70)^7443 
 1: 1   
 2: 6   

 2: 282      Loc [ E21Rtdmal ] 
 
260:  Sample (P70)^21370 
 1: 2        Reps 
 2: 284      Loc [ SolarVolt ] 
 
261:  Sample (P70)^12331 
 1: 1        Reps 
 2: 304      Loc [ D3sTCEppm ] 
 

 
245:  Sam
 1: 1    
 2: 1        Loc [ Vbatt     ] 
 
246:  Sample (P70)^20607 
 1: 1        Reps 

 
 
 

 
247:  Sample (P70)^26641 
 1: 1 
 2: 30       Loc [ PSIG_CS40 ] 

 
;The following program calculates the water 

 
248:  Sample (P70)^13752 
 1: 3        Reps 
 2: 112      Loc [ negResist ] 
 
249:  Sample (P70)^1084 
 1: 1        Reps 
 2: 175      Loc [ TCE_

1:  If time is (P92) 
 1: 0        Minutes (Seconds --) into a 
 2: 1440     Interval (same units as above) 
 3: 30       Then Do 
 
     2:  Z=Z+1 (P32) 
      1: 38       Z Loc [ Counter   ] 

250:  Sam
 1: 4    

 
251:  Sample (P70)^5416 
 1: 1        Reps 
 2: 185      Loc [ E21RTDohm ] 

      4: 211      Set Flag 11 Low 
 
4:  End (P95) 
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;The following instructions calculate a 
countdown to next baseline 
 

           5: 0        Delay (0.01 sec units) 
           6: 5000     mV Excitation 
           7: 65       Loc [ PVTD_base ] 

 

   F 
 3: 300      Z Loc [ DaysTillB ] 
 
 
7:  If Flag/Port (P91) 
 1: 211      Do if Flag 11 is Low 
 2: 30       Then Do 
 
     8:  Beginning of Loop (P87) 
      1: 1        Delay 
      2: 60       Loop Count 
 
          9:  Do (P86) 
           1: 1        Call Subroutine 1 
 
          10:  Z=F x 10^n (P30) 
           1: 0        F 
           2: 0        n, Exponent of 10 
           3: 38       Z Loc [ Counter   ] 
 
          11:  Excite-Delay (SE) (P4) 
           1: 1        Reps 
           2: 15       5000 mV, Fast Range 
           3: 1        SE Channel 
           4: 1        Excite all reps 
w/Exchan 1 
           5: 0        Delay (0.01 sec units) 
           6: 5000     mV Excitation 
           7: 63       Loc [ PIB_Base  ] 
           8: .0002    Mult 
           9: 0.0      Offset 
 
          12:  BR Transform Rf[X/(1-X)] (P59) 
           1: 1        Reps 
           2: 63       Loc [ PIB_Base  ] 
           3: 132.41   Multiplier (Rf) 
 
          13:  Excite-Delay (SE) (P4) 
           1: 1        Reps 
           2: 15       5000 mV, Fast Range 
           3: 2        SE Channel 
           4: 1        Excite all reps 
w/Exchan 1 
           5: 0        Delay (0.01 sec units) 
           6: 5000     mV Excitation 
           7: 64       Loc [ PNVP_base ] 
           8: .0002    Mult 
           9: 0.0      Offset 
 
          14:  BR Transform Rf[X/(1-X)] (P59) 
           1: 1        Reps 
           2: 64       Loc [ PNVP_base ] 
           3: 149.70   Multiplier (Rf) 
 
          15:  Excite-Delay (SE) (P4) 
           1: 1        Reps 
           2: 15       5000 mV, Fast Range 
           3: 3        SE Channel 
           4: 1        Excite all reps 
w/Exchan 1 

           8: .0002    Mult 

          17:  Excite-Delay (SE) (P4) 
           1: 1        Reps 
           2: 15       5000 mV, Fast Range 
           3: 4        SE Channel 
           4: 1        Excite all reps 
w/Exchan 1 
           5: 0        Delay (0.01 sec units) 
           6: 5000     mV Excitation 
           7: 66       Loc [ PEVA_base ] 
           8: .0002    Mult 
           9: 0.0      Offset 
 
          18:  BR Transform Rf[X/(1-X)] (P59) 
           1: 1        Reps 
           2: 66       Loc [ PEVA_base ] 
           3: 199.25   Multiplier (Rf) 
 
;The following instructions read E21 
 
          19:  Excite-Delay (SE) (P4) 
           1: 1        Reps 
           2: 15       5000 mV, Fast Range 
           3: 13       SE Channel 
           4: 2        Excite all reps 
w/Exchan 2 
           5: 1        Delay (0.01 sec units) 
           6: 5000     mV Excitation 
           7: 278      Loc [ BlPibE21  ] 
           8: .0002    Mult 
           9: 0.0      Offset 
 
          20:  BR Transform Rf[X/(1-X)] (P59) 
           1: 1        Reps 
           2: 278      Loc [ BlPibE21  ] 
           3: 199.60   Multiplier (Rf) 
 
          21:  Excite-Delay (SE) (P4) 
           1: 1        Reps 
           2: 15       5000 mV, Fast Range 
           3: 14       SE Channel 
           4: 2        Excite all reps 
w/Exchan 2 
           5: 1        Delay (0.01 sec units) 
           6: 5000     mV Excitation 
           7: 279      Loc [ BlPnvpE21 ] 
           8: .0002    Mult 
           9: 0.0      Offset 
 
          22:  BR Transform Rf[X/(1-X)] (P59) 
           1: 1        Reps 
           2: 279      Loc [ BlPnvpE21 ] 
           3: 199.00   Multiplier (Rf) 
 
          23:  Excite-Delay (SE) (P4) 
           1: 1        Reps 
           2: 15       5000 mV, Fast Range 
           3: 15       SE Channel 
           4: 2        Excite all reps 
w/Exchan 2 
           5: 1        Delay (0.01 sec units) 

5:  Z=X+F (P34) 
 1: 38       X Loc [ Counter   ] 
 2: -7       F 
 3: 300      Z Loc [ DaysTillB ] 
 
6:  Z=X*F (P37) 
 1: 300      X Loc [ DaysTillB ] 
 2: -1    

           9: 0.0      Offset 
 
          16:  BR Transform Rf[X/(1-X)] (P59) 
           1: 1        Reps 
           2: 65       Loc [ PVTD_base ] 
           3: 299.31   Multiplier (Rf) 
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           6: 5000     mV Excitation 
           7: 280      Loc [ BlPvtdE21 
           8: .0002    Mult 
           9: 0.0      Offset 
 
          24:  BR Transform Rf[X/(1-X)] (P59) 
           1: 1        Reps 

   2: 280      Loc [ BlPvtdE21 ] 
   3: 214.92   Multiplier (Rf) 

e-Delay (SE) (P4) 
s 

st Range 

Excite all reps 

     Delay (0.01 sec units) 
     mV Excitation 

          7: 281      Loc [ BlPevaE21 ] 
          8: .0002    Mult 

   9: 0.0      Offset 

    /(1-X)] (P59) 

   2 BlPevaE21 ] 
r (Rf) 

the 

     

   2 l 
   4  all reps w/E4 
   2 _RefB    ] 

   0

rt 2 High 

P87) 

t 

    
e Port 3 

    xcitation 

hannel 
                2: 0        Delay W/Ex (0.01 
sec units) 
                3: 1        Delay After Ex 
(0.01 sec units) 
                4: 0        mV Excitation 
 
               32:  Thermocouple Temp (DIFF) 
(P14) 
                1: 1        Reps 
                2: 21       10 mV, 60 Hz 
Reject, Slow Range 
                3: 12       DIFF Channel 
                4: 1        Type T (Copper-
Constantan) 
                5: 299      Ref Temp (Deg. C) 
Loc [ T_RefB    ] 
                6: 179   -- Loc [ T_TypeD3V ] 
                7: 1.0      Mult 
                8: 0.0      Offset 
 

 33:  End (P95) 

          34:  Do (P86) 
           1: 52       Set Port 2 Low 
 
          35:  Volt (SE) (P1) 
           1: 1        Reps 
           2: 25       5000 mV, 60 Hz Reject, 
Fast Range (same as code 45) 
           3: 22       SE Channel 
           4: 100      Loc [ RHVoltVp  ] 
           5: 1        Mult 
           6: 0.0      Offset 
 
          36:  Do (P86) 
           1: 1        Call Subroutine 1 
 
          37:  Z=X/Y (P38) 
           1: 100      X Loc [ RHVoltVp  ] 
           2: 118      Y Loc [ RhRefR    ] 
           3: 133      Z Loc [ RhVpAmps  ] 
 
 
           1: 133      X Loc [ RhVpAmps  ] 
  4
           3: 134      Z Loc [ RhVpAmMin ] 
 
  Z
           1: 134      X Loc [ RhVpAmMin ] 
  .
           3: 101      Z Loc [ HX94RhVp  ] 
 
          40:  If (X<=>F) (P89) 
           1: 101      X Loc [ HX94RhVp  ] 
           2: 3        >= 
           3: 100      F 
           4: 30       Then Do 
 
               41:  Z=F x 10^n (P30) 
                1: 100      F 
                2: 00       n, Exponent of 10 
                3: 101      Z Loc [ HX94RhVp  
] 
 
          42:  End (P95) 
 
          43:  If (X<=>F) (P89) 
           1: 101      X Loc [ HX94RhVp  ] 
           2: 4        < 
           3: 0        F 
           4: 30       Then Do 
 
               44:  Z=F x 10^n (P30) 
                1: 0        F 
                2: 0        n, Exponent of 10 
                3: 101      Z Loc [ HX94RhVp  
] 
 
          45:  End (P95) 
 
          46:  Running Average (P52) 
           1: 4        Reps 
           2: 63       First Source Loc [ 
PIB_Base  ] 
           3: 67       First Destination Loc [ 
PIB_AVG   ] 
           4: 60       Number of Values in Avg 
Window 
 
          47:  Running Average (P52) 
           1: 1        Reps 

] 
         
 

        
        

 
          25:  Excit
           1: 1        Rep
           2: 15       5000 mV, Fa
           3: 16       SE Channel 
           4: 2        
w/Exchan 2 
           5: 1   
          6: 5000 

 
 
        
 
        26: BR Transform Rf[X
           1: 1        Reps 
         2: 81      Loc [ 
           3: 174.03   Multiplie
 

ul in;M tiplexer structions to read 
temperature of well D3 
 
        27: Temp (107) (P11)
           1: 1        Reps 

nne         2: 1       SE Cha
         3:         Excite
         4: 99      Loc [ T
           5: 1.0      Mult 

          6: .0      Offset
 
          28:  Do (P86) 
           1: 42       Set Po
 

    oop (        29: Beginning of L
         1:         Delay    0
           2: 1        Loop Coun
 
           30:  Do (P86) 
                1: 73       Puls
 
           31:  Delay w/Opt E
(P22) 
                1: 1        Ex C

         38:  Z=X+F (P34) 

         2: -        F 

        39:  =X*F (P37) 

         2: 6 25     F 
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           2: 101      First Source Loc [ 
HX94RhVp  ] 
           3: 102      First Destination Loc [ 
RhVpavg   ] 
           4: 60       Number of Values in Avg 
Window 
 
          48:  Running Average (P52) 
           1: 1        Reps 
           2: 179      First Source Loc [ 
T_TypeD3V ] 
           3: 180      First Destination Loc [ 
T_TypeD3A ] 
           4: 60       Number of Values in Avg 
Window 
 
          49:  Running Average (P52) 
           1: 4        Reps 
           2: 278      First Source Loc [ 
BlPibE21  ] 
           3: 209      First Destination Loc [ 
BlE25PECH ] 
           4: 60       Number of Values in Avg 
Window 
 
     50:  End (P95) 
 
     51:  Z=X*F (P37) 
      1: 102      X Loc [ RhVpavg   ] 
      2: .01      F 
      3: 103      Z Loc [ RhVpavgM  ] 
 
     52:  Saturation Vapor Pressure (P56) 
      1: 180      Temperature Loc [ T_TypeD3A 
] 
      2: 74       Loc [ VPKPaCamp ] 
 
     53:  Z=X*F (P37) 
      1: 74       X Loc [ VPKPaCamp ] 
      2: 1000     F 
      3: 73       Z Loc [ VP_PaCamp ] 
 
     54:  Z=X*Y (P36) 
      1: 73       X Loc [ VP_PaCamp ] 
      2: 103      Y Loc [ RhVpavgM  ] 
      3: 72       Z Loc [ VP_Pa     ] 
 
     55:  Do (P86) 
      1: 2        Call Subroutine 2 
 
     56:  Z=X^Y (P47) 
      1: 72       X Loc [ VP_Pa     ] 
      2: 75       Y Loc [ PIBVpExp  ] 
      3: 79       Z Loc [ VPxPIB    ] 
 
     57:  Z=X^Y (P47) 
      1: 72       X Loc [ VP_Pa     ] 
      2: 76       Y Loc [ PNVPVpExp ] 
      3: 80       Z Loc [ VPxPNVP   ] 
 
     58:  Z=X^Y (P47) 
      1: 72       X Loc [ VP_Pa     ] 
      2: 78       Y Loc [ PVTDVpExp ] 
      3: 81       Z Loc [ VPxPVTD   ] 
 
     59:  Z=X^Y (P47) 
      1: 72       X Loc [ VP_Pa     ] 
      2: 77       Y Loc [ PEVAVpExp ] 
      3: 82       Z Loc [ VPxPEVA   ] 
 
     60:  Z=X*Y (P36) 

      1: 79       X Loc [ VPxPIB    ] 
      2: 83       Y Loc [ PIB_mult  ] 
      3: 87       Z Loc [ VP_Pib    ] 
 
     61:  Z=X*Y (P36) 
      1: 80       X Loc [ VPxPNVP   ] 
      2: 84       Y Loc [ PNVP_mult ] 
      3: 88       Z Loc [ VP_Pnvp   ] 
 
     62:  Z=X*Y (P36) 
      1: 81       X Loc [ VPxPVTD   ] 
      2: 85       Y Loc [ PVTD_mult ] 
      3: 89       Z Loc [ Vp_Pvtd   ] 
 
     63:  Z=X*Y (P36) 
      1: 82       X Loc [ VPxPEVA   ] 
      2: 86       Y Loc [ PEVA_mult ] 
      3: 90       Z Loc [ Vp_Peva   ] 
 
     64:  Z=X+F (P34) 
      1: 87       X Loc [ VP_Pib    ] 
      2: 1        F 
      3: 91       Z Loc [ VP_PibDen ] 
 
     65:  Z=X+F (P34) 
      1: 88       X Loc [ VP_Pnvp   ] 
      2: 1        F 
      3: 92       Z Loc [ VP_PnvpDe ] 
 
     66:  Z=X+F (P34) 
      1: 89       X Loc [ Vp_Pvtd   ] 
      2: 1        F 
      3: 93       Z Loc [ Vp_PvtdDe ] 
 
     67:  Z=X+F (P34) 
      1: 90       X Loc [ Vp_Peva   ] 
      2: 1        F 
      3: 94       Z Loc [ Vp_PevaDe ] 
 
     68:  Z=X/Y (P38) 
      1: 67       X Loc [ PIB_AVG   ] 
      2: 91       Y Loc [ VP_PibDen ] 
      3: 135      Z Loc [ b_PIB_Vp  ] 
 
     69:  Z=X/Y (P38) 
      1: 68       X Loc [ PNVP_AVG  ] 
      2: 92       Y Loc [ VP_PnvpDe ] 
      3: 136      Z Loc [ b_PNVP_Vp ] 
 
     70:  Z=X/Y (P38) 
      1: 69       X Loc [ PVTD_AVG  ] 
      2: 93       Y Loc [ Vp_PvtdDe ] 
      3: 137      Z Loc [ b_PVTD_Vp ] 
 
     71:  Z=X/Y (P38) 
      1: 70       X Loc [ PEVA_AVG  ] 
      2: 94       Y Loc [ Vp_PevaDe ] 
      3: 138      Z Loc [ b_PEVA_Vp ] 
 
;The following instructions correct for 
temperature 
 
     72:  Z=X+F (P34) 
      1: 149      X Loc [ T_TypeVpA ] 
      2: -8.83    F 
      3: 139      Z Loc [ DeltaTcor ] 
 
     73:  Do (P86) 
      1: 4        Call Subroutine 4 
 
     74:  Z=X*Y (P36) 
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      1: 139      X Loc [ DeltaTcor ] 
      2: 140      Y Loc [ PIB_m     ] 
      3: 144      Z Loc [ PIBmXDelt ] 
 
     75:  Z=X*Y (P36) 
      1: 139      X Loc [ DeltaTcor ] 
      2: 141      Y Loc [ PNVP_m    ] 
      3: 145      Z Loc [ PnpvmXDel ] 
 
     76:  Z=X*Y (P36) 
      1: 139      X Loc [ DeltaTcor ] 
      2: 142      Y Loc [ PVTD_m    ] 
      3: 146      Z Loc [ PvtdmXDel ] 
 
     77:  Z=X*Y (P36) 
      1: 139      X Loc [ DeltaTcor ] 
      2: 143      Y Loc [ PEVA_m    ] 
      3: 147      Z Loc [ PevamXDel ] 
 
     78:  Z=X-Y (P35) 
      1: 135      X Loc [ b_PIB_Vp  ] 
      2: 144      Y Loc [ PIBmXDelt ] 
      3: 95       Z Loc [ base_PIB  ] 
 
     79:  Z=X-Y (P35) 
      1: 136      X Loc [ b_PNVP_Vp ] 
      2: 145      Y Loc [ PnpvmXDel ] 
      3: 96       Z Loc [ base_PNVP ] 
 
     80:  Z=X-Y (P35) 
      1: 137      X Loc [ b_PVTD_Vp ] 
      2: 146      Y Loc [ PvtdmXDel ] 
      3: 97       Z Loc [ base_PVTD ] 
 
     81:  Z=X-Y (P35) 
      1: 138      X Loc [ b_PEVA_Vp ] 
      2: 147      Y Loc [ PevamXDel ] 
      3: 98       Z Loc [ base_PEVA ] 
 
     82:  Do (P86) 
      1: 111      Set Flag 11 High 
 
 
83:  End (P95) 
 
84:  If time is (P92) 
 1: 5        Minutes (Seconds --) into a 
 2: 1440     Interval (same units as above) 
 3: 10       Set Output Flag High (Flag 0) 
 
85:  Set Active Storage Area (P80)^29708 
 1: 1        Final Storage Area 1 
 2: 440      Array ID 
 
86:  Resolution (P78) 
 1: 01       High Resolution 
 
87:  Real Time (P77)^8875 
 1: 1220     Year,Day,Hour/Minute (midnight = 
2400) 
 
88:  Sample (P70)^19257 
 1: 4        Reps 
 2: 95       Loc [ base_PIB  ] 
 
89:  Sample (P70)^21890 
 1: 4        Reps 
 2: 209      Loc [ BlE25PECH ] 
 
90:  Sample (P70)^12750 
 1: 1        Reps 

 2: 300      Loc [ DaysTillB ] 
 
91:  Sample (P70)^6118 
 1: 1        Reps 
 2: 38       Loc [ Counter   ] 
 
 
*Table 3 Subroutines 
 
1:  Beginning of Subroutine (P85) 
 1: 1        Subroutine 1 
 
     2:  Z=F x 10^n (P30) 
      1: 236.83   F 
      2: 00       n, Exponent of 10 
      3: 115      Z Loc [ TempRefR  ] 
 
     3:  Z=F x 10^n (P30) 
      1: 236.44   F 
      2: 00       n, Exponent of 10 
      3: 118      Z Loc [ RhRefR    ] 
 
     4:  Z=F x 10^n (P30) 
      1: 236.83   F 
      2: 00       n, Exponent of 10 
      3: 286      Z Loc [ PSIRefR   ] 
 
     5:  Z=F x 10^n (P30) 
      1: 511.76   F 
      2: 00       n, Exponent of 10 
      3: 258      Z Loc [ D_PressFt ] 
 
     6:  Z=F x 10^n (P30) 
      1: 13.4     F 
      2: 00       n, Exponent of 10 
      3: 259      Z Loc [ D_ChemiFt ] 
 
7:  End (P95) 
 
8:  Beginning of Subroutine (P85) 
 1: 2        Subroutine 2 
;The following are exponents for the Vapor 
Pressure calibration of VP vs Delta R/Rb 
 
     9:  Z=F x 10^n (P30) 
      1: .9584    F 
      2: 00       n, Exponent of 10 
      3: 75       Z Loc [ PIBVpExp  ] 
 
     10:  Z=F x 10^n (P30) 
      1: 1.7798   F 
      2: 00       n, Exponent of 10 
      3: 76       Z Loc [ PNVPVpExp ] 
 
     11:  Z=F x 10^n (P30) 
      1: 1.1034   F 
      2: 00       n, Exponent of 10 
      3: 78       Z Loc [ PVTDVpExp ] 
 
     12:  Z=F x 10^n (P30) 
      1: 1.3308   F 
      2: 0        n, Exponent of 10 
      3: 77       Z Loc [ PEVAVpExp ] 
;The following fixed values are multipliers 
for the Vapor Pressure calibration of VP vs 
Delta R/Rb 
 
     13:  Z=F x 10^n (P30) 
      1: 3        F 
      2: -6       n, Exponent of 10 
      3: 83       Z Loc [ PIB_mult  ] 
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     14:  Z=F x 10^n (P30) 
      1: 6        F 
      2: -7       n, Exponent of 10 
      3: 84       Z Loc [ PNVP_mult ] 
 
     15:  Z=F x 10^n (P30) 
      1: 3        F 
      2: -6       n, Exponent of 10 
      3: 85       Z Loc [ PVTD_mult ] 
 
     16:  Z=F x 10^n (P30) 
      1: 4        F 
      2: -7       n, Exponent of 10 
      3: 86       Z Loc [ PEVA_mult ] 
 
17:  End (P95) 
 
18:  Beginning of Subroutine (P85) 
 1: 3        Subroutine 3 
;The following values are for the ppm 
concentration prediction 
 
     19:  Z=F x 10^n (P30) 
      1: 2256.86  F 
      2: 0        n, Exponent of 10 
      3: 121      Z Loc [ B0        ] 
 
     20:  Z=F x 10^n (P30) 
      1: 219.123  F 
      2: 0        n, Exponent of 10 
      3: 122      Z Loc [ B1        ] 
 
     21:  Z=F x 10^n (P30) 
      1: 3.8234   F 
      2: 5        n, Exponent of 10 
      3: 123      Z Loc [ B2        ] 
 
     22:  Z=F x 10^n (P30) 
      1: 2395.25  F 
      2: 0        n, Exponent of 10 
      3: 124      Z Loc [ B3        ] 
 
     23:  Z=F x 10^n (P30) 
      1: 1430.62  F 
      2: 0        n, Exponent of 10 
      3: 125      Z Loc [ B4        ] 
 
     24:  Z=F x 10^n (P30) 
      1: 29.88    F 
      2: 00       n, Exponent of 10 
      3: 126      Z Loc [ B5        ] 
 
     25:  Z=F x 10^n (P30) 
      1: 47466    F 
      2: 0        n, Exponent of 10 
      3: 127      Z Loc [ B6        ] 
 
     26:  Z=F x 10^n (P30) 
      1: 8068     F 
      2: 00       n, Exponent of 10 
      3: 151      Z Loc [ B7        ] 
 
27:  End (P95) 
 
28:  Beginning of Subroutine (P85) 
 1: 4        Subroutine 4 
;Slopes of the polymers temperature dependence 
     29:  Z=F x 10^n (P30) 
      1: .2279    F 
      2: 00       n, Exponent of 10 

      3: 140      Z Loc [ PIB_m     ] 
 
     30:  Z=F x 10^n (P30) 
      1: .167     F 
      2: 00       n, Exponent of 10 
      3: 141      Z Loc [ PNVP_m    ] 
 
     31:  Z=F x 10^n (P30) 
      1: .3871    F 
      2: 00       n, Exponent of 10 
      3: 142      Z Loc [ PVTD_m    ] 
 
     32:  Z=F x 10^n (P30) 
      1: .624     F 
      2: 00       n, Exponent of 10 
      3: 143      Z Loc [ PEVA_m    ] 
 
33:  End (P95) 
 
34:  Beginning of Subroutine (P85) 
 1: 5        Subroutine 5 
;Constants for the TCE model of E21 
 
     35:  Z=F x 10^n (P30) 
      1: -3.4468  F 
      2: 0        n, Exponent of 10 
      3: 221      Z Loc [ C0        ] 
 
     36:  Z=F x 10^n (P30) 
      1: 1.5566   F 
      2: 5        n, Exponent of 10 
      3: 222      Z Loc [ C1        ] 
 
     37:  Z=F x 10^n (P30) 
      1: 3.8221   F 
      2: 7        n, Exponent of 10 
      3: 223      Z Loc [ C2        ] 
 
     38:  Z=F x 10^n (P30) 
      1: -1.8800  F 
      2: 6        n, Exponent of 10 
      3: 224      Z Loc [ C3        ] 
 
     39:  Z=F x 10^n (P30) 
      1: 5.7900   F 
      2: 5        n, Exponent of 10 
      3: 225      Z Loc [ C4        ] 
 
     40:  Z=F x 10^n (P30) 
      1: 4.6246   F 
      2: 7        n, Exponent of 10 
      3: 226      Z Loc [ C5        ] 
 
41:  End (P95) 
 
End Program 
 
-Input Locations- 
1 Vbatt     1 3 1 
2 Sen_1_mVm 1 0 0 
3 Sen_2_mVm 1 0 0 
4 Sen_3_mVm 1 0 0 
5 Sen_4_mVm 1 0 0 
6 T_ref     1 2 1 
7 T_type    1 0 0 
8 TempVolts 1 0 0 
9 RHVolts   1 1 1 
10 PSIVolts  7 1 1 
11 HeatBarV  19 2 1 
12 PSIamps   1 1 1 
13 HX94Temp  1 1 0 
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14 HX92RH    1 4 3 
15 PX215_PSI 1 2 1 
16 PSIVoltM  1 1 1 
17 Res_1_mVc 1 0 0 
18 Res_2_mVc 1 0 0 
19 Res_3_mVc 1 0 0 
20 Res_4_mVc 1 0 0 
21 uA_1c     1 0 0 
22 uA_2c     1 0 0 
23 uA_3c     1 0 0 
24 uA_4c     1 0 0 
25 MA_MEAS   1 1 1 
26 mv_ma     1 1 1 
27 MV        1 2 1 
28 HEAD_FT   1 4 2 
29 MV_Minus  1 1 1 
30 PSIG_CS40 1 1 1 
31 RTDohms   1 2 1 
32 RTDTempC  1 2 1 
33 RTDTempM  1 1 1 
34 E19_PIB   1 4 2 
35 E19_PNVP  1 4 2 
36 E19_PVTD  1 4 2 
37 E19_PEVA  1 4 2 
38 Counter   1 3 2 
39 PECH_Br   1 0 0 
40 PNVP_Br   1 0 0 
41 PVTD_Br   1 0 0 
42 PEVA_Br   1 0 0 
43 Ref1_ohm  1 0 0 
44 Ref2_ohm  1 0 0 
45 Ref3_ohm  1 0 0 
46 Ref4_ohm  1 0 0 
47 negohms1  1 0 0 
48 negohms2  1 0 0 
49 negohms3  1 0 0 
50 negohms4  1 0 0 
51 PIB_Bmv   1 0 0 
52 PNVP_Bmv  1 0 0 
53 PVTD_Bmv  1 0 0 
54 PEVA_Bmv  1 0 0 
55 PIB_uA    1 0 0 
56 PNVP_uA   1 0 0 
57 PVTD_uA   1 0 0 
58 PEVA_uA   1 0 0 
59 negPIBb   1 0 0 
60 negPNVPb  1 0 0 
61 negPVTDPb 1 0 0 
62 negPEVAb  1 0 0 
63 PIB_Base  1 2 2 
64 PNVP_base 1 2 2 
65 PVTD_base 1 2 2 
66 PEVA_base 1 2 2 
67 PIB_AVG   5 1 1 
68 PNVP_AVG  9 1 1 
69 PVTD_AVG  9 1 1 
70 PEVA_AVG  17 1 1 
71 RTDTempVP 1 0 0 
72 VP_Pa     1 4 1 
73 VP_PaCamp 1 1 1 
74 VPKPaCamp 1 1 1 
75 PIBVpExp  1 1 1 
76 PNVPVpExp 1 1 1 
77 PEVAVpExp 1 1 1 
78 PVTDVpExp 1 1 1 
79 VPxPIB    1 1 1 
80 VPxPNVP   1 1 1 
81 VPxPVTD   1 1 1 
82 VPxPEVA   1 1 1 
83 PIB_mult  1 1 1 
84 PNVP_mult 1 1 1 

85 PVTD_mult 1 1 1 
86 PEVA_mult 1 1 1 
87 VP_Pib    1 1 1 
88 VP_Pnvp   1 1 1 
89 Vp_Pvtd   1 1 1 
90 Vp_Peva   1 1 1 
91 VP_PibDen 1 1 1 
92 VP_PnvpDe 1 1 1 
93 Vp_PvtdDe 1 1 1 
94 Vp_PevaDe 1 1 1 
95 base_PIB  1 4 1 
96 base_PNVP 1 3 1 
97 base_PVTD 1 3 1 
98 base_PEVA 1 3 1 
99 RTD_Ttype 1 2 1 
100 RHVoltVp  1 1 1 
101 HX94RhVp  1 3 3 
102 RhVpavg   1 1 1 
103 RhVpavgM  1 1 1 
104 NumPIB    1 1 1 
105 deltaPIB  1 2 1 
106 NumPNVP   1 1 1 
107 deltaPNVP 1 2 1 
108 NumPVTD   1 1 1 
109 deltaPVTD 1 3 1 
110 NumPEVA   1 1 1 
111 deltaPEVA 1 3 1 
112 negResist 1 1 2 
113 lowB_Volt 1 1 2 
114 Temp_Malf 1 1 2 
115 TempRefR  1 0 1 
116 TempAmps  1 0 0 
117 TAmps_Min 1 0 0 
118 RhRefR    1 2 1 
119 RhmAmps   1 1 1 
120 RhAmps_mi 1 1 1 
121 B0        1 1 1 
122 B1        1 1 1 
123 B2        1 1 1 
124 B3        1 1 1 
125 B4        1 1 1 
126 B5        1 1 1 
127 B6        1 1 1 
128 SatVpKpa  1 1 1 
129 SatVpPa   1 1 1 
130 HX92Rh001 1 1 1 
131 Vp_Ambien 1 2 1 
132 TCE_ppm   1 3 2 
133 RhVpAmps  1 1 1 
134 RhVpAmMin 1 1 1 
135 b_PIB_Vp  1 1 1 
136 b_PNVP_Vp 1 1 1 
137 b_PVTD_Vp 1 1 1 
138 b_PEVA_Vp 1 1 1 
139 DeltaTcor 1 4 1 
140 PIB_m     1 1 1 
141 PNVP_m    1 1 1 
142 PVTD_m    1 1 1 
143 PEVA_m    1 1 1 
144 PIBmXDelt 1 1 1 
145 PnpvmXDel 1 1 1 
146 PvtdmXDel 1 1 1 
147 PevamXDel 1 1 1 
148 T_typeVp  1 0 0 
149 T_TypeVpA 1 1 0 
150 TrefVp    1 0 0 
151 B7        1 1 1 
152 B2PNVP    1 1 1 
153 B3PVTD    1 1 1 
154 B4PEVA    1 1 1 
155 B5PVTD    1 1 1 
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156 b6PIB     1 1 1 
157 b6PIBPNVP 1 1 1 
158 B7PIB     1 1 1 
159 B7PIBPVTD 1 1 1 
160 B7PibPPEV 1 1 1 
161 B1X       1 1 1 
162 B2X       1 1 1 
163 B3X       1 1 1 
164 B4X       1 1 1 
165 B5X       1 1 1 
166 B6X       1 1 1 
167 B7X       1 1 1 
168 B4X_B5Xa  1 1 1 
169 B0_B1     1 1 1 
170 B2_B3     1 1 1 
171 B4_B5_B6  1 1 1 
172 B4B5B6B7  1 1 1 
173 B0B1B2B3  1 1 1 
174 TCE_ppmR  1 3 2 
175 TCE_detec 1 1 2 
176 TempVoltV 1 0 0 
177 TempAmpsV 1 0 0 
178 TAmpsMinV 1 0 0 
179 T_TypeD3V 1 1 1 
180 T_TypeD3A 1 1 1 
181 E21_1_mVm 1 0 0 
182 E21_2_mVm 1 0 0 
183 E21_3_mVm 1 0 0 
184 E21_4_mVm 1 0 0 
185 E21RTDohm 1 2 1 
186 E21Ref1oh 1 0 0 
187 E21Ref2oh 1 0 0 
188 E21Ref3oh 1 0 0 
189 E21Ref4oh 1 0 0 
190 E21RTD_M  1 1 1 
191 E21_TempC 1 3 1 
192 E21Res1mC 1 0 0 
193 E21Res2mC 1 0 0 
194 E21Res3mC 1 0 0 
195 E21Res4mC 1 0 0 
196 E21uA_1c  1 0 0 
197 E21uA_2c  1 0 0 
198 E21uA_3c  1 0 0 
199 E21uA_4c  1 0 0 
200 E21negoh1 1 0 0 
201 E21negoh2 1 0 0 
202 E21negoh3 1 0 0 
203 E21negoh4 1 0 0 
204 E25_PECH  1 4 2 
205 E25_PNVP  1 4 2 
206 E25_PIB   1 4 2 
207 E25_PEVA  1 4 2 
208 baseE21PI 1 0 0 
209 BlE25PECH 5 4 1 
210 BlE25PNVP 9 4 1 
211 BlE25PIB  9 4 1 
212 BlE25PEVA 17 4 1 
213 nE25PECH  1 1 1 
214 nE25PNVP  1 1 1 
215 nE25PIB   1 1 1 
216 nE25PEVA  1 1 1 
217 E25DPECH  1 3 1 
218 E25DPNVP  1 1 1 
219 E25DPIB   1 2 1 
220 E25DPEVA  1 3 1 
221 C0        1 1 1 
222 C1        1 1 1 
223 C2        1 1 1 
224 C3        1 1 1 
225 C4        1 1 1 
226 C5        1 1 1 

227 C6        1 0 0 
228 C7        1 0 0 
229 C1xPVTD   1 0 0 
230 C2xPEVA   1 0 0 
231 PNVPxPVTD 1 0 0 
232 C3xPoly   1 0 0 
233 PNVPxPEVA 1 0 0 
234 C4xPoly   1 0 0 
235 PVTDxPEVA 1 0 0 
236 C5xPoly   1 0 0 
237 PIBxPNVP  1 0 0 
238 PibPVTDPN 1 0 0 
239 C6xPoly   1 0 0 
240 PIBPNPVPV 1 0 0 
241 PBPNPVPEV 1 0 0 
242 C7xPoly   1 0 0 
243 C0_C1     1 1 1 
244 C2_C3     1 1 1 
245 C4_C5     1 0 1 
246 C6_C7     1 1 0 
247 C0C1C2C3  1 1 1 
248 C4C5C6C7  1 0 0 
249 E25TCEppm 1 3 2 
250 E25_ppm_R 1 3 2 
251 T_Type_D3 7 9 1 
252 T_TypeMW2 19 2 0 
253 PX215_Pa  1 3 1 
254 D_GW_ft   1 2 1 
255 D_GW_m    1 1 1 
256 Hh2oE20ft 1 2 1 
257 Hh20E20m  1 1 1 
258 D_PressFt 1 1 1 
259 D_ChemiFt 1 1 1 
260 E21tcedet 1 1 2 
261 E21negRes 1 1 2 
262 E21_1_mVb 1 0 0 
263 E21_2_mVb 1 0 0 
264 E21_3_mVb 1 0 0 
265 E21_4_mVb 1 0 0 
266 E21Res1mV 1 0 0 
267 E21Res2mV 1 0 0 
268 E21Res3mV 1 0 0 
269 E21Res4mV 1 0 0 
270 E21_1uAb  1 0 0 
271 E21_2uAb  1 0 0 
272 E21_3uAb  1 0 0 
273 E21_4uAb  1 0 0 
274 E21PIBneg 1 0 0 
275 E21PNVPne 1 0 0 
276 E21PVTDne 1 0 0 
277 E21PEVAne 1 0 0 
278 BlPibE21  1 2 2 
279 BlPnvpE21 1 2 2 
280 BlPvtdE21 1 2 2 
281 BlPevaE21 1 2 2 
282 E21Rtdmal 1 1 2 
283 SolarVolD 1 1 1 
284 SolarVolt 1 2 1 
285 SolarWatt 1 0 1 
286 PSIRefR   1 1 1 
287 dPIBxdPVN 1 0 0 
288 dPECHxdPE 1 1 1 
289 dPIBxdPEV 1 1 1 
290 MdPolymer 1 0 0 
291 C1_PIB    1 0 0 
292 C2_PVTD   1 0 0 
293 C3_PIBPNV 1 0 0 
294 C4_PIBPEV 1 0 0 
295 C5_PVTDPE 1 0 0 
296 C6_poly   1 0 0 
297 C4_C5_C6  1 0 0 
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298 C4C5C6    1 0 0 
299 T_RefB    1 1 1 
300 DaysTillB 1 2 2 
301 D3sTCE_Pa 1 1 1 
302 D3sTCE_PX 1 1 1 
303 Million   1 2 1 
304 D3sTCEppm 1 3 1 
305 MWsTCE_Pa 1 1 1 
306 MWsTCE_PX 1 0 1 
307 MWsTCEppm 1 4 1 
308 C1_PECH   1 1 1 
309 dPIBXdPEC 1 1 1 
310 dPEVAxdPN 1 1 1 
311 C2_X      1 1 1 
312 C3_X      1 1 1 
313 C4_X      1 1 1 
314 C5_X      1 1 1 
-Program Security- 
0000 
0000 
0000 
-Mode 4- 
-Final Storage Area 2- 
0 
-CR10X ID- 
0 
-CR10X Power Up- 
3 
-CR10X Compile Setting- 
3 
-CR10X RS-232 Setting- 
-1 
-DLD File Labels- 
0 
-Final Storage Labels- 
0,Year_RTM,29312 
0,Day_RTM 
0,Hour_Minute_RTM 
1,E19_PIB~34,20270 
1,E19_PNVP~35 
1,E19_PVTD~36 
1,E19_PEVA~37 
2,RTDohms~31,5399 
3,negResist~112,13752 
3,lowB_Volt~113 
3,Temp_Malf~114 
4,HX94Temp~13,19800 
4,HX92RH~14 
4,PX215_PSI~15 
5,TCE_ppm~132,27880 
6,T_Type_D3~251,22622 
7,Vbatt~1,25702 
8,HEAD_FT~28,20607 
9,PSIG_CS40~30,26641 
10,RTDTempC~32,12677 
11,T_ref~6,7443 
12,TCE_ppmR~174,17767 
13,Vp_Ambien~131,3217 
14,TCE_detec~175,1084 
15,E25_PECH~204,25590 
15,E25_PNVP~205 
15,E25_PIB~206 
15,E25_PEVA~207 
16,E21RTDohm~185,5416 
17,E21_TempC~191,5298 
18,E25TCEppm~249,17648 
19,E25_ppm_R~250,24801 
20,T_TypeMW2~252,15517 
21,PX215_Pa~253,23308 
21,D_GW_ft~254 
21,D_GW_m~255 

21,Hh2oE20ft~256 
21,Hh20E20m~257 
22,E21tcedet~260,22319 
22,E21negRes~261 
23,HeatBarV~11,15481 
24,E21Rtdmal~282,19766 
25,340,16339 
26,SolarVolt~284,21370 
26,SolarWatt~285 
27,440,29708 
28,Year_RTM,8875 
28,Day_RTM 
28,Hour_Minute_RTM 
29,base_PIB~95,19257 
29,base_PNVP~96 
29,base_PVTD~97 
29,base_PEVA~98 
30,BlE25PECH~209,21890 
30,BlE25PNVP~210 
30,BlE25PIB~211 
30,BlE25PEVA~212 
31,DaysTillB~300,12750 
32,Counter~38,6118 
33,D3sTCEppm~304,12331 
34,MWsTCEppm~307,6967 
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12.4. Deployment/Chronology of Events at Chemical Waste Landfill 

1/30/03 

Chemiresistor E19, an HX94 temperature/relative-humidity probe, a PX213 barometric pressure 
transducer, and a T-Type thermocouple were all wired to the CR23X and deployed at well CWL 
D3, 60 ft from the top of the well casing. 

2/19/03 

The submersible pressure transducer CS400 was pulled up from well MW2BL (it had been 
originally deployed several months earlier).  The cable for the CS400 was tethered to a 650-ft 
length of chemiresistor cable and a T-Type thermocouple using cable ties.  The chemiresistor 
cable containing the chemiresistor E20 was wired to the CR23X.  The chemiresistor was 
positioned 13.4 ft above the submersible pressure transducer.  The goal was to have the 
chemiresistor under 5 ft of water.  The three tethered sensors were then deployed at well 
MW2BL.  The constant voltage device was adjusted to yield a constant temperature of 25 ºC.  
The sensors all appeared to work well for about a week.  The voltage applied to E20 was steady, 
and the RTD temperature and chemiresistor readings were also steady. 

2/25/03 

The voltage on the 24Ahr battery was dropping to low levels.  The T-Type thermocouple and the 
HX94 temperature sensor in well D3 were reading high temperatures.  The PX213 pressure 
transducer and the HX94 humidity sensor were also reading improperly.  We replaced the 24Ahr 
battery with an 80Ahr Deep Cycle Marina Battery from Interstate.  The sensors in well D3 were 
pulled up for inspection.  Rain from precipitation had entered the surface of the well and flowed 
along the cable, breaching the back of the PX213 sensor and causing a short.  The short resulted 
in the malfunction of the PX213 as well as causing it to heat up.  The PX213 and HX94 were 
removed from the cable and taken back to the lab to troubleshoot. 

2/27/03 

The PX213 was replaced with a PX215 0-30psi probe.  A newly calibrated HX94 was also 
deployed at this time.  The probes were wired to the CR23X and tethered to the chemiresistor 
cable and T-Type thermocouple.   

3/7/03 

The HX94 temperature and humidity were not reading accurately.  The probe was replaced with 
an HX92 relative humidity probe.  The sensor in the saturated zone in MW2BL (chemiresistor 
E20) began to read erratic resistances and the RTD temperatures were increasing to above 100 
ºC.  The E20 chemiresistor (and the other sensors) were pulled up from MW2BL for visual 
inspection of the chip.  Upon visual inspection it was discovered that water had breached the 
sensor housing. Visual inspection of the actual chip revealed that corrosion had taken place on 
Pin 1 of the chemiresistor E20.  This is the pin that the voltage for the heater bar is supplied. 
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In order to facilitate the drying of the housing and chip, E20 was removed.  Upon removing E20, 
Pin 1 had become separated from the dual inline package (DIP).  Then the cables were separated 
in order to bring the chemiresistor cable back to the lab for improvements.  The CS400 
submersible pressure transducer was tethered to the T-Type thermocouple and lowered back 
down the well. 

3/13/03 

A new housing was placed on the chemiresistor cable and it was sprayed with Rustoleium to 
prevent potential rusting, and silicone seal was placed on the seams to prevent water from 
entering the housing.  Epoxy was placed around the leads of the 16-pin socket to provide 
additional support and to prevent the exposed wires from touching each other.  Then the 
chemiresistor E21 was placed inside the housing and was deployed at MW2BL to approximately 
1 ft below the water table (~493 feet deep).  Readings were taken on site.  The RTD on the 
chemiresistor was reading high and the polymers all seemed to be behaving erratically.  It was 
suspected that water had breached the sensor housing. 

3/17/03 

Some slight corrosion had begun to take place on Pin 9 of the DIP.   

The chemiresistor sensor was allowed to dry off in the sun and then it was redeployed.  Once the 
chemiresistor dried off, it began to read accurate resistances.  The sensor was moved up 6 ft to 
place it above the water table.  However, once the chemiresistor was deployed it began to read 
erratically.  It was suspected that we miscalculated the depth of the ground water and the sensor 
was indeed in the water again.  The sensor was then pulled up some additional feet to ensure that 
it was not in the water table.  It was situated at approximately 483 ft from the top of the well 
casing. 

3/20/03 

The chemiresistor cable was pulled up from well MW2BL and E21 was visually inspected.  
Water had breached the housing again. 

There was also more extensive corrosion on the DIP Pin 9.  Pin 9 had become separated from the 
DIP. 

The cable was visually inspected while it was pulled up and it was dry, meaning that the sensor 
was in fact above the water table.  Chemiresistor E25 was placed in the socket and resistances 
were reading for all of the polymers with the exception of PEVA.  Using the Fluke multimeter it 
was determined that corrosion had occurred within the socket.  The cable was taken back to the 
lab to be refurbished. 

3/26/03 

The sensor housing was tested over a period of six days in a 2-ft high graduated cylinder.  No 
leaking was observed.  The chemiresistor E25 was placed in the housing and deployed down 
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well MW2BL.  The sensor is approximately 483 ft from the top of the well casing.  The applied 
voltage, RTD temperature, and chemiresistor resistances all appear to be working properly. 

The chemiresistor sensors were successfully deployed at two wells at a remote site.  The data is 
posted to the web in a near real time manner.  The program will trip a warning to the website 
post to the website if a chemical concentration higher then 5000-ppm TCE is detected.  Once the 
malfunctions of the sensors were addressed the sensors have been continuously reading with out 
incident. 
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