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Abstract

Polymeric chemiresistors are a class of chemical sensor that have promise for being practical in situ sensors of volatile organic compounds

(VOC) in various environmental monitoring applications. However, these devices may undergo changes in response due to changes in

temperature or humidity that must be taken into consideration when developing calibration models. The devices can also display significant

hysteresis effects after exposure to VOC vapor. These effects are complicated by the fact that each sensor within an array is coated with a

different polymer, each with a different response to temperature, humidity, and VOC exposure. It is shown that partial least squares (PLS) can

provide quantitative predictions of trichloroethylene (TCE) using an array of chemiresistors through appropriate experimental design. Effects

of humidity and temperature on the response of chemiresistor arrays and predictive ability of PLS are also discussed. It is also shown that to

truly assess the quality of a calibration model it must be first tested through prediction of a test set at a time separated from the acquisition of

the calibration data. Using only leave-one-out cross-validation results from the calibration can lead to unwarranted confidence in a model that

is not stable with respect to changing environmental conditions and device drift.
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1. Introduction

Numerous sites that are either contaminated with toxic

chemicals or have the potential to release contaminants into

the environment require characterization and long-term

monitoring to protect the environment (air, soil, or water)

and to determine when remedial measures are needed.

Current monitoring methods that require grab samples

and off-site analysis are costly and time-intensive, and

limitations in sampling and analytical techniques exist.

Measured concentrations using these ex situ methods can

therefore be lower than actual in situ concentrations.

An attractive alternative is the use of real-time sensors that

can be placed in situ, which would reduce the need for sample

collection and expensive off-site analyses. Emerging tech-

nologies and sensors are becoming available that may be

viable for these long-term in situ applications [1,2]. However,

the development and demonstration of these new microsen-

sors and systems have been typically conducted under well-

controlled laboratory environments. Few have been tested

under realistic conditions of varying temperature, pressure,

and humidity induced by diurnal or seasonal fluctuations.

A promising technology for in situ environmental mon-

itoring involves the use of polymeric chemiresistor arrays.

Chemiresistors are manufactured by dissolving a chemically

sensitive polymer in an appropriate solvent and mixing the

dissolved polymer with conductive carbon particles. The

resulting ‘‘ink’’ is then deposited and dried onto thin-film

platinum traces on a solid substrate (i.e., a microchip). When

chemical vapors come into contact with the polymers, the

vapor absorbs into the polymers, causing them to swell. The

swelling changes the resistance of the electrode, which can

be measured and recorded. The amount of swelling corre-

lates to the concentration of the chemical vapor in contact

with the chemiresistor [3]. The process is reversible if the

chemical vapors readily desorb, but some hysteresis and

drift can occur [4,5] and is similar to what is seen for similar
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polymer coatings on surface acoustic wave (SAW) sensors.

Chemiresistors coated with different polymeric materials

can be placed in an array to provide a pattern of responses

specific to a chemical or class of chemicals. An attribute of

chemiresistors is that they are simple devices with no

mechanical parts, which reduces the chances of failure

during applications in remote environments. Current appli-

cations of the technology include those for groundwater

remediation efforts at sites with high TCE contamination.

Detection of TCE vapor in the several hundred to several

1000 ppm range is desirable and readily obtainable with the

chemiresistors described in this paper [6]. To further

improve the quantitative results, preconcentrator technology

is currently being explored in our labs to make the device

practical for remote atmospheric sensing.

Many previous studies involving the use of polymeric

chemiresistors for detection of organic vapors have focused

on qualitative multivariate pattern recognition techniques

that aim to identify analytes of interest [7–12]. While this is

an extremely valuable application of the sensors, for the

purposes of environmental monitoring it is necessary to both

identify the compound and give information about its con-

centration. Multivariate data analysis techniques such as

partial least squares (PLS) are well suited to this type of

problem and have been used for understanding and pattern

recognition of SAW response to organic vapors [13–15].

Data from all chemiresistor sensors, including the internal

temperature sensor, can be efficiently used simultaneously

to calculate the concentration of the analyte. In addition,

since all the sensors are analyzed simultaneously PLS can

reject extraneous signals, i.e. outlier responses, very effi-

ciently. To date, most of the reported results for chemire-

sistor arrays have focused on calibration behavior. The next

step is to determine the predictive behavior of these arrays.

In this paper we focus on three areas of concern for long-

term prediction: experimental design, validation and chan-

ging environmental conditions.

An important issue in developing robust calibration mod-

els for polymeric-based sensors is developing an experi-

mental design that does not allow sensor drift or hysteresis to

be confused with analyte signal. Proper experimental design

can greatly enhance the predictive ability of multivariate

calibration models [16]. This is particularly important with

polymeric chemiresistors where irreversible swelling caused

by exposure to solvent vapor increases the baseline offset in

the sensor response. Often, due to the time involved in

equilibrating sensor arrays, no experimental design is fol-

lowed during the calibration phase. Rather, concentration of

an analyte is increased or decreased in sequential order.

Models resulting from a sequential (non-designed) experi-

ment will incorrectly associate sequential hysteresis and

drift with the change in concentration. The end result is a

model that shows good behavior in calibration but is much

less robust in prediction. By simply randomizing the sample

sequence and including repeat samples the robustness of the

model can be greatly improved.

It is also important to develop calibration models that take

into account changing environmental conditions such as

temperature and humidity. Changes in temperature and

humidity effectively act on the array as non-target analytes,

since changing these conditions induces a volume change in

the polymer films similar to what is caused by sorption of

organic vapors. Such volume changes are proportional to the

change in DC voltage measured by the chemiresistor [3]. To

our knowledge only one study has explored the effects of

humidity, using univariate methods to correct for changes in

the sensor response with humidity [19].

In addition to employing a sound experimental design it is

also best to test the predictive ability of the model on a test

set of data acquired some time after the calibration set.

Simply relying on the results of a calibration that employs a

leave-one-out cross-validation can lead one to believe the

model is more robust in prediction than it actually is. For the

case of the polymeric chemiresistors, drift is observed as an

increase in resistance with time that may be caused by

changes in the conductive pathways of the carbon particles

due to polymer aging. Polymer aging has also been cited as

one of the factors giving rise to drift observed in SAW

devices [17], thus it is reasonable to assume that polymeric

chemiresistors may suffer similarly. Other types of chemir-

esistors, however, have been found to be quite stable over

time [18].

2. Methods

Fabrication of the chemiresistors used in this study has

been described in detail elsewhere [7] but a brief description

is warranted. The prepared chemiresistors contained 40% of

20–30 nm size graphitized carbon black (Polysciences) by

weight; 0.06 g of polymer to 0.04 g of graphite. The che-

miresistor array used in this study consisted of four different

materials, polyepichlorohydrin (PECH) (Aldrich), polyiso-

butylene (PIB) (Aldrich), PECH doped with Spruso (OMG

Americas, Inc.) surfactant, and PIB doped with Spruso

(OMG Americs, Inc.) surfactant. For typical 5 ml polymer

inks, 0.05 g of surfactant was added. Response of each of the

materials to trichloroethylene (TCE) (Fisher) was found to

be unique. The array also contained an internal temperature

sensor, a thin film platinum wire.

Exposure of the chemiresistor array to TCE was accom-

plished through the use of a nitrogen gas stream passing

through gas-washing bottles filled with TCE. A ceramic frit

at the bottom of the bottle allows the nitrogen gas to be

broken into a fine stream of bubbles (system designed in-

house). Intimate contact between the liquid analyte and the

gas bubbles allowed the gas stream to exit the bottle in a

saturated condition. Analyte concentration was controlled

by dilution using a set of mass flow controllers (Brooks

Instrument 5850E). Conversion of percent TCE of saturated

vapor pressure to parts per million (ppm) was done through

the use of Antoine equation [20]. Temperature of the bub-
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blers was continuously monitored internally to account for

evaporative cooling with time. This temperature was used in

the Antoine equation so that effects of temperature fluctua-

tions on the concentration of TCE exposed to the array could

be taken into account. The concentration range for this study

was 1000 to 10 000 parts per million (ppm) TCE.

Chemiresistor response to an exposure was obtained by

recording the changes in two-wire electrical resistance. For

all experiments, electrical resistances and thermocouple

measurements were taken using a Hewlett Packard

34970A digital multimeter and recorded by a LabVIEW1

program on an Apple Macintosh1 computer. Temperature of

the chemiresistor array was controlled via a laboratory oven

(Fisher Scientific) and temperature was monitored with the

temperature sensor internally housed in the chemiresistor

array. In order to account for fluctuations and run to run

variance of the temperature, temperature measured by the

internal temperature sensor in the array was included as a

channel in the PLS calibration models. Typical temperature

variations are �1 8C. The response of the resistors was

calculated as a percent change from the baseline resistance

to the response to the analyte vapor as shown in Eq. (1)

below [7,8]

DR

R
ð%Þ ¼ Rresponse � Rbaseline

Rbaseline

� 100 (1)

Rbaseline is defined as the average resistance of the last 10 raw

response points prior to the rapid increase in resistance due

to introduction of TCE to the array (see Fig. 2). Rresponse is

defined as the average resistance of the last 10 raw response

points prior to the sudden decrease in resistance due to the

introduction of pure nitrogen to the array (see Fig. 2). By

calculating the Rresponse value just prior to the introduction of

pure nitrogen allows for maximum equilibration of the

sensors with the TCE vapor and gives improved precision

to the results.

Data acquired from the test bed was then transferred to

Microsoft Excel1 and finally to text format for export into

Matlab1 version 6.1. All data analyses were carried out in

Matlab1 6.1 or in an in-house PLS routine written to operate

in a GRAMS321 environment [21]. All calibrations and

predictions were carried out on a Dell personal computer

with a Pentium 3 processor. During PLS calibration, samples

were excluded as outliers if their response residuals, pre-

dicted data subtracted from all other data, yielded an F-ratio

significantly different from the rest of the data (also known

as F-test) [21]. The response F-ratio is a comparison of the

squared residuals for the responses of all samples minus the

one of interest [22]. If this ratio is significantly distinct from

the rest of the data then that sample is statistically distinct

from the rest of the data and can be treated as an outlier.

At TCE levels of 10% or greater saturated vapor pressure,

response of the chemiresistors exhibited nonlinear behavior

[7]. In order to improve the reliability of quantitation at these

concentrations, the raw response was converted to the log10

of the raw response to reduce the non-linearity in the data,

prior to applying Eq. (1). This is an empirical pretreatment

of the data that has provided consistent results for PLS

analysis. Since the error in the raw data readout is 50–100

times less than the shot to shot response variance of the array

at the lowest concentration this procedure introduces neg-

ligible error into the concentration predictions.

2.1. Sampling sequence

Simply increasing concentration exposures in sequential

order, 1000, 3000, 5000 ppm of TCE, etc. during calibration,

can incorporate drift, such as changes due to sensor electro-

nics or unmonitored changes in the experimental apparatus,

into the calibration model. This can lead to the correlation

between the response from these interferent variables and

the response of the analyte. If the correlation changes or is

absent when the model is used for prediction, a systematic

error will occur. Randomization of the sampling sequence

can help force the relationship between sensor drift and the

response of the analyte to be independent within the cali-

bration model. Also, hysteresis (sensor response not return-

ing to the baseline after exposure to analyte) in the sensor is

less likely to be confounded with analyte signal. Addition of

repeat samples at long and short intervals can allow the

calibration model to compensate for shot-to-shot impreci-

sion and effects of long-term drift or hysterisis. In order to

demonstrate the effect between experimental designs that

are non-designed to those that are designed, the experimen-

tal designs in Table 1 were used. The designed experiment

was proposed to improve the analytical significance of

calibration data (Table 1b). Included in the designs were

four different environmental conditions, E1–E4, listed in

Table 1. The temperatures listed in Table 1 are design points.

Experimental temperatures were recorded. The sequential

(non-designed) calibration method (Table 1b) was what had

Table 1

Non-designed experiments were acquired in the order E3, E1, E2 and E4

and designed sequencesa

Environmental condition TCE � 1000 (ppm)

Non-designed sequence

E1 1 1 1 1 3 3 3 3 5 5 5 5 10 10 10 10

E2 1 1 1 1 3 3 3 3 5 5 5 5 10 10 10 10

E3 1 1 1 1 3 3 3 3 5 5 5 5 10 10 10 10

E4 1 1 1 1 3 3 3 3 5 5 5 5 10 10 10 10

Designed sequence

E1 5 10 3 7 1 5 5 10 3 7 1 5

E1 5

E2 1 5 7 3 10 1 1 5 7 3 10 1

E1 5

E3 10 3 5 1 7 10 10 3 5 1 7 10

E1 5

E4 3 1 10 5 3 7 3 1 10 5 3 7

E1 5

a E1 is 31 8C and 0% relative humidity; E2 is 31 8C and 100% relative

humidity; E3 is 23 8C and 0% relative humidity; E4 is 23 8C and 100%

relative humidity.
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been previously used to calibrate the chemiresistor arrays.

Check standards of 5000 ppm TCE at condition E1 were also

run to check the stability of the sensors after exposure to

each environmental condition. Building such standards into

the experimental design is critical to insure that any hyster-

esis caused by cycling the chemiresistor arrays through the

various environmental conditions can be incorporated into

the calibration model. It should be stressed that in order for

an experimental to be truly rigorous the range of environ-

mental conditions expected in field operation most be

included along with the means of assessing the effect of

different environmental conditions on the sensors [16]. Two

additional check standards were also incorporated into the

PLS calibration of both designed and non-designed runs at

31 8C and 0% humidity (E1), allowing more temperature

conditions (29.9 and 30.5 8C) to sampled. For these condi-

tions, this led to more robust PLS predictions with tempera-

ture variations.

While the non-designed (sequential) sampling does con-

tain repeats, they only provide useful analytical information

between the first and last repeat at a given concentration.

Random drift or severe hysteresis over the entire run cannot

be modeled well with this type of repeat sample. The

designed experiment has a random sampling sequence that

repeats once to give a large number of repeat samples

throughout the calibration run. This use of repeats allows

drift over both the short term and long term to be incorpo-

rated into the calibration model. All sequences listed were

run initially over the course of 20 days. The designed

sequence was run again 45 days from the mid point of

the original calibration runs in order to assess long-term

predictive ability of the models created from the original

designed and non-designed data.

2.2. Partial least squares

PLS has been thoroughly described in other Refs. [21,23]

but a brief discussion is warranted for this study. All data are

mean centered, which is simply the subtraction of the mean

response of the chemiresistor array for the given responses in

a data set from all the response in the data set. Concentration

data is also mean centered. Mean centering improves the

precision of the PLS analysis. A data matrix of DR/R (%)

responses, R, containing n samples by five rows (number of

resistor channels plus temperature) can be written as

R ¼ SL (2)

where S is the matrix of PLS scores that contains informa-

tion correlated to analyte concentration and L is the matrix

of PLS loading vectors that contains information about

response of the chemiresistors to the analyte of interest.

The PLS algorithm finds the fewest number of factors that

describe R via a factor analysis technique that maximizes

covariance between the concentration dimension and the

response dimension. The number of response channels in the

chemiresistor array, 5, limits the number of factors that can

be determined. In addition, mean centering the data reduces

the number of factors by 1. Once the correct number of

factors is chosen [21], the resulting PLS regression coeffi-

cients are used to predict the unknown concentrations of the

analyte through simple matrix multiplication:

ĉ ¼ runkb þ cm (3)

where ĉ is the estimated concentration, runk is the vector of

chemiresistor responses, and b is the vector of coefficients,

and cm is the mean concentration of the calibration samples.

All calibrations employ a leave-one-out cross-validation

routine. This means one sample is left out of the calibration

set, a calibration model is constructed using the remaining

data, and the concentration of the sample left out is then

predicted. This procedure provides some protection against

constructing a calibration model that over fits the data. In

order to compare the quality of fit between separate PLS

models and to estimate the uncertainty in prediction, the

cross-validated standard error of prediction (CVSEP) is

used, CVSEP is the root-mean-square error between the

known concentration and the predicted concentration for a

given cross-validated calibration model. For prediction, an

SEP is obtained which is just the root-mean-square error

between the reference concentration and the predicted

values.

An F-test was used to determine if the results from the

designed sequence were statistically different from the non-

designed results. F-test ratio is the variance of two data sets

to determine if a statistically significant difference exists

between the two data sets. For this study if the F-test

between the variance of the two sample sequences yielded

a ratio whose value exceeded the 0.05 level it was considered

statistically significant.

3. Results and discussion

3.1. Effects of temperature and humidity on

chemiresistor response

Effects of humidity and temperature on the chemiresistor

response to TCE are clearly shown in Fig. 1. As the humidity

increases there is a decrease in the response of the individual

chemiresistors to the TCE vapor, Fig. 1a. This decrease in

response seems to be due to the uptake of water vapor by the

chemiresistors, which causes swelling of the polymer and

correlates to a higher baseline resistance [3]. This correlates

to a lower percent change in the resistance (see Eq. (1)) since

actual change in response to the TCE is less dramatic. The

PECH chemiresistor (sensor 2) also shows a very slight

decrease with increased humidity, although not evident on

the scale of Fig. 1. With an increase in temperature the

response of the chemiresistor to TCE decreases, Fig. 1b.

This is due to two effects: first as temperature increases the

baseline resistance changes due to thermal expansion of the

polymer film, with subsequent rearrangement of the carbon
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particles. Secondly, at elevated temperatures the adsorption

of TCE within the polymer material changes relative to the

room temperature results. While adsorption of the TCE

vapor into the polymer coatings is expected to obey percola-

tion theory to first order [12], a more complex response due

to temperature and humidity changes is not unreasonable to

expect. In fact, polymeric resistive devices have shown very

non-linear effects with varying humidity [24,25].

Examples of chemiresistor (PECH) response to TCE

vapor at concentrations ranging from 1000 to 10 000 ppm

of TCE for both a designed and non-designed sampling

sequence are shown in Fig. 2 at condition E1, 31 8C, 0%

humidity. It can be clearly seen that there is a constant

hysteresis in the chemiresistor response with increasing TCE

concentration in the case of the sequential exposures

(Fig. 2a) in that the response does not decay to the baseline.

Any method used for modeling the behavior of the chemir-

esistor would be biased by the hysteresis behavior. Also, if

baseline drift underlies the response, due to fluctuations in

sensor electronics, the non-designed sequence will not be

able to separate it from analyte signal. While the designed

sequence also shows some drift with increasing TCE con-

centration, Fig. 2b, the effects are mitigated by the experi-

mental design. This type of hysteresis is not limited to

Fig. 1. Response of chemiresistor array to 7000 ppm TCE vapor under the conditions of: (a) 0% (solid line) and 100% (dashed line) humidity at 31 8C, (b)

100% humidity at 31 (solid line) and 23 8C (dashed line). Data are in the form of DR/R (%) of the log10 of raw resistance data, and were taken from the

rigorous sequence. The polymers are in the order PIB, PECH, PECH Spruso, and PIB Spruso.
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polymeric chemiresistors, as similar behavior has been seen

in polymers deposited onto SAW devices [26].

The appearance of the decreasing steps in Fig. 2 is an

artifact of the digitization equipment; the decrease should be

a smooth curve. However, the trend of initially high resis-

tance followed by a decrease with time is real and at present

is not well understood. It may be due to inhomogeneities in

the material that lead to more complex behavior than would

be predicted by standard percolation theory.

3.2. Effects of changing environmental conditions

In order to understand the effects of temperature and

humidity on the calibration of the chemiresistors for the

respective calibrations, designed (D) and non-designed

(ND), PLS calibration models were created from data

grouped according to temperature and humidity. The results

are summarized in Tables 2–4. Table 2 lists the calibration

results for each environmental condition and designed or

non-designed model. Models listed in Table 2 were used to

predict data collected under the same environmental con-

ditions for the alternate design and the results are listed in

Table 3. For example, models created using the data col-

lected via a designed experiment were used to predict the

data collected in a sequential (non-designed) manner. For all

environmental conditions, the prediction statistics listed in

Table 3 using the non-designed calibration models are

poorer than what would be expected from the calibration

Fig. 2. Response of PECH chemiresistor to TCE vapor employing at condition E1, 31 8C, 0% humidity using (a) the non-designed sequence with exposure to

1000, 3000, 5000 10 000 ppm TCE, respectively and (b) the designed sequence with exposure to 5000, 10 000, 3000, 7000, and 1000 ppm of TCE, respectively.
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statistics. The difference in these statistics is statistically

significant as measured by the SEP of prediction compared

to the CVSEP of calibration. In addition, the prediction of

the data acquired 45 days after calibration, listed in Table 4,

show consistently poorer prediction results using the cali-

bration model from the non-designed experiment. Prediction

results using the model from designed data on both the short-

term (Table 3) and long-term (Table 4) data are more in line

with what was expected from the calibration statistics.

Predictions listed in Table 3 using the models from the

designed experiments yield SEPs that are 30% better on

average than the SEPs using models created using the non-

designed experiment. Prediction of the data collected 45

days after collection of the calibration data using the models

from the non-designed data show, in all cases, a statistical

difference between the calibration and prediction SEPs.

Using models from the designed data to predict the long-

term data, only the prediction statistics using the model from

the designed sequence at the 23/31 8C and 0% humidity

condition to predict the same condition are statistically

different from the calibration statistics. This indicates that

the models created from data collected in the designed

sequence are more robust to long-term device drift.

An example of prediction results using the model from the

non-designed experiment to predict the designed data is

shown in Fig. 3a, and prediction using the model from the

designed experiment to predict the non-designed data is

shown in Fig. 3b for the 23/31 8C and 100% humidity

condition ðE2 þ E4Þ. This figure shows that prediction with

the model from the non-designed data shows a greater

spread of data in the 1000–5000 ppm range than the pre-

diction with the model from designed data. For the case

shown in Fig. 3, the standard deviation of the predicted data

in the 1000–5000 ppm region is 1.9 times greater for the set

predicted with the model from the non-designed data com-

pared to the set predicted with the model from the designed

data. Similar results were found for the predictive ability of

models created for the other environmental conditions. The

cause for the reduced variance using calibration models

from the designed data at lower concentrations is likely

due to the fact that these models are more independent of

hysteresis and baseline drift than their non-designed coun-

terparts. In addition, for the prediction of the higher con-

centration standards, the models from the non-designed data

yield predictions that are biased to higher values. Prediction

of the high concentration standards using the model from the

designed experiment does not produce this bias. The

improved performance of the designed experiment at higher

concentrations is likely due to the fact that it incorporates a

five level design, five concentrations equally spaced,

improving the ability of the model to account for non-

linearities. The non-designed experiment jumps from

5000 to 10 000 ppm making the modeling of the non-line-

arities difficult.

Fig. 4a and b show the predictions of the designed

sequence, run 45 days after calibration, using the models

from the non-designed (Fig. 4a) and designed (Fig. 4b)

experiments at 23/31 8C and 100% humidity ðE2 þ E4Þ.
These data clearly show that the model created from a

designed data set maintains good predictive ability while

the model from the non-designed data loses this ability. The

results shown in Fig. 4 are typical for all the environmental

conditions assessed.

The temperature at which the non-designed data, condi-

tion E2 (Table 1a) was collected was 32.7 8C, which is

higher than other temperatures at which data was collected

(31 8C). This could be blamed for the poor predictive ability

of the resulting model (non-designed, E1 þ E2) used to

predict the designed sequence, collected 45 days later, at

31 8C and 0 and 100% humidity (Table 4). However, addi-

tional samples collected at lower temperatures and 0%

humidity were added to the non-designed E1 þ E2 data to

allow the PLS calibration model to compensate (see Section

2.1) for the missing information and did not alter the

Table 2

Calibration (D: designed sequence, ND: non-designed sequence)

Environmental condition R2 CVSEP

(ppm)

Number

of factors

31 8C, 0/100% humidity 0.98 (D) 400 2

ðE1 þ E2Þ 0.995 (ND) 230 2

23 8C, 0/100% humidity 0.98 (D) 450 2

ðE3 þ E4Þ 0.97 (ND) 480 2

23/31 8C, 100% humidity 0.97 (D) 590 3

ðE2 þ E4Þ 0.98 (ND) 430 4

23/31 8C, 0% humidity 0.94 (D) 750 2

ðE1 þ E3Þ 0.91 (ND) 980 2

Table 3

Prediction (D: designed sequence, ND: non-designed sequence)

Environmental condition R2 SEP (ppm)

31 8C, 0/100% humidity ðE1 þ E2Þ 0.96 (D) 730

0.91 (ND) 840

23 8C, 0/100% humidity ðE3 þ E4Þ 0.96 (D) 730

0.90 (ND) 1000

23/31 8C, 100% humidity ðE2 þ E4Þ 0.97 (D) 590

0.92 (ND) 890

23/31 8C, 0% humidity ðE1 þ E3Þ 0.85 (D) 1200

0.74 (ND) 1600

Table 4

Prediction 45 days after calibration (D: designed sequence, ND: non-

designed sequence)

Environmental condition R2 SEP (ppm)

31 8C, 0/100% humidity ðE1 þ E2Þ 0.98 (D) 480

0.79 (ND) 1600

23 8C, 0/100% humidity ðE3 þ E4Þ 0.95 (D) 700

0.70 (ND) 1700

23/31 8C, 100% humidity ðE2 þ E4Þ 0.97 (D) 590

0.89 (ND) 1000

23/31 8C, 0% humidity ðE1 þ E3Þ 0.95 (D) 660

0.70 (ND) 1680
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predictive results significantly. Analysis of the concentration

residuals showed behavior similar to what was seen without

inclusion of additional information in the calibration. In

addition, use of the higher temperature non-designed E2

sequence in conjunction with non-designed E3 sequence

(Table 1a) to predict the long-term E1 þ E2 data yielded

predictions as good as those listed in Table 4. Analysis of the

response residuals, showed that no significant error could be

associated with the temperature channel.

Poor predictive ability of the non-designed E1 þ E3

combination is not currently understood. When the non-

designed E1 and E3 conditions are individually combined

with either E2 and E4 the resulting non-designed calibration

models are much better in prediction (Tables 3 and 4) than

the E1 þ E3 combination.

3.3. Calibration and prediction with all environmental

conditions

The most complicated situation is the calibration and

prediction of the chemiresistor arrays over all environmental

conditions. The calibrations of both the designed and non-

Fig. 3. Predictions using PLS calibrations. (a) Prediction of the first designed sequence at 23/31 8C and 100% humidity using the calibration from the non-

designed sequence at the same environmental conditions. (b) Prediction of the non-designed sequence at 23/31 8C and 100% humidity using the calibration

from the designed sequence.
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designed sequences are statistically identical in calibration

with R2 ¼ 0:94 and 0.96, respectively and CVSEPs of 750

and 650 ppm, respectively. In short-term prediction, how-

ever, the model created from the designed sequences pre-

dicts the non-designed data with an R2 ¼ 0:93 and SEP ¼
900 ppm compared to the model created from non-designed

sequences predicting the designed data with an R2 ¼ 0:87

and SEP ¼ 1100 ppm. For long-term prediction (data col-

lected 45 days after calibration), the model created from the

designed sequence yields an R2 ¼ 0:91 with an

SEP ¼ 920 ppm while the model from the non-designed

data yields an R2 ¼ 0:81 with an SEP ¼ 1340 ppm. The

prediction statistics between the two models are significant

and indicate that models created from the designed data set

yields better predictive results for the conditions presented.

4. Conclusions

We have shown the advantages of employing a designed

experiment that incorporates a random sampling sequence

with repeat samples in the calibration of microsensor data to

TCE at various temperature and humidities. This sequence

was compared to a non-designed sampling sequence that

used both sequential repeats and monotonic increases in

concentration for quantitative analysis of TCE vapor using

chemiresistor arrays. We have shown that the designed

experiment is more robust at predicting TCE concentrations

at both short (within 10 days) and long times (45 days) after

the calibration.

Effects of humidity and temperature on chemiresistor

response and PLS calibration were also shown. Our results

Fig. 4. Predictions using the same PLS calibrations from as used in Fig. 3. (a) Prediction of the designed sequence at 23/31 8C and 100% humidity acquired

45 days after calibration using the calibration from the non-designed sequence. (b) Prediction of the designed sequence at 23/31 8C and 100% humidity

acquired 45 days after calibration using the calibration from the designed sequence.
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demonstrate the difficulty in quantitating resistor response

of a single pollutant over several environmental conditions

and the need to use a designed experiment for robust

calibration results. It has also been shown that the prediction

ability of a calibration model cannot be assessed solely by

the leave-one-out cross-validation results of the calibration.

Assessment of the predictive ability of a calibration model

must be made through true prediction.
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