Problem
Much of the nation's strategic approach to energy security in coming decades will involve subsurface engineering in the realms of resource extraction and byproduct storage. This is evident by recent attention in domestic shale gas, carbon capture and storage, and geothermal energy. In addition, the question of future geologic storage of the nation's nuclear waste is being addressed by the Presidential Blue Ribbon Commission on America's Nuclear Future. These subsurface endeavors share themes in nonlinearly coupled, far-from-equilibrium thermal, mechanical, hydrological, and chemical dynamics.
Solution
To help the nation fulfill energy security goals, we are investigating three related tasks examining coupled deformation and fluid flow in heterogeneous geologic systems that often comprise reservoirs or sealing lithologies for waste and resources. We focus on non-Darcian, low–Reynolds number flows in saturated or unsaturated porous media, applicable to subsurface engineering endeavors for post-closure or post-injection periods of hundreds to thousands to tens of thousands of years.