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Superconfigurations are an important component of many of the collisional-radiative atomic models that
are used to predict the properties of atoms and ions in non-local thermodynamic equilibrium (non-LTE)
plasmas. In this paper, we investigate the statistical properties of superconfigurations and derive
expressions for their approximate average energies and energy variances based on one-electron orbital
energies. We also explore the effects of using finite-width superconfigurations in screened hydrogenic
and hybrid-structure atomic kinetics models.

� 2010 Published by Elsevier B.V.
1. Introduction

Collisional-radiative atomic models are widely used in high-
energy-density plasma science, from the compact inline atomic
models used in hydrodynamics codes [1e3] to the detailed fine-
structure models used for spectroscopic plasma diagnostics [4e7].
Code comparisons performed at a series of non-LTE workshops
[8e12] have established the importance of statistical completeness
for model accuracy and reliability, particularly completeness in the
dielectronic recombination channels that control the ionization
balance of multi-electron ions in non-LTE plasmas. (For our
purposes, a statistically complete model is one whose predictions
do not change upon addition of energy levels.) Since the statistical
weight required to model a “complete” ion grows exponentially
with the number of electrons, reliable non-LTE calculations of
complex ions pose a significant computational challenge.

One highly successful class of statistically complete atomic
kinetic models uses screened hydrogenic superconfigurations
whose states ðn1ÞN1 ðn2ÞN2.ðnkÞNk are described by their principal
quantum numbers n and their integer occupation numbers N
[2,3,13]. Each such superconfiguration (SC) can carry enormous
statistical weight, thus enabling statistical completeness for arbi-
trarily complex ions at a modest computational cost. The screened
.
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hydrogenic approach has proven to be quite general and powerful
for reasonably accurate calculations of charge state distributions.
Coupled with tabular data for line transitions from more detailed
codes [14,15], screened hydrogenic models can even generate
reasonable emission and absorption spectra.

An alternative approach to non-LTE calculations involves the
generation of an extensive set of detailed atomic data based on nl,
nlj or even fine structure energy levels. These data are more accu-
rate than screened-hydrogenic SCs and can be ensemble-averaged
into a more tractable data set before solving the collisional-radia-
tive rate matrix. Researchers have explored various paths to opti-
mizing approaches like this for accuracy and efficiency, including
dynamically varying the ensembles according to plasma conditions
[16e19], expanding ensembles after the matrix solution to deter-
mine more detailed state populations [20e22], determining
plasma-dependent effective temperatures within ensembles
[23e25], averaging only high-n SCs [26,27], or using hybrid atomic
structure designed for fidelity in both the high- and low- density
plasma regimes [28,29]. Although these approaches can yield reli-
able charge state distributions and even generate highly accurate
synthetic spectra, only highly averaged and hybrid-structure
kinetic models can be extended to ions of arbitrary complexity
without sacrificing completeness or becoming computationally
intractable (c.f. Ref. [30]).

Energy levels are the fundamental components of all these
atomic models. But only fine-structure energy levels are “simple,”
completely defined by their binding energy and their degeneracy
(and even fine structure states are simple only in the absence of
idths and their effects on atomic models, High Energy Density Physics
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external electric and magnetic fields). All other representations of
energy levels (nl, nlj, or SC) are ensembles that generally contain,
either implicitly or explicitly, additional structure due to the fine-
structure states they comprise. This internal complexity is most
obviously manifested in the poor-quality spectra of highly averaged
models, and much effort has been devoted to understanding the
statistical properties of transition arrays so that reasonable spectra
can be generated with tractable models [21,31e33]. However,
a majority of that effort has focused on LTE and near-LTE plasmas
whose internal populations follow Boltzmann statistics and on
non-LTE models whose energy levels are already moderately
detailed (e.g. nl configurations in Ref. [34]) or whose internal
structure is explicitly acknowledged [23e25]. Less attention has
been paid to the consequences of treating large ensembles of
energy levels as simple states void of internal structure in plasmas
far from equilibrium. We might expect these consequences to be
most obvious in the screened hydrogenic models whose super-
configurations can represent tens of thousands of fine structure
levels [35]; this will be the focus of the present paper.

We begin in Section 2 by investigating the average energies and
energy variances of superconfigurations, proposing simple
formulas for these quantities based on one-electron orbitals and
comparing these estimates to the results of more detailed calcu-
lations. In Section 3, we investigate the consequences of non-zero
SC widths on continuum lowering in dense plasmas, dielectronic
recombination in complex ions and beam plasmas, and hybrid-
structure models that couple screened hydrogenic SCs to detailed
levels. Finally, we illustrate the effects of finite-width SCs on
bound-free absorption edges in Section 4.
2. Statistical properties of superconfigurations

In this section, we investigate the average energies and energy
variances of superconfigurations. For any casewhere a complete set
of detailed level data for a superconfiguration is known, the average
energy hEiSC of that SC is:

hEiSC ¼

P
i
giEiP

i
gi

(1)

and the energy variance is given by:

s2SC ¼

P
i
gi½Ei � hEiSC�2P

i
gi

(2)

with sSC the standard deviation, Ei the energy of a detailed level,
and gi its statistical weight. Here, the detailed levels can be fine
structure states, relativistic configurations, non-relativistic config-
urations, or any mixture of such states, as long as the states are
completely enumerated for the SC ensemble.

Alternatively, one can define approximate orbital-based
expressions for the average energy and energy variance of
a superconfiguration that do not require a complete enumeration of
the sub-states within a given SC. Instead, the orbital approximation
requires only the one-electron binding energies Enl [36] of the non-
relativistic orbitals that contribute to the SC. These can be calcu-
lated by finding the solutions of the Schrödinger equation in
a Hartree-type approach or approximated by the single-electron
energies Enlz vESHM

tot /vPnl of an nl-dependent screened hydrogenic
model such as the one described in [37,38] With statistical weights
gnl¼ 2(2lþ 1), the average energy and energy variance of the one-
electron orbitals of an n shell are:
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Similar formulas can be defined for relativistic one-electron
orbital energies Enlj with gnlj¼ 2jþ 1 by changing the sum over l to
a sum over relativistic orbitals k. Either approach will yield a set of
hEin and sn

2 that vary by ion. The energy of a single-shell super-
configuration (n)N is given by the sum

hEiðnÞN ¼ NhEin (5)

The energy variance of the SC (n)N can be approximated by
constructing configuration energies based on one-electron orbital
energies Enl, followed by application of the straightforward
formulas given above in Eqs. (1) and (2). Consider the super-
configuration (2)3. This SC contains the configurations 2s22p, 2s2p2,
and 2p3, with respective energies of (2E2sþ E2p), (E2sþ 2E2p), and
(3E2p) and statistical weights of 6, 30, and 20. The energy variance
of these configurations calculated by Eq. (2) yields the polynomial
s2¼ (15/112) (3E2s2 þ 3E2p2 � 6E2sE2p). A general and compact form
of this expression for the variances is:

s2ðnÞN ¼ N
�
2n2 � N

�
n4

�
2n2 � 1

�xðnÞ (6)
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The non-relativistic polynomials for n¼ 2e4 are:

xð2Þ ¼ 3E22s þ 3E22p � 6E2sE2p

xð3Þ ¼ 8E23s þ 18E23p þ 20E23d � 6E3sE3p � 10E3sE3d � 30E3pE3d

xð4Þ ¼ 15E24s þ 39E24p þ 55E24d þ 63E24f � 6E4sE4p � 10E4sE4d

� 14E4sE4f � 30E4pE4d � 42E4pE4f � 70E4dE4f

For relativistic orbitals, the coefficient remains the same but the
polynomial x(n) changes to a relativistic version xrel(n), with the
sum over l changing to a sum over relativistic orbitals lj, here
indexed by k:

xrelðnÞ ¼
X
k

h
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The relativistic polynomial for n¼ 2 is:

xrelð2Þ ¼ 3E22s12
þ 3E22p1
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This reduces to the non-relativistic x(2) when E2p1=2 ¼ E2p3=2
¼ E2p. We note that one cannot obtain relativistic variances by per-
forming a statistically weighted average of Enlj to obtain Enl and then
using thenon-relativistic x(n); this leads to an incorrectweightingof the
Enlj that gives a smaller variance than Enlj and xrel(n).

In the orbital approximation, the energy variance of a super-
configuration with multiple open shells ðn1ÞN1 ðn2ÞN2.ðnkÞNk is
given by the sum of the variances for each shell (c.f. [39]):

s2SC ¼
X
k

s2ðnkÞNk (9)

The average energies of composite SCs are simply

hEiSC ¼
X
k

hEiðnkÞNk (10)

Fig. 1 shows the structure of selected SCs in Ge16þ (ground SC
(3)6) and Ge17þ (ground SC (3)5) as calculated by AVERROES [34] to
illustrate the behavior of composite SC energies and widths within
and between ions. The minimum, average, and maximum energies
of configurations within the listed SCs are indicated, measuredwith
respect to the lowest-energy configuration in Ge16þ. The energy
difference between the lowest- and highest-energy configurations
within each SC is generally about 6s. The widths do not vary much
between adjacent ions, nor is there large variation in the widths of
composite SCs formed by single and even double excitations from
the M-shell. In contrast, inner-shell holes from n¼ 2 increase the
widths significantly. The absolute widths of these SCs are of the
same order as or much larger than their energy differences, illus-
trating the underlying structure that is absent in zero-width SC
representations of complex ions.

2.1. Numerical comparisons of the SC average energies and
variances

Fig. 2 shows the average energies hEiSC and standard deviations
sSC for the ground SCs of L-shell aluminum (Z¼ 13), germanium
(Z¼ 32), and xenon (Z¼ 54), as computed using one-electron
orbital energies. Here, the non-relativistic one-electron orbital
energies were computed by the MUZE code [40] and the relativistic
orbital energies were computed by LIMBO [15]. Also given are sSC
obtained by the straightforward application of Eq. (2) to the
ensembles of energy levels within those SCs as computed by the
relativistic atomic structure code FAC [5]. Computations using
relativistic configurations (designated “UTA” for Unresolved Tran-
sition Arraymode) and fine structure (“FS”) levels with andwithout
full configuration interaction (CI) are shown. The plots of hEiSC
Fig. 1. Minimum, maximum, and average configuration energies in selected SCs of
Ge16þ and Ge17þ ions [34].
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illustrate that relativistic effects are significant for Ge and Xe and
that fine structure and configuration interaction effects are most
pronounced for Al. Generally, the UTA sSC are the smallest of the
FAC calculations, with increasing energy widths obtained as fine
structure and configuration interaction effects are included. For the
highly charged xenon ions, the relativistic orbital-based expression
gives excellent agreement with FAC. The agreement is reasonable
for the lower-charged ions. Also shown for the Ge case are data
from the atomic structure code AVERROES [34], which uses non-
relativistic orbitals with relativistic corrections and determines sSC
directly from Eq. (2).

Fig. 3 gives hEiSC and sSC for the M-shell ions of copper and
tungsten. As with the L-shell case, relativistic effects are important
for the higher-Z element, but in this case we find that FS and CI
effects on the statistical properties of the SCs are small, even for the
lower Z. The orbital-based expression for sSC agrees very well with
both FAC and AVERROES data. For both the L- amd M-shell cases,
the typical energy widths of the open-shell ground super-
configurations can approach or even exceed energy differences
between ions, as was shown in Fig. 1.

The one-electron orbital approximations for hEiSC and si given in
Eqs. (9) and (10) can be used to construct Gaussian distributions of
statistical weight with energy:

gðEÞ ¼ gSC
s

ffiffiffiffiffiffi
2p

p e

�ðE � hEiSCÞ2
2s2 (11)

Fig. 4 illustrates how the approximate g(E) correspond to those
of detailed calculations from FAC. We caution that the exact form of
the FAC distributions is sensitive to the selection of the energy bins,
especially for the ions with smaller total statistical weights gSC (as
listed on the figure). The orbital-based statistical representations
are most accurate for complex ions with large statistical weights,
but give a reasonable representation for g(E) overall.
3. Effects of SC widths on non-LTE atomic kinetics

In this section, we explore the consequences of applying the
estimates given above for the average energies and energy vari-
ances of superconfigurations to the non-LTE kinetics of SC-based
screened hydrogenic models. While such models can never attain
the fidelity of models with more detailed representations of the
atomic structure, their huge advantages in tractability, generality,
and completeness make them attractive and we are interested in
optimizing them as far as possible. Because we wish to apply our
arguments to screened hydrogenic SCs of arbitrary complexity (or
simplicity), much of the discussion below will be qualitative,
glossing over the particularities of specific transition arrays and in
general assuming that SCs with similar hEi have similar s.

Previous studies of rates between ensembles of detailed levels
[41] have established two general correlation laws that describe the
behavior of transitions between the elements of coupled
ensembles.

(1) Propensity: if some process links the elements (levels or
configurations) of superconfigurations SC and SC0, the higher
(lower) levels of SC are linked by larger rates to the higher
(lower) levels of SC0, than to its lower (higher) levels.

(2) Strengths: the total rate of atomic transfer from an element i of
the initial SC to thewhole of SC0 is an increasing-linear function
of Ei(SC).

These correlations hold for radiative, collisional, and even
two-electron transitions. And they provide some justification
idths and their effects on atomic models, High Energy Density Physics



Fig. 2. Average energies (left) and standard deviations (right) in eV of various superconfigurations in the L-shells of aluminum, germanium, and xenon. Values computed from the
detailed FAC [5] and AVERROES [34] atomic structure codes are given in cyan and magenta, respectively. The average energies are given relative to the lowest-energy state within
the SC.
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for the general success of zero-width SC models: consider the
case of two coupled superconfigurations SC and SC0, each
composed of k configurations ci and c0 i. If the first correlation
law (based on the fact that the spectator nl subshells must be
the same in both SCs [23,24]) holds strictly, then exactly k rates
couple SC and SC0.

By the second correlation law, the rates Ri scale linearly with the
energies of the initial configurations, so that if hEiR is proportional to
some typical rate at the average energy hEi of the initial SC, then the
global rate between SC and SC0 obtained by taking a statistically-
weighted average of EiR over ci and a sum over c0i0 is identically hEiR.
Thus, rates between SCs are well represented by the screened
hydrogenic rates calculated using the difference in their average
energies DhEiR.

A similar argument holds even for SC pairs that have significant
energy overlap, as illustrated in Fig. 5 for the first two excited SCs of
neutral Al. The global rates between such SCs should be reasonably
close to the screened hydrogenic rates calculated using DhEiR
(illustrated by the dashed line). However, strongly overlapping SCs
open up the possibility of decay rates from SCs with lower average
energies to SCs with higher average energies (illustrated by the two
dotted lines). For example, in neutral aluminum, the 5s orbital is
more tightly bound than 4p, so that dipole transitions of the type
½Ne�3l24p/½Ne 3l25s

i
are energetically allowed even though
Please cite this article in press as: S.B. Hansen, et al., Superconfigurationw
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hEi½Ne�ð3Þ2ð5Þ1 > hEi½Ne�ð3Þ2ð4Þ1 As long as these “inverted” rates are
small compared to both the total rate out of the lower-energy SC
and the “normal” rates coupling the SCs, they can be safely
neglected. For inverted rates among excited SCs, DE2 scaling tends
to ensure that radiative decay rates to the ground SC dominate over
the inverted rates, so the first criterion is typically met. And a rough
scaling of radiative to collisional rates among ground and excited
states suggests that as long as the typical transition energy of the
inverted decay rates is much less than the typical energy of the
excited SCs from the ground SC, the electron density will be either
so high that the “normal” collisional excitation rate dominates over
the inverted decay rate or so low that the ground SC dominates the
population flux, or both. However, since this criterion is least likely
to hold for near-neutral ions, the very ions for which the orbital
binding energies are most likely to be disordered, screened
hydrogenic models ought to be used with caution at low
temperatures.

Including inverted radiative decay transitions from ground SCs
(for example, the 3d/4s decay in neutral potassium, whose
ground SC is [Ne](3)9 but whose ground configuration is [Ne]
3s23p64s) is wholly inadvisable, since at sufficiently low densities it
can lead to populations in the excited [Ne](3)8(4)1 SC that are much
larger than could be supported by collisional excitation, leading, for
example, to radiative loss rates that are orders of magnitude too
idths and their effects on atomic models, High Energy Density Physics
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Fig. 3. As in Fig. 2 for the M-shells of copper and tungsten.
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large (see the similar problem arising from a direct configuration
averaging of fine structure states in highly charged W discussed in
Ref. [42]).

Since inverted rates of radiative recombination and collisional
ionization should follow scaling similar to that of radiative decay
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and collisional excitation, it seems acceptable to exclude from the
rate matrix any single-electron process that is not energetically
allowed, just as if the SCs had zero energy widths.

The arguments above provide some justification for the stan-
dard approach taken by screened hydrogenic models that treat SCs
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as though they have negligible energy widths and compute all
rates based on differences of average SC energies and total
statistical weights. However, even in the absence of inverted rates,
this justification breaks down in at least three cases: (1) strong
continuum lowering that changes the relative energies of SCs in
neighboring ions so that an energetically allowed transition
becomes forbidden, even when rates between sublevels persist;
(2) dielectronic recombination, where part of an SC lies above the
continuum limit even though the average SC energy lies below it;
and (3) “hybrid-structure” atomic models, where rates from high-
lying SCs are coupled to more detailed levels with much smaller
(or zero) statistical widths. Below, we discuss each of these cases
in turn.
3.1. Continuum lowering

To illustrate the effects of continuum lowering on rates
between SCs in screened hydrogenic models, Fig. 6 gives an
energy level schematic of He- and Li-like ions at low and high
densities. At the low density, the whole of the Li-like (1)1(2)1(n)1

superconfiguration lies below the average energy of the He-like
(1)1(2)1 SC and each Li-like level can ionize to one in the He-like
SC by losing its n-shell electron. At the higher density, the
continuum lowering that has shifted the continuum limits of the
two ions by ECL¼ 3/2(Zionþ 1)[3/(4pnion)]1/3[Hartrees] [43] has
also shifted their relative energies by DECL, so that the average
energy of the Li-like SC is above that of the He-like SC. If the
absolute value of the energy difference between the central
energies of the two SCs remains less than the standard deviation
of the n shell (which controls the destruction of the outer orbital
by pressure ionization), then the collisional ionization rate will
vanish in a zero-width SC model even though ionization is
energetically allowed for the more tightly bound of the Li-like nl
orbitals. (For example, in a configuration model, 1s 2p 5s exists
and can ionize to 1s 2p even after 1s 2p 5f is pressure ionized.)
Further, just before the coupling rates vanish in a zero-width SC
model, they become very strong as the density increases and the
energy difference decreases. Even if one employs a statistical
reduction factor on the outer orbitals as described in Ref. [44],
some portion of the SC persists after the average energies cross.
Thus, to prevent unphysical oscillations and discontinuities in
the SC populations as n-shells are progressively pressure-
ionized, the ionization rates must be continuously modified as
ECL increases, ideally in such a way that the low-density limit
Please cite this article in press as: S.B. Hansen, et al., Superconfigurationw
(2010), doi:10.1016/j.hedp.2010.07.002
preserves the zero-width rates and the rates decline smoothly to
vanish when the negative of the transition energy exceeds the
standard deviation of the n-shell orbitals. One candidate for such
a modification is the prefactor

fion ¼ 1� ECL���Ebn
���þ sn

(12)

Here, Enb is the binding energy of the n-shell in the isolated ion
limit and sn is its standard deviation. Applying this prefactor (or
something like it designed to join with a statistical reduction
factor) to collisional and photoionization processes as well as their
reverse rates ensure that the SC populations vary smoothly with
density.
3.2. Dielectronic recombination

The arguments given in the first part of this section to justify the
zero-width SC approximation apply only to SCs between which
inverted rates are negligible. For single-electron transitions among
the excited states of highly charged ions, this condition is met
naturally. By contrast, inverted two-electron process of dielectronic
capture (d.c.) can be a dominant component of the total rate leaving
a ground-state SC, particularly at low electron densities where
radiative and three-body recombination and collisional excitation
from the ground states are small. Fig. 1 illustrates a case in which
autoionization in zero-width SC models may be improperly
treated: the high-n (1)2(2)8(3)5(n)1 SCs, which are singly excited in
the SC notation, contain multiply excited configurations that can
autoionize even though their central energies lie below that of the
(1)2(2)8(3)5 SC. (These are the Dn¼ 0 transitions that can dominate
the dielectronic recombination rate at low temperatures). Even SCs
that are doubly excited in the SC notation can be inverted, for
example, the SC (1)2(2)8(3)6(4)2 in Ar-like tungsten has an energy
that lies below (1)2(2)8(3)7 by about half its standard deviation.
Such SCs would not be properly coupled in a zero-width SC model,
and this can be significant since the low-n Auger transitions most
likely to be inverted tend to be strong channels due to the 1/n3

scaling of Auger rates. To improve the treatment of two-electron
idths and their effects on atomic models, High Energy Density Physics
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processes in screened hydrogenic SC models, we propose including
all possible dielectronic capture transitions weighted by the frac-
tion of the statistical weight above the ionization limit in the
autoionizing SC:

fdc ¼ 1
gSC

ZN

Ea

gðEÞ dE ¼ 1
2

�
1� erf

	
DEdcffiffiffi
2

p
s


�
(13)

Here, erf is the error function and DEdc is the energy difference
between the initial and final SCs in the autoionization process:
DEdc¼ IPZ, Zþ1þ Ef

Zþ1� Ei
Z (where Ef

Zþ1 and Ei
Z are the average SC

energies of the ionized and autoionizing SC, respectively, relative to
the average energy of the ground SCs in each ion), and the lower limit
of the integral Ea¼ IPZ, Zþ1þ Ef

Zþ1. In the limit of the normal auto-
ionization process, DEdc is negative and fdc goes to unity. For inverted
processes, fdc lies between zero and 1/2. The fraction adjusts smoothly
under continuum lowering as the ionization potential IPZ, Zþ1 is
modified. At plasma conditions where the auotionizing states are
nearly statistically populated or where dielectronic capture is the
dominant rate into the auotionizing SC, this factor can also be applied
directly to the Auger rates so that detailed balance is preserved.
However, for SCs that are populated dominantly through direct colli-
sional excitation whose population at low temperatures is concen-
trated in the lowest-energymembersof anensemble, the factor fdc can
significantly overestimate the actual flux through excitation-auto-
ionization channels. We thus propose a modified expression for
Dn¼ 0 autoionization rates that folds a Boltzmann factor into Eq. (13):

fDn¼0
Aug ¼ 1

gSC

ZN

Ea

gðEÞe�ðE�E0Þ=Te dE

¼ 1
2e
ðs2=2T2

e �ðhEi�E0Þ=TeÞ
�
1� erf

�s2 þ DEdcTeffiffiffi
2

p
sTe


� (14)

Here, E0 is the energy of the lowest-lying configuration in the
autoionizing SC, so that (hEi � E0) is the relative average SC energy
as plotted in Figs. 2 and 3. In the high-temperature limit, fAug/fdc.

Non-Maxwellian or beam plasmas are another case in which
the width of autoionizing SCs becomes important. In an electron
beam ion trap (EBIT), the beam electrons that govern excitation,
ionization, and recombination can have a full width at half max as
small as z20 eV e much smaller than the standard deviations of
the SCs in many mid-shell ions. The resonant dielectronic capture
cross section is treated as a delta function and its intersection
with the finite-width beam determines the capture rate. If the
autoionizing states are densely populated, the narrow beam
moves into and out of resonance with different fine structure
states more or less smoothly as the beam energy changes. But in
a zero-width SC model, autoionizing states sparsely populate the
continuum and any resonance with the narrow beam is fortu-
itous. To mimic a densely modeled continuum using SCs in cases
where the standard deviation of the capture process sdc is larger
than that of the beam energy, one can use the g(E) given in
Eq. (11) rather than a delta function for the dielectronic capture
cross section.

The variance sdc
2 for the dielectronic capture and autoionization

processes is in principle that of the strength-weighted emissive zone
of the autoionizing SC, rather than simply the variance of the SC sSC

2 .
However, in contrast with the emissive zones defined for transition
arrays between configurations [45], sdc2 does not differ much from
the variances of the involved SCs, because it depends essentially on
the average upper energies of the superarrays, and very little on
their separate widths. Calculations of the emissive zones of the
superarrays are given in the Appendix.
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3.3. Supplementing hybrid-structure models with
superconfigurations

The strength of screened hydrogenic SC models is in their
compact completeness. They can provide reasonably reliable
predictions for the gross properties (charge state distribution,
radiative power loss rates) of even complex mid-shell ions. And it is
relatively simple to extend their structure to include higher
n-shells, deeper holes, or multiple excitations in order to verify
model completeness and to modify the rate approximations in
order to test model sensitivity to various processes. However, SC
models cannot generally produce spectroscopic-quality emission or
absorption data, even when coupled with more sophisticated
transition data as in Ref. [3]. Apart from intensive efforts to provide
benchmark calculations (e.g. the carbon models described in
Ref. [46]), the fine-structure models that can generate high-quality
non-LTE spectra are generally limited by computational constraints
to relatively simple ions near closed shells or to low-density coronal
conditions where only single excitations from the ground config-
uration are important, andwhere all dielectronic capture and decay
channels that involve multiply excited states can be represented by
a single dielectronic recombination rate (as done in Refs. [47,48]).

A hybrid-structure model that captures the advantages of both
screened hydrogenic SC and fine structure models has been
described in Refs [28,29]. In this approach, a small set of singly
excited “coronal” levels (including single excitations from inner
shells) and the rates coupling them are computed in fine structure
detail. These are combined with a larger set of relativistic config-
urations and UTA rates that includes all of the coronal configura-
tions as well as additional singly andmultiply excited states. Typical
configuration-interaction effects on transition energies and rates
(c.f. [49,50]) are determined by comparing the overlapping set of
fine-structure and UTA transitions, and these effects are extended
to all transitions in the hybrid-structure model. Finally, supple-
mentally screened hydrogenic SCs are folded into the mix in order
to ensure completeness with the same ease as in a pure SC model.

In our implementation of the hybrid-structure scheme, a data
set of mixed fine-structure and UTA states and rates for all ions of
an element is generated and stored in large data files. To find
populations and spectra for a given set of plasma conditions, a pure
screened hydrogenic SC model is generated on-the-fly to provide
an initial estimate for the average ion charge. This average ion
charge is then used to set a window within which the detailed
states are mixed with supplemental SCs and beyond which a pure
SC representation is retained. The mixing of detailed and SC states
can generally proceed under the zero-width approximation, as long
as the modifications described above have been included in
generating the SC-model structure and rates. However, energy
differences between SCs can no longer be treated as being the
differences between their central (average) energies. Instead, they
must be treated as if they represent the energy differences between
the lowest-energymembers of the SC ensemble. Thus, an excitation
rate that in a pure SC model took place from some average state in
the lower SC to some average state in the upper SC is now imagined
to be a process between the lowest-energy members of the SCs.
This shift in representation is necessary because the ground-state
levels of the hybrid-structure ions are no longer large ensembles
but are true ground states.

This shift is schematically illustrated in Fig. 7. It permits us to
continue to use directly all of the energies and rates that were
determined in the pure SC model if the rates from SCs to detailed
levels i are modified by a simple Boltzmann factor:

R
�
SC/i0˛SC0� ¼ gi0

gSC0
e�ðEi0 �ESC0 Þ=TeR

�
SC/SC0� (15)
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Fig. 8. Modifying the statistical weights of SCs to account for internal partition func-
tions in copper (r¼ 8 g/cm3; Te¼ 100 eV) changes the calculated charge state distri-
butions for both a pure SC model (top) and a hybrid-structure model (bottom) that
uses pure SCs for ions outside the window indicated by the vertical dashed lines.
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Here, E0SC is the energy of the final SC relative to the ground SC
of that ion. The reverse rates Rði˛SC/SC0Þ represent an average
from any level in the initial SC to the whole of the final SC0 and so
remain unchanged. Compared with statistical factors based on the
Gaussian distributions, the Boltzmann factor here is a rough
approximation. But it is enough to ensure that the hybrid-model
populations approach their LTE limit at high densities or when the
radiation temperature equals the electron temperature Te. An
effective temperature [23,51] in place of Te may improve the
approximation, but this has not been extensively studied.

In considering the boundaries of the ion window described
above, within which ions have hybrid structure and outside of
which ions are pure SCs, it becomes apparent that an additional
modification must be made to all of the SC states in order to ensure
model coherence. If the SC-to-hybrid boundary occurs between, for
example, the Si-like ionwith 14 electrons and the P-like ionwith 15
electrons, then the model will have a ground SC (3)4 with
Fig. 9. The SC variances can be used to give reasonable widths to bound-free edges
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a statistical weight of more than 3000 adjacent to a ground level
3p3(J¼ 3/2) with a statistical weight of 4. Even at high densities,
where the partition function spreads population throughout the
ground SC of the hybrid-structure ion, this imbalance can lead to
discontinuities in the charge state distribution like the one illus-
trated in the lower panel of Fig. 8 for near-solid copper at
T¼ 100 eV. We thus propose that in the hybrid model, the statis-
tical weights of the SCs bemodified to reflect an internal population
distribution that follows Boltzmann statistics:
in screened hydrogenic models, illustrated here for the L-edge of cold tungsten.

idths and their effects on atomic models, High Energy Density Physics
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gmod
SC ¼

ZN

E0

gðEÞe�ðE�E0Þ=Te dE

¼ gSC
2
eðs2=2T2

e�ðhEi�E0Þ=TeÞ
�
1� erf

	
s2 � TeE0ffiffiffi

2
p

sTe


�
(16)

with E0 the energy of the lowest-lying configuration in the SC, as in
Eq. (14).

All of the RðSC/SC0Þ rates can be modified by the factor
gmod
SC0 =gSC0 to reflect the modified partition function in the final SC.

Modified statistical weights can be computed for each SC indi-
vidually, or the ratio of the ground SC for each ion can be used to
set a single reduction factor for each ion in order to preserve the
pure-SC model rates within the ions. The SC energies can also be
changed from hEi to hEi � s2/Te, which is the energy at which
gðEÞe�ðE�E0Þ=Te reaches its maximum. The effects of using modified
statistical weights for the SCs are illustrated in Fig. 8. The top panel
shows that reducing the statistical weights for each SC according
to Eq. (16) shifts the ionization balance slightly away from the
high-g mid-shell ions. The bottom panel shows the results from
a hybrid-structure model with a narrow window for the more
detailed ions: without the reduction of gSC, there is a discontinuity
at the SC-to-hybrid-structure boundaries, which is corrected
when gSC are modified.

So far, we have only used the electron temperature (or beam
energy, for EBIT sources) to determine the internal partition func-
tion and have found this to give reasonably smooth charge state
distributions at a variety of plasma conditions. However, effective
temperatures such as those determined by theMOSTmodel [23,24]
might increase the accuracy of the hybrid model further and are
currently being investigated along with effective temperatures in
the rate modification factors of Eq. (15).
4. Effects of SC widths on bound-free spectra

As mentioned above, the most obvious failure of pure SC models
is the lack of structure apparent in their computed spectra. While
the SC variances presented here could in principal be used to
estimate the widths of SC-to-SC transition arrays, a much better
approach to calculations of bound-bound spectra is to use tabulated
energies and strengths for nle(nl)0 or nlje(nlj)0, as done in, for
example, Ref. [3]. In the present SC model, internal SC partition
functions and approximate UTAwidths are folded into the nlje(nlj)0

transitions and, where more detailed transition data is at hand (e.g.
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from hybrid-structure levels), transition energies are adjusted to
give better accuracy. A similar splitting could be included for
bound-free edges in pure SC models, but we have found that
broadening the bound-free edges by s2edge ¼ s2

SCZ
i
þ s2

SCZþ1
f

gives
reasonable results. Fig. 9 illustrates such broadening for the L-shell
absorption edge of cold tungsten, comparedwith the nlje split cold
opacity from Henke [52]. The 1.4e2 keV energy difference between
the j¼ 1/2 and j¼ 3/2 orbitals is significantly larger than the energy
differences between adjacent ions, and the SC model with
a broadened edge is in much better agreement with the more
detailed data. Fig. 10 illustrates that this edge broadening also
improves agreement with the absorption spectrum measured
recently by Hoarty et al. [53], which captures n¼ 2 to n¼ 4 tran-
sitions and the L-edges of niobium ionized to the N-shell.

5. Summary

We have presented several expressions to compute average
energies and energy variances of superconfigurations from one-
electron orbitals and have found our approximations to be in
reasonable agreement with more sophisticated calculations. Using
the presented approximations to generate distributions of energy
levels within SCs allows us to refine the standard zero-width
treatment of SCs in the screened-hydrogenic models that are
widely and successfully used for non-LTE calculations. These
refinements are particularly important for improving accuracy in
continuum lowering and dielectronic capture in pure SC models.
Although the suggested refinements are rather crude corrections in
comparison to more sophisticated treatments of correlations
between superconfigurations based on explicit internal SC struc-
ture [23,24], they have a useful function as rough but reasonable
corrections to a rough but reasonable class of atomic models.
Finally, we have shown that the energy variances of super-
configurations also play an important role in the construction of
reliable and computationally tractable hybrid-structure atomic
models that can generate highly accurate equations of state and
radiative properties for ions of arbitrary complexity.
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Appendix A. Computation of emissive zones for the rate
calculations

Superconfigurations (SCs) are useful for non-LTE plasma calcu-
lations because of their compactness and the relatively simple
global approximations available for rates between SCs. However,
such global approximations generally do not take into account
several important corrections. In Section 3, we have proposed
corrections related to overlapping SCs for autoionization and die-
lectronic capture rates and for other ionization processes in the
presence of strong continuum lowering, and have argued that no
such corrections are required for monoelectronic processes in the
absence of continuum lowering due to the propensity correlation
[24,41].
idths and their effects on atomic models, High Energy Density Physics
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And we have given in Eq. (16) an expression that modifies the
statistical weights of the SC (and through them, the rates) to reflect
an internal partition function that changes with the plasma
conditions (this is equivalent to shifting the central energies of g(E)
via multiplication by a Boltzmann factor). However, the proposed
corrections were derived with the assumption that the strengths of
the processes between different components of the SCs are equally
weighted. In this appendix, we demonstrate that this is not the
case, in general, and give quantitative examples to guide future
corrections to approximate SC-to-SC rates.

For the evaluation of global rates between SCs, it is interesting to
take into account the contributions of the levels with the larger
strengths, i.e., the levels of the emissive zones of the upper SC [45]
(see Section 3.2).

Taking ð3ÞNð4Þ1/ð3ÞNþ1 as a typical case, the quantity

mn

�
ð3ÞNð4Þ1

�
¼

X
i;j

EðCiÞnS
�
Ci/Cj

�
=Stot (17)

is the statistical moment of order n of the emissive zone of (3)N(4)1.
In Eq. (17), the sums over i and j run over all the configurations of
(3)N(4)1 and (3)N, respectively, E(Ci) is the energy of Ci, SðCi/CjÞ is
the electric-dipolar strength of the transition array Ci/Cj, and Stot
is the sum of all such strengths. In this global approach, E(Ci) is the
average energy of Ci, represented as a sum of monoelectronic
quantities, denoted Enl. For example,

E
�
3sa3pb3dg4f

�
¼ aE3s þ bE3p þ gE3d þ E4f

¼ aSþ bP þ gDþ F 0 (18)

in simpler notation. Instead of computing explicitly Eq. (17) for each
value of N, it is very convenient to use the laws of complementarity
and anticomplementarity between the centered moments
mn
c((3)N(4)1) and mn

c((3)17eN(4)1):

mc2k

�
ð3ÞNð4Þ1

�
¼ mc2k

�
ð3Þ17�Nð4Þ1

�
(19)

mc2kþ1

�
ð3ÞNð4Þ1

�
¼ �mc2kþ1

�
ð3Þ17�Nð4Þ1

�
(20)

where k is a positive integer. These laws are valid for the entire
ð3ÞNð4Þ1/ð3ÞNþ1 emission, because they can be proved for each of
its 4l/3l0 supertransition arrays, e.g., 4d/3p for N¼ 2 and 15:
N¼ 2 array Total strength Upper energy Eu Eu for S¼ 1,
P¼ 2, D¼ 4

3s24d/3s23p 4P2� 1 E4dþ 2S E4dþ 2
3s3p4d/3s3p2 4P2� 10 E4dþ Sþ P E4dþ 3
3s3d4d/3s3p3d 4P2� 20 E4dþ SþD E4dþ 5
3p24d/3p3 4P2� 10 E4dþ 2P E4dþ 4
3p3d4d/3p23d 4P2� 50 E4dþ PþD E4dþ 6
3d24d/3d23p 4P2� 45 E4dþ 2D E4dþ 8

Total 4P2� 136

N¼ 15 array Total strength Upper energy Eu Eu for S¼ 1,
P¼ 2, D¼ 4

3p53d104d/3p63d10 4P2� 1 E4dþ 5Pþ 10D E4dþ 50
3s3p43d104d/3s3p53d10 4P2� 10 E4dþ Sþ 4Pþ 10D E4dþ 49
3s3p53d94d/3s3p63d9 4P2� 20 E4dþ Sþ 5Pþ 9D E4dþ 47
3s23p33d104d/3s23p43d10 4P2� 10 E4dþ 2Sþ 3Pþ 10D E4dþ 48
3s23p43d94d/3s23p53d9 4P2� 50 E4dþ 2Sþ 4Pþ 9D E4dþ 46
3s23p53d84d/3s23p63d8 4P2� 45 E4dþ 2Sþ 5Pþ 8D E4dþ 44

Total 4P2� 136
Note that the numerical values chosen above for the S, P, and D
quantities are arbitrary, whichmakes the numerical proof a general
proof.
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In each of the corresponding 6 lines of these tables, the strengths
are the same, and the sum of the two Eu quantities is equal to
2E4dþ 52. Thequantity2E4ddisappears in thecalculationof centered
moments. From these results, we can deduce Eqs. (19) and (20).

From the complementarity or anticomplementarity properties,
equations can be derived for the centeredmoments mc2, mc3, and mc4,
which are the most interesting for the description of a statistical
distribution. The N-dependences of these moments are contained
in the following equations:

mc2ðNÞ ¼ ANð17� NÞ þ B

mc3ðNÞ ¼ ð2N � 17Þ
h
A0
�
2N2 � 34N � 289

�
þ B0

i
mc4ðNÞ ¼ NðN � 17Þ

h
A0
�
N2 � 17N � 289

�
þ B00

i
þ C00

(21)

where the coefficients AeC00 are functions of S, P, and D. Moreover,
the sum [m1(N)þ m1(17�N)] does not depend on N.

Since B can be found to vanish (computing explicitly m2
c(N) for

N¼ 1 and 2), the variances m2c of the emissive zones of the super-
arrays belonging to ð3ÞNð4Þ1/ð3ÞNþ1 are given by Eq. (21) with the
following values for the coefficient A:

Að4s/3pÞ ¼
�
15S2þ30P2þ35D2�10SP�20SD�50PD

�.
2312

Að4p/3sÞ ¼
�
8S2þ33P2þ35D2�6SP�10SD�60PD

�.
2312

Að4p/3dÞ ¼
�
15S2þ33P2þ36D2�12SP�18SD�54PD

�.
2312

(22)

Moreover, the coefficients for 4d/3p and 4f/3d are the same
as for 4s/3p and 4p/3d, respectively.

The average energies of the emissive zones in the superarrays
belonging to ð3ÞNð4Þ1/ð3ÞNþ1 are:

m1ð4s/3pÞ ¼ E4s þ Nð2Sþ 5P þ 10DÞ=17
m1ð4p/3sÞ ¼ E4p þ NðSþ 6P þ 10DÞ=17
m1ð4p/3dÞ ¼ E4p þ Nð2Sþ 6P þ 9DÞ=17
m1ð4d/3pÞ ¼ E4d þ Nð2Sþ 5P þ 10DÞ=17
m1ð4f/3dÞ ¼ E4f þ Nð2Sþ 6P þ 9DÞ=17

(23)

The average energy of the total emissive zone of the upper SC is
deduced from the average energies and strengths of its superarrays.

m1

�
ð3ÞNð4Þ1

�
¼

h
2Pð4s/3pÞ2m1ð4s/3pÞ
þ 2Pð4p/3sÞ2m1ð4p/3sÞ
þ 4Pð4p/3dÞ2m1ð4p/3dÞ
þ 4Pð4d/3pÞ2m1ð4d/3pÞ
þ 6Pð4f/3dÞ2m1ð4f/3dÞ

i.
Stot (24)

where Stot is the total strength:

Stot ¼ 2Pð4s/3pÞ2þ2Pð4p/3sÞ2þ4Pð4p/3dÞ2

þ4Pð4d/3pÞ2þ6Pð4f/3dÞ2 (25)

Because Eq. (21) is fulfilled by all the 5 superarrays, the variance
of the emissive zone of the upper SC fulfills the same equation. It
contains the A quantities of the superarrays, their average energies
m1, and their total strengths S.

mc2

�
ð3ÞNð4Þ1

�
¼

X
i¼1;5

SðiÞ
h
mc2ðiÞ þ m21ðiÞ

i.
Stot

�
2
4 X

i¼1;5

SðiÞm1ðiÞ=Stot
3
5
2

(26)
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where the sums run over the 5 superarrays. The strengths S(i) are
the 5 terms at the right of Eq. (25).

The above results relate to the E1 emission process. However,
they can also be used for the autoionization (ai) and resonant
capture (rc) processes, due to two correlations (see Ref. [24]).

(i) First correlation. The correlation between the energies of the
configurations of the two SCs is asserted, because it relies on
the fact that the spectator electrons ought to be the same in
both SCs. The number of these electrons is smaller by one in
the ai process, but this is a small difference.

(ii) Second correlation. Although the diversity of autoionization
and resonant-capture rates cannot be evaluated simply, these
rates nearly obey approximate linear variations vs configura-
tion energies in (3)N(4)1.
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