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We have developed a semianalytic expression for the total energy loss to a vacuum transmission-line

electrode operated at high lineal current densities. (We define the lineal current density j‘ � B=�0 to be

the current per unit electrode width, where B is the magnetic field at the electrode surface and �0 is the

permeability of free space.) The expression accounts for energy loss due to Ohmic heating, magnetic

diffusion, j� B work, and the increase in the transmission line’s vacuum inductance due to motion of the

vacuum-electrode boundary. The sum of these four terms constitutes the Poynting fluence at the original

location of the boundary. The expression assumes that (i) the current distribution in the electrode can be

approximated as one-dimensional and planar; (ii) the current IðtÞ ¼ 0 for t < 0, and IðtÞ / t for t � 0;

(iii) j‘ � 10 MA=cm; and (iv) the current-pulse width is between 50 and 300 ns. Under these con-

ditions we find that, to first order, the total energy lost per unit electrode-surface area is given by

WtðtÞ ¼ �t�B�ðtÞ þ �t�B�ðtÞ, where BðtÞ is the nominal magnetic field at the surface. The quantities �,

�, �, � , �, and � are material constants that are determined by normalizing the expression forWtðtÞ to the
results of 1D magnetohydrodynamic MACH2 simulations. For stainless-steel electrodes operated at current

densities between 0.5 and 10 MA=cm, we find that � ¼ 3:36� 105, � ¼ 1=2, � ¼ 2, � ¼ 4:47� 104,

� ¼ 5=4, and � ¼ 4 (in SI units). An effective time-dependent resistance, appropriate for circuit

simulations of pulsed-power accelerators, is derived from WtðtÞ. Resistance-model predictions are

compared to energy-loss measurements made with stainless-steel electrodes operated at peak lineal

current densities as high as 12 MA=cm (and peak currents as high as 23 MA). The predictions are

consistent with the measurements, to within experimental uncertainties. We also find that a previously

used electrode-energy-loss model overpredicts the measurements by as much as an order of magnitude.
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I. INTRODUCTION

High-current pulsed-power accelerators, such as the 20-
MA Z machine [1–10] and the proposed 60-MA accelera-
tors outlined in Ref. [11], are designed to deliver a high-
current pulse to a load with spatial dimensions on the order
of 1 cm. The current is typically delivered to the load by a
system of self-magnetically insulated transmission lines
(MITLs) [1,2,4,9,10].

A MITL is a vacuum transmission line that operates at
an electric field sufficiently high to cause electrons to be
emitted from the MITL’s cathode, and at a magnetic field
sufficiently high to prevent most of the emitted electrons
from striking the anode [12–16]. MITLs are commonly
used in pulsed-power accelerators to transmit electromag-
netic power and energy to a load [17–20]. An idealized
representation of a one-dimensional (1D) steady-state
MITL is given by Fig. 1 [16]. In the steady state, the free

electron current (i.e., the electron current in the vacuum
gap) flows approximately parallel to both the anode and
cathode electrodes [12–16]. The magnitude of the bound
current in the anode Ia is greater than the bound cathode
current Ik, since Ia ¼ Ik þ If, where If is the free electron

current, which is commonly referred to as the electron-flow
current.
Optimizing the design and performance of a pulsed-

power accelerator requires an understanding of how the
conductors of its MITL system perform when operated at
high lineal current densities. More specifically, it is re-
quired to understand how much energy is lost to such
conductors as a function of time. We define the lineal
current density j‘ to be the current per unit conductor
width; hence j‘ � B=�0 where B is the magnetic field at
the conductor surface and �0 is the permeability of free
space. (SI units are used for equations throughout.) The
lineal current density is to be distinguished from the areal
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current density; i.e., the current per unit conductor area. As
suggested by Fig. 1, the lineal current densities of interest
in a MITL are those at the MITL’s anode and cathode
surfaces, and depend on Ia and Ik, respectively. When a
MITL is well insulated, Ia � Ik [12–16].

The calculations presented in Refs. [17–20] suggest that
a peak value of j‘ on the order of 10 MA=cm, with a pulse
width on the order of 100 ns, may be required to achieve
z-pinch-driven thermonuclear fusion. Similar current den-
sities may also be required for advanced equation-of-state,
radiation-physics, radiation-effects, astrophysics, and
other high-energy-density-physics experiments.

The total energy loss associated with the operation of a
conductor at such lineal current densities has four principal
components: (i) Ohmic heating of the conductor [21–23];
(ii) diffusion of magnetic field into the conductor [21–23];
(iii) j� B work performed on the conductor [23]; and
(iv) the energy loss associated with an increase in vacuum
inductance due to motion of the vacuum-conductor bound-
ary. The sum of these four terms constitutes the Poynting
fluence at the original location of the boundary.

Analytic calculations of the Ohmic and magnetic-
diffusion losses under various conditions are presented
by Knoepfel in Refs. [21,22]. The Knoepfel results are
applied by Singer and Hunter [23] to copper conductors
operated at high lineal current densities. The Singer-
Hunter calculations assume that the resistivity � of copper

is proportional to the temperature 	, which implies that the
Ohmic and diffusive losses scale as B3. This approximation
is valid at near-solid densities (9 g=cm3) and temperatures
� 1080�C. Such temperatures correspond to peak lineal
current densities � 0:7 MA=cm [21,22,24]. (In
Appendix A, we give Knoepfel’s relation for the increase
in the conductor-surface temperature as a function of the
peak lineal current density [21,22].)
The approximation � / 	 is, however, not applicable at

higher temperatures. In particular, at densities �9 g=cm3,
the resistivity of copper is expected to be relatively con-
stant for temperatures between 10 000 and 30 000 K, with a
value on the order of 100 ��-cm [25,26]. This is consis-
tent with Fig. 10.23 of Ref. [21], which suggests that the
resistivity of solid-density copper peaks at �100 ��-cm,
over a similar temperature range. Hence, at lineal current
densities significantly in excess of 0:7 MA=cm, the B3

scaling assumed by the Singer-Hunter model of Ohmic
and magnetic-diffusion losses is not quite applicable.
Singer and Hunter [23] also estimate the energy loss due

to j�B work performed on a copper conductor, using
results presented by Knoepfel [21,22]. Estimates are given
in weak- and strong-magnetic-field limits, and assume that
the magnetic field at the surface of the conductor has a
step-function time history. Figure 1 of Ref. [23] plots the
sum of Ohmic, magnetic-diffusion, and j�B losses as a
function of time. This figure is, however, not self-
consistent, since the Ohmic and diffusive components

assume that the current increases as t1=2, whereas for the
j� B component, the current time history is assumed to be
a step function.
Even though copper has a significantly lower room-

temperature resistivity than stainless steel, the conductors
of MITLs in pulsed-power accelerators are often fabricated
from stainless, which has high-voltage, vacuum, fabrica-
tion, and mechanical properties superior to those of copper
and many other materials [27]. At near-solid densities
(� 8 g=cm3) and temperatures between 4000 and
30 000 K, the resistivity of stainless steel is, like copper,
expected to be relatively constant, with a value on the order
of 100 ��-cm [26].
In this article, we develop a semianalytic model of the

total energy loss to a conductor operated at peak lineal
current densities as high as 10 MA=cm, for current pulse
widths between 50 and 300 ns. The model does not assume
that the resistivity is proportional to the temperature; but
rather that for current densities and time scales at which
most of the energy loss occurs, the resistivity can be
approximated as a constant. The model accounts for the
Ohmic, magnetic-diffusion, and j�B energy losses in a
self-consistent manner. The model also accounts for the
loss associated with the vacuum-inductance increase due to
motion of the vacuum-conductor boundary, a loss mecha-
nism not considered in Refs. [21–23]. As shown in this
article, this loss can be a factor of 2 greater than the j�B
loss.

FIG. 1. (Color) Idealized 1D magnetically insulated transmis-
sion line (MITL) in planar geometry [16]. This figure assumes
that the electromagnetic power flows in the positive-z direction.
The electric- and magnetic-field vectors point in the negative-x
and negative-y directions, respectively. The quantity g is the
anode-cathode gap, 
 is the thickness of the electron sheath, Ia is
the magnitude of the bound anode current, If is the electron-flow

current, Ik is the bound cathode current, Va is the total MITL
voltage, and V
 is the voltage at the edge of the sheath.
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The semianalytic model is developed in Sec. II. In
Sec. III we express the model in terms of an effective
resistance that can be used in circuit simulations of the
operation of pulsed-power accelerators. In Sec. IV, we
normalize the expressions developed in Secs. II and III to
results of numerical 1D magnetohydrodynamic (MHD)
simulations of a stainless-steel conductor subjected to
high lineal current densities. The simulations were per-
formed using MACH2, a 2 1

2D MHD simulation code [28].

The simulations extend the work presented by Rosenthal
and colleagues in Ref. [26], and complement simulations
performed by Spielman, Chantrenne, and McDaniel [29].
A description of the MACH2 model can be found in [26,28].
The simulations use the electrical and thermal conductiv-
ities discussed in [30] and the equation-of-state tables
presented in [31]. In Sec. V we describe measurements,
which were performed on the Z accelerator, of the energy
loss to stainless-steel conductors [32]. In Sec. VI we com-
pare the measurements with predictions of the semianalytic
model, and those of a model previously used by the pulsed-
power community. Suggestions for future work are dis-
cussed in Sec. VII.

The expression we develop in Sec. III for the effective
resistance of a conductor is most accurate at high lineal
current densities; low current densities are discussed in
Appendix A. The conductor-energy-loss model previously
used by the pulsed-power community is outlined in
Appendix B. The comparison in Sec. VI between measure-
ments and predictions implicitly assumes that the current-
density profiles of the experimental configurations de-
scribed in Sec. Vare 1D and planar; Appendix C examines
this assumption. The comparison in Sec. VI also assumes
that the time history of the current applied to the experi-
mental hardware can be approximated as a linear ramp;
this assumption is examined in Appendix D.

II. SEMIANALYTIC MODEL OF THE TOTAL
ENERGY LOSS TO A CONDUCTOR

In this section we develop a semianalytic expression for
the total energy loss to a conductor operated at high lineal
current densities. The model makes a number of simplify-
ing assumptions, and hence is accurate only to first order.

The total energy loss (per unit conductor-surface area)
Wt is assumed to be the sum of four components:

Wt ¼ Wr þWm þWw þW�L; (1)

where Wr is the loss due to resistive (i.e., Ohmic) heating,
Wm is the energy of the magnetic field that has diffused into
the conductor,Ww is the j� Bwork performed throughout
the conductor, and W�L is the energy required by the
change in vacuum inductance due to motion of the
vacuum-conductor boundary.

We consider the case where the total current IðtÞ applied
to a conductor is a linear function of time:

IðtÞ ¼ 0 when t < 0; (2)

IðtÞ / t when t � 0: (3)

Although there are an infinite number of possible current
waveforms, we restrict our analysis in this article to such a
linear ramp. This allows us to use results presented earlier
by Knoepfel [21,22], and to simplify our semianalytic
model. (It is straightforward to apply the approach pre-
sented herein to other power-law functions.) When Eqs. (2)
and (3) are a reasonable approximation to the current time
history, and the resistivity of the conductor can be approxi-
mated as a constant, then as shown by Knoepfel [21,22]

Wr þWm ¼ 4

5�1=2�3=2
0

ð�tÞ1=2B2ðtÞ; (4)

where � is the resistivity of the conductor and BðtÞ is the
magnetic field at the conductor surface.
We do not develop analytic expressions for Ww and

W�L, which would be outside the scope of this article;
we instead estimate upper bounds for these quantities. To
obtain an upper bound for Ww we assume a snowplow
model: we assume that (i) the magnetic pressure at the
conductor surface is significantly greater than that inside;
(ii) material-strength effects can be neglected; (iii) the
mass density of the conductor before it is compressed is
approximately given by its room-temperature value; and
(iv) the magnetic pressure snowplows the conductor mass
as it is accelerated. Under these simplifying assumptions

Ww �
Z B2ðtÞ

2�0

dx ¼
Z B2ðtÞ

2�0

vdt; (5)

where

B2ðtÞ
2�0

¼ d

dt
ðmvÞ; (6)

m ¼ �0

Z
vdt: (7)

In these expressions v is the characteristic inward velocity
of the total accreted mass, m is the accreted mass per unit
area, and �0 is the initial room-temperature mass density of
the conductor. Combining Eqs. (2), (3), and (5)–(7) gives

Ww ¼
�

1

192�0�
3
0

�
1=2

tB3ðtÞ: (8)

The energy loss (per unit conductor-surface area) due to
the increase in vacuum inductance W�L is approximately
given by

W�L � B2ðtÞ
2�0

Z
vdt: (9)

Combining Eqs. (2), (3), (6), (7), and (9), one obtains an
upper bound on W�L:
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W�L ¼
�

1

48�0�
3
0

�
1=2

tB3ðtÞ: (10)

We note that

W�L ¼ 2Ww: (11)

It follows from Eqs. (8) and (10) that

Ww þW�L ¼
�

3

64�0�
3
0

�
1=2

tB3ðtÞ: (12)

Equations (4) and (12) suggest that, in general,

Wr þWm ¼ �t�B�ðtÞ; (13)

Ww þW�L ¼ �t�B�ðtÞ; (14)

Wt ¼ �t�B�ðtÞ þ �t�B�ðtÞ; (15)

where �, �, �, � , �, and � are material constants. In this
article we determine the constants for a stainless-steel
conductor by normalizing Eqs. (13) and (14) to the results
of 1D MACH2 simulations.

III. EFFECTIVE RESISTANCE OFA CONDUCTOR
SYSTEM

We develop below an expression for an effective resist-
ance Reff of a system of conductors operated at high lineal
current densities. The expression can be used to account for
conductor-energy-loss effects in circuit simulations of the
operation of a pulsed-power accelerator. As shown below,
Reff is nonlinear since it is a function of IðtÞ.

Following Parks and Spence [33], we obtain an effective
resistance by equating the time-rate-of-change of Wt to an
Ohmic power loss:

@

@t

Z
S
WtdA ¼ I2Reff ; (16)

where S is the total surface area of the system of conduc-
tors. Combining Eqs. (2), (3), (15), and (16), and assuming
that the conductor system is cylindrically symmetric so
that

BðtÞ ¼ �0IðtÞ
2�r

(17)

(where r is the distance from the symmetry axis), we obtain

ReffðtÞ ¼ X1t
��1I��2ðtÞ

Z
S

dA

r�
þ X2t

��1I��2ðtÞ
Z
S

dA

r�
;

(18)

where

X1 � �ð�þ �Þ
�
�0

2�

�
�
; (19)

X2 � �ð�þ �Þ
�
�0

2�

�
�
: (20)

Assuming that the conductor system consists of cylin-
drical and radial-disk conductors, we obtain from Eq. (18)
the following:

Reff ¼ Rcyl þ Rdisk; (21)

where

Rcyl ¼ 2�X1t
��1I��2ðtÞX

i

�
‘i

a��1
i

�

þ 2�X2t
��1I��2ðtÞX

i

�
‘i

a��1
i

�
; (22)

Rdisk ¼ 2�X1t
��1I��2ðtÞ
2� �

X
j

sec#jðc2��
j � b2��

j Þ

þ 2�X2t
��1I��2ðtÞ
2� �

X
j

sec#jðc2��
j � b2��

j Þ:

(23)

The first term on the right-hand sides of Eqs. (22) and (23)
is due to Wj þWm; the second term is due to Ww þW�L.

The quantities ‘i and ai are the length and radius of the ith
cylindrical electrode, respectively. The quantities cj and bj
are the outer and inner radii of the jth disk electrode, and
#j is the angle made by the jth disk electrode with respect

to the horizontal.
For the special case when � ¼ 2, Eq. (23) becomes

Rdisk ¼ 2�X1t
��1

X
j

sec#j

�
ln

�
cj
bj

��

þ 2�X2t
��1I��2ðtÞ
2� �

X
j

sec#jðc2��
j � b2��

j Þ:

(24)

A similar result is obtained for the second term on the
right-hand side of Eq. (23) when � ¼ 2.

IV. 1D MHD MACH2 SIMULATIONS

We have calculated numerically the energy loss to a
stainless-steel conductor operated at high-lineal-current
densities by performing 1D MHD simulations using the
MACH2 code [28]. The simulations incorporate Lee-More-

Desjarlais electrical and thermal conductivities [30] and
SESAME equation-of-state tables [31]. The simulations
use Lagrangian coordinates, and apply a linear-ramp cur-
rent pulse to a solid stainless-steel cylinder that has an
initial radius of 1 cm. The initial grid spacing and time step
used are 3 �m and 1 ps, respectively. The simulations
conserve energy to within 0.002%. When test simulations
are performed with the resistivity held constant in MACH2,
the simulation results agree with the predictions of the
Knoepfel relation [Eq. (4)] to within 1% (when j�B
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work can be neglected). A more complete description of
the MHD simulations will be presented in a companion
article by Rosenthal and colleagues [34].

Twenty MACH2 simulations were performed. These
reach peak currents that range from 3.14 to 62.8 MA; hence
the nominal peak lineal-current densities range from 0.5 to
10 MA=cm. (The actual peak current densities are some-
what higher than the nominal values because the cylinder is
compressed slightly by the magnetic field.) The simula-
tions reach peak current in times that range from 50 to
300 ns. Results of the simulations are summarized by
Table I.

The results are used to estimate the values of the six
material constants of Eqs. (13) and (14) in the following
manner: The constants � and � are obtained from a line-
arized least-squares fit to Eq. (13) of the results listed in the
first three columns of Table I. To within the uncertainties of
the fit, � ¼ 1=2 and � ¼ 2. Assuming these values, we
find that for the results listed, the average value of � ¼
3:36� 105. Hence,

� ¼ 3:36� 105; (25)

� ¼ 1=2; (26)

� ¼ 2: (27)

Similarly, Eq. (14) and columns 1, 2, and 5 of Table I are
used to find that

� ¼ 4:47� 104; (28)

� ¼ 5=4; (29)

� ¼ 4: (30)

Consequently,

Wr þWm ¼ ð3:36� 105Þt1=2B2ðtÞ; (31)

Ww þW�L ¼ ð4:47� 104Þt5=4B4ðtÞ; (32)

Wt ¼ ð3:36� 105Þt1=2B2ðtÞ þ ð4:47� 104Þt5=4B4ðtÞ:
(33)

Equations (25)–(33) are, of course, most accurate for the
rise times and peak lineal current densities considered by
Table I, when the conductor is a 1-cm-radius solid
stainless-steel cylinder.
Table I compares the values at peak current ofWr þWm,

Ww þW�L, andWt as predicted by the semianalytic model
[Eqs. (31)–(33)] to those predicted by MACH2. For the 20

TABLE I. Summary of conductor-energy-loss calculations. These assume a linear-ramp current pulse is applied to a 1-cm-radius
solid cylinder of stainless steel. The numerical results are obtained from 1D Lagrangian MHD simulations performed using the MACH2

code [28,30,31]. The losses presented are those obtained at peak current. The expression for Ww þW�L given by Eq. (32) predicts a
loss that disagrees with the numerical result for many of the conditions considered, but the disagreements occur when the magnitude of
this component is significantly less than that of Wr þWm. As suggested by the last three columns, the total energy loss Wt given by
Eq. (33) agrees to first order with the simulation results.

Time

to peak

current

(ns)

Peak nominal

lineal current

density

(MA=cm)

Wr þWm

(MACH2)

(J=m2)

Wr þWm

[Eq. (31)]

(J=m2)

Ww þW�L

(MACH2)

(J=m2)

Ww þW�L

[Eq. (32)]

(J=m2)

Wt

(MACH2)

(J=m2)

Wt

[Eq. (33)]

(J=m2)

Difference between

the semianalytic

and MACH2

estimates

of Wt

50 0.5 2:66� 105 2:97� 105 �3:70� 102 5:21� 102 2:65� 105 2:97� 105 12%

50 1 1:18� 106 1:19� 106 �9:29� 103 8:33� 103 1:17� 106 1:19� 106 2%

50 2 4:87� 106 4:75� 106 �1:43� 105 1:33� 105 4:72� 106 4:88� 106 3%

50 5 3:40� 107 2:97� 107 8:55� 105 5:21� 106 3:49� 107 3:49� 107 0%

50 10 1:20� 108 1:19� 108 8:34� 107 8:33� 107 2:04� 108 2:02� 108 �1%
100 0.5 3:79� 105 4:19� 105 �1:97� 101 1:24� 103 3:79� 105 4:21� 105 11%

100 1 1:68� 106 1:68� 106 �6:21� 103 1:98� 104 1:67� 106 1:70� 106 2%

100 2 6:93� 106 6:71� 106 �4:69� 104 3:17� 105 6:88� 106 7:03� 106 2%

100 5 4:38� 107 4:19� 107 1:12� 107 1:24� 107 5:51� 107 5:43� 107 �1%
100 10 1:67� 108 1:68� 108 2:01� 108 1:98� 108 3:68� 108 3:66� 108 �1%
200 0.5 5:38� 105 5:93� 105 1:47� 103 2:95� 103 5:40� 105 5:96� 105 10%

200 1 2:39� 106 2:37� 106 1:43� 104 4:71� 104 2:40� 106 2:42� 106 1%

200 2 9:85� 106 9:49� 106 3:74� 105 7:54� 105 1:02� 107 1:02� 107 0%

200 5 6:14� 107 5:93� 107 3:18� 107 2:95� 107 9:31� 107 8:88� 107 �5%
200 10 2:34� 108 2:37� 108 4:56� 108 4:71� 108 6:89� 108 7:09� 108 3%

300 0.5 6:61� 105 7:27� 105 3:49� 103 4:89� 103 6:64� 105 7:31� 105 10%

300 1 2:93� 106 2:91� 106 4:43� 104 7:83� 104 2:98� 106 2:98� 106 0%

300 2 1:21� 107 1:16� 107 9:36� 105 1:25� 106 1:30� 107 1:29� 107 �1%
300 5 7:51� 107 7:27� 107 5:42� 107 4:89� 107 1:29� 108 1:22� 108 �6%
300 10 2:87� 108 2:91� 108 7:25� 108 7:83� 108 1:01� 109 1:07� 109 6%
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cases considered, the model predictions for Wt agree with
the MACH2 results to within 12%.

Comparing Eqs. (4) and (31), we find that in contrast to
its nominal room-temperature value of 72 ��-cm, the
characteristic resistance of stainless steel at high current
densities is 110 ��-cm. Comparing Eqs. (12) and (32),
we find that for the conditions studied herein, Eq. (12) is
always greater than Eq. (32), as expected. For a current
pulse that rises in 300 ns and peaks at 10 MA=cm, the loss
predicted by Eq. (12) is 41% greater than that predicted by
Eq. (32). The difference between Eqs. (12) and (32) ex-
ceeds 41% for the other cases considered.

Table I lists only the energy losses at peak current. We
caution that the semianalytic estimates ofWr þWm,Ww þ
W�L, and Wt are significantly less accurate at times when
the current is less than half its peak value; i.e., early in

time. However, at such times the losses are much less than
at peak current, and for many cases of practical interest, are
significantly less important.

V. MEASUREMENTS OF ENERGY LOSS TO
STAINLESS-STEEL CONDUCTORS

Measurements of the total energy loss to a system of
stainless-steel conductors operated at high lineal current
densities were performed on four Z-accelerator shots [32].
The load for these shots was the conductor system itself,
which was fielded at the center of the Z stack-MITL
system. A cross-sectional view of the system is presented
by Fig. 2. Two load configurations were used; these are
outlined by Figs. 3 and 4. Both loads were low-inductance
short circuits, which were designed to generate a low level

water-insulated
transmission line

inner-MITL B-dot
current monitor

double-post-hole
vacuum convolute

outer-MITL B-dot
current monitors

outer MITL

inner MITL

vacuum
insulator
stack

insulator-stack
D-dot voltage monitors

outer-MITL B-dot
current monitors

insulator-stack
D-dot voltage monitors

upper
anode

lower anode

upper
cathode

lower cathode

middle
anode

A

B

C

D

FIG. 2. (Color) Cross-sectional view of the vacuum-insulator stack and magnetically insulated transmission-line (MITL) system of the
Z pulsed-power accelerator [1,2,4–10].
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of electron-flow current in the MITLs. Such loads were
selected so that MITL effects would not obscure measure-
ments of the conductor energy loss that is addressed by the
present article.

The Z-shot numbers are 507, 532, 533, and 589. Shots
507, 532, and 589 used the load outlined by Fig. 3; shot 533
used the load of Fig. 4. The peak load currents on the shots
were 21.3, 22.8, 24.3, and 21.9 MA, respectively. The
corresponding nominal peak lineal current densities were
11.3, 12.1, 1.93, and 11:6 MA=cm. The times to peak
current for these four shots were 107, 165, 169, and
109 ns. The pulse width for shots 532 and 533 was in-

creased by closing the main water switches of the Z
accelerator. The pulse was lengthened intentionally, to
provide a more-meaningful test of the material constants
� and �.
The conductor energy loss determined experimentally is

estimated from the following expression:

Z
S
Wt;expðtÞdA ¼

Z t

0
Pstackdt

�
�
1

2

X
i

LiI
2
i þ

1

2

X
i

CiV
2
i

þX
t

Z t

0
I2i Ridtþ

Z t

0
VcIcdt

�
: (34)

The quantity Pstack is the total electrical power that flows
into the stack-MITL system. The quantities Li, Ci, and Ri

are the inductance, capacitance, and resistance of the ith
component of the system. The quantities Ii and Vi are the
current and voltage at the ith component. The last term of
Eq. (34) accounts for MITL flow electrons that are lost to
the anode in the vicinity of the system’s vacuum double-
post-hole convolute [35–42]. All the currents and voltages
on the right-hand side of Eq. (34) were measured using the
differential-output B-dot and D-dot monitors that are de-
scribed in Refs. [43,44]; a few of the monitors are depicted
by Fig. 2.
For the shots described above, the Z MITL system was

magnetically insulated very early in the pulse [2,4,9]. (The
MITLs were designed to be insulated early, for loads of
interest, to minimize the energy that is lost to electron-flow
current [2,4,9].) Once insulation is established, most of the
electron-flow current launched in the outer MITLs is lost in
the vicinity of the convolute [37–42]. The lost current is
accounted for by the final term on the right-hand side of
Eq. (34). For the experiments described herein, this term
does not exceed 2% of the total energy delivered to the
stack-MITL system. The electron-flow current that origi-
nates in the inner MITL (which is located downstream of
the convolute) is negligible [2,4,9].
The term on the right-hand side of Eq. (34) that includes

Ri is summed over all the conductors located outside a
5.38-cm radius. We define this term to be that due to the
energy loss to conductors operated at low lineal current
densities. As discussed in Appendix A, we arbitrarily
define the boundary between low and high current densities
to be 0:63–0:72 MA=cm. We assume that for conductors
outside a 5.38-cm radius, the sum of the Ohmic and dif-
fusive losses is given by Eq. (4), and use the room-
temperature resistivity for �. For conductors outside a
5.38-cm radius, the Ww and W�L losses can be neglected.

VI. RESULTS

Figures 5–8 plot the measured energy loss as a function
of time for each of the four Z-accelerator shots described in
Sec. V. Also plotted is the energy loss predicted by the

FIG. 4. (Color) Cross-sectional view of the system of stainless-
steel conductors fielded as the load on Z-accelerator-shot 533.
The illustration is to scale. The conductors are 0.3-cm thick; the
outer radius of the conductors is 5.38 cm.

FIG. 3. (Color) Cross-sectional view of the system of stainless-
steel conductors fielded as the load on Z-accelerator-shots 507,
532, and 589. The illustration is to scale. Except for the on-axis
post, the conductors are 0.3-cm thick. The outer radius of the
conductors is 5.38 cm.
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semianalytic model, when expressed in terms of the effec-
tive resistance developed in Sec. III. For the conductor
system used in the experiments, the effective resistance
Reff is given by the following expression:

Reff ¼ 2�X1

1

t1=2

�X
i

�
‘i
ai

�
þX

j

�
ln
cj
bj

��

þ 2�X2t
1=4I2ðtÞ

�X
i

�
‘i
a3i

�
þ 1

2

X
j

�
1

b2j
� 1

c2j

��
; (35)

where X1 and X2 are given by Eqs. (19), (20), and (25)–
(30). The plots of Figs. 5–8 start at the extrapolated begin-
ning of the load current, ignoring a small prepulse. The
plots end 20 ns after peak current.
For each of the four shots, the total experimental uncer-

tainty (due to random and systematic errors) in the mea-
sured value of the energy loss is estimated to be �100 kJ;
hence, the excellent agreement between theory and experi-
ment suggested by Figs. 5–8 must be considered fortuitous.
Since the measurements have a large uncertainty, they are
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FIG. 7. (Color) Comparison of the measured conductor energy
loss on Z-shot 533 with the prediction of the semianalytic model,
as given by Eq. (35). The conductor system used as the load on
this shot is that illustrated by Fig. 4. The plot includes a
representative error bar.
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FIG. 8. (Color) Comparison of the measured conductor energy
loss on Z-shot 589 with the prediction of the semianalytic model,
as given by Eq. (35). The conductor system used as the load on
this shot is that illustrated by Fig. 3. The plot includes a
representative error bar.
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FIG. 6. (Color) Comparison of the measured conductor energy
loss on Z-shot 532 with the prediction of the semianalytic model,
as given by Eq. (35). The conductor system used as the load on
this shot is that illustrated by Fig. 3. The plot includes a
representative error bar.
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FIG. 5. (Color) Comparison of the measured conductor energy
loss on Z-shot 507 with the prediction of the semianalytic model,
as given by Eq. (35). The conductor system used as the load on
this shot is that illustrated by Fig. 3. The plot includes a
representative error bar.
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useful only in demonstrating that Eq. (35) is consistent
with experiment to zeroth order.

Table II compares, for each shot, the peak value of the
measured energy loss to that predicted theoretically by the
semianalytic model [Eq. (35)]. The table also compares the
measurements to the predictions of an energy-loss model
that was previously used by the pulsed-power community
[45]; this model is outlined in Appendix B. Since the
measurements have large uncertainties, they only validate
Eq. (35) to zeroth order. However, the measurements ex-
clude the possibility that the previous model [Eq. (B3)] is
correct. In fact, the previous model predicts that for Z shots
507, 532, and 589, the energy loss is a factor of 1.7–2.0
greater than the total energy delivered to the Z stack-MITL
system; hence, it is clear that the previous model is sig-
nificantly in error.

The comparisons made by Figs. 5–8 and Table II im-
plicitly assume that the 1D-planar approximation applies to
the experiments. This assumption is examined in
Appendix C. The comparisons also assume that the time
history of the load current can be approximated by a linear
ramp; this assumption is examined in Appendix D.

VII. SUGGESTIONS FOR FUTURE WORK

The analytic results developed in Secs. II and III assume
that the current time history can be approximated as a
linear ramp. As mentioned previously, analytic results for
other power-law functions can be obtained using the pro-
cedure outlined herein.

The MHD simulations described in Sec. IV were per-
formed using the MACH2 code [28,30,31]. It would be of
interest to repeat the simulations described in Sec. IV with
other MHD codes, to determine whether they give compa-
rable results.

As discussed in Sec. IV, Eqs. (13) and (14) were nor-
malized to the results of MACH2 simulations that assume a
linear-ramp current pulse is applied to a 1-cm-radius
stainless-steel cylinder. If desired, one could assume a
current time history that deviates slightly from a linear
ramp, a different conductor geometry, and a different con-

ductor material, to obtain results more relevant to a prob-
lem at hand. Doing so would, of course, result in a different
set of material constants �, �, �, � , �, and �.
The energy-loss measurements discussed in Sec. V were

performed by taking the difference of two quantities that
are similar in magnitude; hence, the measured losses have
a large uncertainty. Such uncertainties could be reduced by
designing an experimental arrangement considerably sim-
pler than that indicated by Fig. 2, without a double-post-
hole vacuum convolute, and with more current and voltage
measurements performed closer to the high-lineal-current-
density conductors under study. It would also be of
interest to measure energy loss to conductors other than
stainless steel, and to compare such measurements with
predictions.
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APPENDIX A: LOW LINEAL CURRENT
DENSITIES

At sufficiently low lineal-current densities, the contribu-
tion of the sum Ww þW�L to Wt [Eq. (1)] can be ne-
glected, andWt may be approximated by Eq. (4) with � set
equal to the room-temperature resistivity. Consequently, in
circuit simulations of the operation of a pulsed-power
accelerator, we estimate the energy loss to conductors
operated at low current densities by using an expression
for the effective resistance Reff that derives from Eq. (4). At
high current densities we use Eqs. (21)–(24).

For the measurements discussed in Sec. V, we arbitrarily
define the boundary between low and high lineal current
densities to be that where the peak current density reaches
0:63–0:72 MA=cm (which correspond to 79–90 T mag-
netic fields). This choice is motivated by the geometry of
the Z MITL system, and simplifies the measurements
discussed in Sec. V. It is clear that a more numerically
correct approach could be used; the development of such
an approach is outside the scope of this article. For many
cases of practical interest, the results obtained are insensi-
tive to the exact choice of the field used to define the
boundary.

Fields of 79–90 T are comparable to the ‘‘critical mag-
netic field’’ Bc defined by Knoepfel [21,22]. The critical
field is that which causes the resistivity at the surface of a
conductor nominally to double. According to Ref. [21], the
value of Bc for stainless steel is 97 T (which corresponds to
0:77 MA=cm). This value is estimated using the approach

described in Sec. 4.23 of Ref. [21], which assumes IðtÞ /
t1=2.

We calculate Bc here taking a slightly different ap-
proach, and assume instead that IðtÞ / t. Following
Knoepfel [Eqs. (10.69) and (10.70) of Ref. [21] ], we
assume that at sufficiently low temperatures (i.e., low
lineal current densities), the time-dependent resistivity of
the surface of a conductor �ðtÞ is given by

�ðtÞ ¼ �0½1þ �cvð�	Þ	; (A1)

where �0 is the room-temperature resistivity, � is the heat
coefficient of resistivity [21], cv is the specific heat per unit
volume, and�	 is the temperature change at the conductor
surface. (The quantity � used in this Appendix is, of
course, not the material constant used in the main body
of this article.)

According to Eq. (4.38) of Ref. [21],

�	 ¼ #B2ðtÞ
2�0cv

; (A2)

where # is the dimensionless surface energy factor defined
in Sec. 4.12 of Ref. [21], and BðtÞ is the magnetic field at
the surface of the conductor. Combining Eqs. (A1) and
(A2) gives

�ðtÞ ¼ �0

�
1þ �#B2ðtÞ

2�0

�
: (A3)

For stainless steel,

�0 ¼ 72� 10�8 �-m; (A4)

� ¼ 2:67� 10�10 m3=J; (A5)

cv ¼ 3:37� 106 J=m3-K: (A6)

The values of � and cv given above are those averaged
over the interval from 0 to 1000 C, and are deduced from
information presented in Ref. [21]. When IðtÞ / t then
according to Table 4.II of [21]

# ¼ 1:273: (A7)

According to Eq. (A3), � increases a factor of 2 when

BðtÞ ¼ Bc �
�
2�0

#�

�
1=2

: (A8)

Equations (A5), (A7), and (A8) suggest that the resistivity
of a stainless-steel conductor increases nominally a factor
of 2 when BðtÞ ¼ Bc ¼ 86 T. This field differs from that

calculated by Knoepfel by the factor #�1=2.
It is clear that our elementary approach to modeling

energy loss is not accurate for conductors at which the
peak current density is on the order of Bc; however, for
many cases of experimental interest, the loss to such con-
ductors is not a significant fraction of the total energy in the
system.

APPENDIX B: PREVIOUS MODEL OF ENERGY
LOSS TO CONDUCTORS OPERATED AT HIGH

LINEAL CURRENT DENSITIES

This Appendix outlines a previously used model of
conductor energy loss [45]. The model assumes

Wt / t1=2B3ðtÞ: (B1)

The model predicts that the effective resistance of a pair of
identical horizontal-disk copper electrodes (with an infi-
nitely large outer radius) is given by the following expres-
sion:
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ReffðtÞ ¼ ð3� 10�15Þ IðtÞ
b t1=2

; (B2)

where b is the inner radius of the electrodes. Equation (B2)
was incorporated into the SCREAMER circuit code, and is
presented on pages 3–13 of the 1995 SCREAMER user’s
manual [45].

Equations (16)–(23), (B1), and (B2) suggest that, for a
system of cylindrical and disk-shaped electrodes, Eq. (B2)
is generalized as follows:

Reff ¼ ð1:5� 10�15Þ IðtÞ
t1=2

�X
i

‘i
a2i

þX
j

sec#j

�
1

bj
� 1

cj

��
:

(B3)

We use Eq. (B3) to predict the conductor energy loss for
the experiments described in Sec. V; the predictions are
listed in Table II.

Equation (B3) assumes copper conductors, whereas the
experiments of Sec. V used stainless steel. Since the high-
temperature resistivity and room-temperature mass density
of copper are comparable to those of stainless, Eqs. (4) and
(12) suggest that if Eq. (B3) were correct, it would predict
losses that are comparable to the observed values. Instead,
as suggested by Table II, Eq. (B3) predicts losses that are as
much as an order of magnitude greater. In fact, for Z shots
507, 532, and 589, Eq. (B3) predicts losses that are a factor
of 1.7–2.0 greater than the total energy delivered to the Z-
accelerator stack-MITL system. Hence, it appears Eq. (B3)
is significantly in error, and predicts losses that can be too
large by as much as an order of magnitude.

APPENDIX C: VERIFICATION THAT THE
1D-PLANAR ASSUMPTION APPLIES TO THE

EXPERIMENTS

The semianalytic model developed in Secs. II and III
assumes that the current-density and magnetic-field pro-
files in the conductor can be approximated as one-
dimensional and planar. The MHD simulations discussed
in Sec. IV assume that the current is carried by a 1-cm-
radius solid cylinder of stainless steel, since such a system
is approximately 1D and planar (given the millimeter-scale

resistive skin depth of our 50–300 ns ramped currents), and
since such a geometry is likely to be that of most interest
for future systems that drive a z-pinch load.
However, the stainless-steel electrodes of Fig. 3 include

a 0.3-cm-radius conductor on axis. The radius was chosen
to be this small to achieve on Z a current density on the
order of 10 MA=cm. In Sec. VI, we compare measure-
ments made with the electrodes of Fig. 3 to the predictions
of the semianalytic model. To determine whether the 1D-
planar approximation is applicable when the minimum
radius is 0.3 cm, we performed a 1D Lagrangian MACH2

simulation that assumes a current pulse with a peak nomi-
nal lineal current density of 12 MA=cm, and a 150-ns rise
time, is applied to a 0.3-cm-radius stainless cylinder.
The results of the simulation are presented in Table III,

along with the predictions of the semianalytic model. It
appears that the model is, in fact, applicable to a conductor
with such a small radius, under the conditions studied.
However, we caution that the agreement indicated by
Table III is due, in part, to compensating effects.

TABLE III. Summary of conductor-energy-loss calculations performed to quantify the accuracy of the 1D-planar approximation.
These assume a linear-ramp current pulse is applied to a 0.3-cm-radius solid cylinder of stainless steel. The numerical results are
obtained from a 1D Lagrangian MHD simulation performed using the MACH2 code [28,30,31]. The losses presented here are those
obtained at peak current. As suggested below, the total energy lossWt given by Eq. (33) agrees to first order with the simulation result.

Time to

peak current

(ns)

Peak nominal

lineal current

density

(MA=cm)

Wr þWm

(MACH2)

(J=m2)

Wr þWm

[Eq. (31)]

(J=m2)

Ww þW�L

(MACH2)

(J=m2)

Ww þW�L

[Eq. (32)]

(J=m2)

Wt

(MACH2)

(J=m2)

Wt

[Eq. (33)]

(J=m2)

Difference between

the semianalytic

and MACH2 estimates

of Wt

150 12 3:11� 108 2:96� 108 7:29� 108 6:82� 108 1:04� 109 9:78� 108 �6%
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FIG. 9. (Color) Measured load current on Z-shot 532. The cur-
rent time history deviates significantly from an ideal linear ramp
for times greater than 130 ns. The plot ends at time t ¼ 185 ns,
20 ns after peak current.
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APPENDIX D: VERIFICATION THAT THE
LINEAR-RAMP ASSUMPTION APPLIES TO THE

EXPERIMENTS

The semianalytic model developed in Secs. II and III
assumes that the current time history is a linear ramp.
However, the actual time histories of the experiments
described herein resemble that plotted by Fig. 9, which is
the measured load current on Z-accelerator shot 532.

To determine whether the linear-ramp assumption is
applicable to waveforms similar to that plotted by Fig. 9,
we performed four 1D-Lagrangian MACH2 simulations that
use the measured Z-shot-532 load-current time history,
instead of a linear ramp. The simulations apply the current
to a solid stainless-steel cylinder. The results of the simu-
lations are summarized by Table IV. For the 62.8-MA
simulations, the current of Fig. 9 is scaled by a factor of
2.755.

Also summarized by Table IVare predictions of Eq. (22)
[when used with Eqs. (25)–(30)] and the following expres-
sion:

Wt ¼
R
I2Reffdt

S
; (D1)

where S is the initial surface area of the stainless-steel
cylinder. In the above expression IðtÞ is assumed to have
the pulse shape plotted by Fig. 9, instead of a linear ramp.
The effective resistance is taken to be that given by Eq. (22)
(which, of course, is derived assuming a linear ramp.) As
above, for the 62.8-MA calculations, the current of Fig. 9 is
scaled by a factor of 2.755.

For each of the four cases considered, the semianalytic
model [when expressed as Eq. (22)] agrees with MACH2 to
within 24%. The plot of Fig. 9 extends to 185 ns. For the
first three cases considered, the calculations were per-
formed until time t ¼ 185 ns (i.e., until 20 ns after peak
current); for the fourth case, until t ¼ 165 ns (peak cur-
rent). As suggested by the last two rows, the agreement

between Eq. (22) and MACH2 improves at times less than
185 ns (as the pulse shape becomes more like a linear
ramp), which is consistent with the results presented by
Table I (which assumes an exact linear ramp).
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TABLE IV. Summary of conductor-energy-loss calculations performed to quantify the accuracy of the linear-ramp assumption. The
5th column presents results of 1D-Lagrangian MACH2 simulations that use the load-current time history as measured on Z-shot 532
(instead of a linear ramp); this current is plotted by Fig. 9. The 6th column presents energy-loss estimates obtained using Eq. (22)
[together with Eqs. (25)–(30) and (D1)] and the current time history plotted by Fig. 9. (The current of Fig. 9 was scaled by a factor of
2.755 for the 62.8-MA calculations.) For the first three cases considered, the calculations were performed until time t ¼ 185 ns (i.e.,
20 ns after peak current); for the fourth case, until t ¼ 165 ns (peak current). As suggested by the last two rows, the agreement between
Eq. (22) and MACH2 improves at times less than 185 ns (as the pulse shape becomes more like a linear ramp), which is consistent with
the results presented by Table I (which assumes an exact linear ramp).

Peak

current

Initial radius

of the

stainless-steel

cylinder (cm)

Peak nominal

lineal current

density

(MA=cm)

Time to

which the

calculations are

performed (ns)

Wt

(MACH2)

(J=m2)

Wt

[as determined

using Eq. (22)]

(J=m2)

Difference between

the semianalytic

and MACH2

estimates of Wt

22.8 MA 0.3 12 185 2:11� 109 2:31� 109 9%

22.8 MA 1.0 3.6 185 5:61� 107 6:14� 107 9%

62.8 MA 1.0 10 185 9:58� 108 1:19� 109 24%

62.8 MA 1.0 10 165 7:75� 108 8:95� 108 16%
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