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While photonic Doppler velocimetry �PDV� is becoming a common diagnostic in dynamic
compression research, its limiting accuracy and precision are not well understood. Velocity
resolution is known to be inversely proportional to the time resolution, but resolution estimates
differ by one to two orders of magnitude. Furthermore, resolution varies with the number of
recorded signals and how these signals are analyzed. Numerical simulations reveal factors that affect
accuracy and precision in PDV, and the results may be extended to a broad class of measurements.
After systematic effects are eliminated, the limiting velocity uncertainty in a PDV measurement is
governed by the sampling rate, the signal noise fraction, and the analysis time duration. © 2010
American Institute of Physics. �doi:10.1063/1.3429257�

I. INTRODUCTION

Photonic Doppler velocimetry �PDV�, also known as
heterodyne velocimetry,1 is a powerful diagnostic for track-
ing velocity �m/s to km/s� on the short time scales �nanosec-
onds to microseconds� of a dynamic compression experi-
ment. Essentially a fiber-based Michelson interferometer,
PDV combines Doppler shifted light from a moving reflector
with a reference source ��0�1550 nm�, yielding a complete
fringe when the reflector moves a distance �0 /2. Unlike tra-
ditional displacement interferometry, which is impractical in
most shock-wave experiments,2 PDV can be applied wher-
ever velocity interferometer sensor for any reflector
�VISAR�3 is used. Being simpler to build than other optical
velocimeters,3,4 yet robust to nonideal conditions �such as
multiple Doppler shifts�, PDV is rapidly finding uses
throughout dynamic compression research.

Direct comparison tests indicate that PDV measurements
are consistent with VISAR and shorting pins,5 with the ve-
locity resolution of PDV seemingly better by an order of
magnitude. However, the limiting resolution of PDV is quite
vague. Resolution estimates exist for PDV,5 but common ex-
perience suggests that these estimates significantly exagger-
ate uncertainty. That there is a competition between time and
velocity resolution in PDV analysis is well known, but the
actual limits have not been investigated.

The goal of this work is to develop a rigorous uncer-
tainty estimate for PDV. In doing so, both the accuracy and
precision of various types of PDV measurement/analysis are
considered. First, a brief overview of PDV analysis is given
with extreme estimates of the limiting uncertainty. Next,
Monte Carlo simulations are used to investigate the accuracy
and precision of PDV in various settings. The results of these
simulations are combined with theory to identify broader
trends, and these trends are validated experimentally. Direct
comparison of PDV and VISAR performance indicates that
the former is competitive with �and possibly superior to� the
latter in dynamic velocity measurements.

II. BACKGROUND

As a displacement interferometer, individual points in a
PDV measurement contain no velocity information. Convert-
ing the measured signal�s� to velocity requires an analysis
time scale �. This time scale is related to the minimum re-
sponse time for a velocity step, analogous to the interferom-
eter delay in VISAR �Appendix�. It is assumed throughout
this discussion that the detector�s� and digitizer�s� used in a
PDV measurement are much faster than �, and that all com-
ponents are linear over the frequency range of interest.

When a reflector in a PDV measurement moves at fixed
velocity, there is a simple relationship between the apparent6

velocity v� and the signal frequency f̄ ,

v� =
�0

2
f̄ . �1�

The frequency content of PDV signals is typically deter-
mined by a short-time Fourier transform �STFT�,5 generating

power spectra P�f� from signal segments of duration � ; f̄ is
determined from the peak location in each spectrum. Veloc-
ity resolution is defined by how well frequency can be re-
solved during �. The uncertainty principle5 describes the re-

lationship between � and characteristic peak width � f̄ ,

�� f̄�� �
1

4�
. �2�

For example, PDV analysis over 1 ns has a minimum spec-
tral width of 0.08 GHz, which corresponds to a velocity un-
certainty of 62 m/s.

Uncertainty estimates from Eq. �2� may be overly con-
servative, particularly when the measurement contains a
single Doppler shift. To demonstrate this, consider a fixed
amplitude sinusoid with a 1.880 GHz frequency sampled 25
times over 1 ns. Figure 1 shows an example of the sampled
signal and its power spectrum. Although the power spectrum
is quite wide ��=1 GHz�, the peak position can be much
more narrowly defined. A Gaussian curve fit locates the peak
location more precisely than the uncertainty principle: thea�Electronic mail: dhdolan@sandia.gov.
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peak fit in Fig. 1�b� is precise to about 0.003 GHz. If such
resolution enhancement could be obtained in an actual PDV
measurement, it would correspond to a 2 m/s uncertainty
with a 1 ns time window!

In practice, resolution enhancement via peak fitting is
limited by systematic bias. In the present example, Gaussian
fitting places the peak at 1.894 GHz instead of 1.880 GHz, a
systematic difference nearly five times larger than the esti-
mated resolution. Such discrepancies are quite common and
vary with both the analysis method and signal properties.
Monte Carlo simulations described in the next section illus-
trate how these factors limit frequency resolution in a PDV
measurement.

III. MONTE CARLO SIMULATIONS

Consider signal sk containing frequency f0 sampled N
=2M +1 times over a �=2MT duration,

sk = cos�2�f0Tk + �� + �Rk �k = − M, . . . ,M� . �3�

As a basic model of real PDV measurements, the signal is
contaminated with Gaussian noise that is a fraction � of the
total amplitude ��Rk�=0 over many samples�. The frequency

f̄ inferred from sk depends on the duration, the number of
samples, the signal phase ���, and the noise fraction as well
as the actual frequency and the analysis method. Given the
many measurement variations and analysis parameter values,
it is not obvious that an analytic expression can be derived
for the limiting performance of PDV.

Numerical simulations can be used to investigate general
resolution trends. Two key restrictions—fixed duration ��
=1 ns� and fixed number of samples �N=25�—are consid-
ered here. The first restriction focuses on analysis with 1 ns
time window, a characteristic goal for dynamic compression
research. The second restriction is representative of digitizers
used in PDV measurements �25 Gsamples/s, 6 GHz band-
width�. With these restrictions, the accuracy and precision
can be investigated as a function of frequency, noise fraction,
and analysis technique. Since the signal phase cannot be con-
trolled during an actual measurement, a Monte Carlo ap-
proach is used to determine the distribution of frequency

estimates for a particular combination of frequency and noise
fraction. Both single-signal and multiple-signal measure-
ments are considered.

The following procedure is used to simulate the reso-
lution of single-signal PDV measurements.

�1� A random phase � is selected from the range �0,2��.
�2� The sampled signal sk is calculated from Eq. �3� for the

current value of f0 and � �drawing Rk from a normal
distribution centered at zero with a standard deviation of
unity�.

�3� The power spectrum P�f� is determined from a fast Fou-
rier transform �FFT� �Ref. 7� of sk using boxcar/
rectangle, Hamming, and Hann window functions.8

�4� The peak location f̄ is determined by fitting P�f� with a
Gaussian curve.

�5� Steps 1–4 are repeated 20 000 times to create a distribu-

tion of f̄ values for each window function at the current
value of f and �.

�6� Accuracy is calculated from the difference between � f̄�
and f0.

�7� Precision is calculated from the standard deviation of f̄ .

This procedure is applied over a range of frequencies �0.1–6
GHz, 0.02 GHz steps� and noise fractions �1%, 5%, 10%,
20%, and 50%� to create the curves shown in the next sec-
tion.

Multiple-signal simulations follow the above procedure
with a few modifications. Three versions of sk are generated
at each Monte Carlo iteration with linked phases: �n=�
+2�n /3 �n=−1,0 ,+1�. The three signals are analyzed with
a quadrature reduction method9 to determine displacement,
which is differentiated with a local polynomial fit10 to deter-
mine velocity; the results are scaled by 2 /�0 for comparison

with single-signal simulations. A separate estimate of f̄ is
also made from the average of independent Gaussian fits to
the three power spectra �boxcar window only�.

IV. RESULTS AND DISCUSSION

A. Single-signal calculations

Figure 2 shows the calculated resolution of single-signal
PDV measurements containing 10% noise. Each plot dis-
plays the absolute accuracy and precision estimates for a
particular window function. In all three cases, PDV reso-
lution is accuracy limited at low frequencies �about 300
MHz�, while precision limitations dominate above 1 GHz
�for �=1 ns�. Both the accuracy and precision are quite poor
in a low-frequency “shoulder” below 1 GHz, where fre-
quency estimates are reliable to no better than 0.1 GHz.
Above 2 GHz, PDV measurements would be accurate to
about 10−4–10−3 GHz �0.08–0.8 m/s� but only precise to
0.015–0.043 GHz �12–33 m/s�. The Hamming window pro-
vides the best overall resolution �0.020–0.023 GHz� for 10%
signal noise, while the Hann window has slightly worse res-
olution �0.024–0.026 GHz� and the boxcar window reso-
lution is variable �0.015–0.043 GHz�.

Qualitatively, the low-frequency shoulder in Fig. 2 arises
from spectral analysis of a partial interferometer fringe.
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FIG. 1. �a� Hypothetical measurement of a 1.880 GHz sinusoid with 25
samples over 1 ns. The solid line shows the ideal signal, while dots indicate
the sampled signal. �b� Calculated power spectrum �dots� using a Hamming
window �zero padded to 256 points�. The solid line shows a Gaussian fit to
data �0.5 GHz from the peak. Dashed lines indicate the frequency bounds
determined from the uncertainty principle.
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More rigorously, this effect is due to practical limitations in
discrete Fourier transforms �DFT� of real signals. The power
spectrum of Eq. �3� is

�S̃�f��2 	 S+
2�f� + S−

2�f� + 2 cos�2��S+�f�S−�f� , �4�

S��f� = 	
−�/2

+�/2

w�t�e−2�i�f
f0�tdt → T 

k=−M

M

wke
−2�i�f
f0�kT,

�5�

where w�t� is the window function �assumed to be real�. The
power spectrum contains positive and negative frequency
components �S��f�� that depend on the window function.
The simplest example is the boxcar window

S��f� = T
sin���� + T��f 
 f0��

sin��T�f 
 f0��
, �6�

which has a 1 / �f � dependence in the limit T→0. At low
frequencies, the negative component �second term in Eq. �4��
plays a significant role in the power spectrum, biasing the
peak toward f =0. PDV analysis becomes accurate at high
frequency because this bias diminishes rapidly �1 / �f �2�.

Numerical simulations indicate that PDV accuracy is
quite similar for noise fractions of 1–20%, but the precision
is strongly tied to noise fraction and frequency �Fig. 3�. In all
cases, PDV becomes less precise with increasing noise, span-
ning a range of 0.001–0.01 GHz �for �=1 ns�. Precision can
be highly variable in low noise measurements, particularly
when using a boxcar window, though this variability dimin-
ishes with increasing noise. The Hann window provides the
most consistent precision �especially at higher frequencies�,
but the Hamming windows yields better precision at higher

noise levels. In all three cases, precision diminishes at high
frequencies for 50% signal noise, as does the accuracy �not
shown�.

Signal phase and DFT limitations are responsible for
variable precision above the low-frequency shoulder. Signal
phase varies uncontrollably during STFT analysis of a PDV
signal, causing the power spectrum peak to oscillate about
the mean value. The oscillation arises from the third term in
Eq. �4�, which has a noticeable impact on peak location
�even when the second term is negligible� because it de-
creases as 1 / �f � instead of 1 / �f �2. This term adds a negative
frequency side lobe to the positive frequency contribution,
altering peak location in a phase-dependent fashion; the ef-
fect disappears for certain phases, such as �=45°. Peak po-
sition is minimally altered when the side lobe is aligned with
the S+�f� peak, a condition satisfied by

� sin�2�f0�� + 2T�� = �� + 2T�sin�2�f0�� �7�

for a boxcar FFT. Under the present conditions, boxcar reso-
nances occur at 1.18, 1.67, 2.15, 2.64, 3.12, 3.60, 4.08, 4.56,
5.05, and 5.53 GHz, a perfect match to the optimal resolution
frequencies in Fig. 3�a�.

By strongly attenuating points at the domain boundaries,
the Hamming and Hann windows enforce FFT periodicity,
making the power spectrum less sensitive to signal phase
than the boxcar window. However, this benefit is accompa-
nied by reduced noise rejection. In the low noise domain
�1%�, phase sensitivity is the dominant factor in PDV preci-
sion, and the Hann window is preferable. When noise �5–
10%� begins to dominate the frequency precision, precision
becomes less phase dependent and the Hamming window
provides consistently low precision. Phase sensitivity is neg-
ligible at higher noise levels �50%�, and the boxcar window
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FIG. 2. Single-signal PDV resolution for measurements with 10% noise.
Solid lines indicate the accuracy and dashed lines show the absolute reso-
lution for Gaussian fits of the FFT power spectrum using boxcar �a�, Ham-
ming �b�, and Hann �c� windows.
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FIG. 3. Single-signal PDV precision using boxcar �a�, Hamming �b�, and
Hann �c� windows. Solid lines correspond to measurements with 1% noise,
dashed lines correspond to 10% noise, and dash-dot lines correspond to 50%
noise. Gray horizontal lines indicate the estimated resolution limit �Eq. �9��.
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provides better results due to its higher noise rejection. Thus,
the optimal FFT window is determined by the noise fraction
in a PDV measurement.

Apart from the low-frequency shoulder and phase vari-
ability, Fig. 3 indicates that the limiting precision of a PDV
measurement scales with the signal noise fraction, regardless
of the window function. To quantify this effect, consider the
signal variation �s at a single point due to a frequency varia-
tion �f . The value of �s averaged over all possible phase
values is

��s

�f
�2

=
1

2M + 1 

k=−M

M 
� �sk

� f
�2�

�

= �2�T�2 M�M + 1�
6

�
����2

6
, �8�

where M is generally much larger than unity. Inverting Eq.
�8� and equating �s with the noise fraction yield an expres-
sion for the frequency uncertainty due to signal variation at
one sample point; this result must be scaled by �N to account
for all N samples �collected at sampling rate fS�,

�f =� 6

N

�

��
= �� 6

fS

�

�
��−3/2. �9�

This expression �which can be derived11 rigorously for sinu-
soidal fitting� links the limiting frequency resolution to fixed
measurement quantities �sampling rate and noise fraction�
and the adjustable analysis duration. The plots in Fig. 3 in-
dicate that Eq. �9� is a reasonable estimate for the best pos-
sible frequency resolution.

B. Multiple-signal calculations

Figure 4 shows the calculated resolution for multiple-
signal PDV measurements containing 10% noise. Accuracy
in a three-signal boxcar FFT measurement is generally simi-
lar to single-signal measurements: at low frequencies, analy-
sis is inaccurate and averaging does nothing to change this;
beyond roughly 1 GHz, the averaged boxcar FFT method

becomes precision limited. Unlike the FFT approach,
quadrature analysis is always precision limited, and there is
no apparent frequency dependence in either the accuracy or
the precision �at this noise level�.

Figure 5 shows the calculated precision for multiple-
signal PDV measurements containing 1%, 10%, and 50%
noise. Precision resonances are absent from the boxcar FFT
approach �though the low-frequency shoulder remains� be-
cause of the 120° phase shifts between the three signals. This
behavior can be demonstrated analytically by constructing an
average power spectrum from the three signals, where the
S+�f�S−�f� term scales with



n=−1

1

cos�2�� +
2�n

3
�� = 0. �10�

In quadrature analysis, precision is frequency independent at
1% and 10% noise levels because fringe shift is calculated
directly. At 50% noise fraction, quadrature analysis shows
worsening precision above 1 GHz, an effect that does not
appear at lower noise levels ��20%�. Like the single-signal
calculations, accuracy is frequency dependent at 50% noise
�not shown�, but the average boxcar FFT method is much
less affected than the quadrature approach.

The limiting precision in PDV measurement using L sig-
nals can be estimated by scaling Eq. �9� by �L. Precision
estimates for 1%, 10%, and 50% noise levels shown in Fig. 5
indicate that averaged boxcar FFT and quadrature analysis
can match the limiting resolution for 1–10% noise �similar
performance is observed at 20% noise�.

C. Implications

The single-signal and multiple-signal simulations reveal
two critical trends in PDV.

• Measurements that rely on spectral analysis �particularly of
a single signal� have poor accuracy and resolution at low
frequencies.

• The limiting resolution is governed by the analysis time
window, the sampling rate, and the signal noise fraction.
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FIG. 4. Multiple-signal PDV resolution for measurements with 10% noise.
Solid lines show the absolute accuracy and dashed lines shown the absolute
precision for averaged boxcar FFT �a� and quadrature analysis �b�.
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FIG. 5. Multiple-signal PDV precision for averaged boxcar FFT �a� and
quadrature analysis �b�. Solid lines correspond to signals with 1% noise,
dashed lines correspond to 10% noise, and dash-dot lines correspond to 50%
noise. Heavy gray lines indicate the estimated resolution limit �Eq. �9�
scaled by �3�.
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The first trend may be overcome through quadrature
analysis and/or frequency conversion �Sec. V� to move away
from the low-frequency shoulder. The second trend places a
fundamental limit on velocity resolution. Under reasonable
operating conditions ��=1 ns, N=25, and �=10%�, the lim-
iting velocity resolution of a single-signal PDV is about 12
m/s, roughly five times smaller than the bounds estimated
from the uncertainty principle. Velocity resolution can be
improved by expanding the analysis window �at the expense
of time resolution� and/or faster data sampling at a fixed
noise level. Precision can be also improved by using L inde-
pendent measurements, but the improvement scales with �L
instead of L.

V. EXPERIMENTAL VALIDATION

Figure 6 shows an experimental test for the limiting per-
formance of PDV. A c-axis sapphire impactor �63.5 mm di-
ameter, 12.7 mm thick� was launched at a c-axis sapphire
target �69.9 mm diameter, 6.4 mm thick� using a single-stage
gas gun. Shorting pins indicate that the impact velocity was
206.6�1.1 m /s, generating an elastic shock wave �4.6 GPa�
in the target. After the shock wave reflected from the rear of
the target, this surface moved for several microseconds at the
original impact velocity �to a very good approximation12�.

Simultaneous PDV and VISAR measurements of the
free surface velocity were performed using a deposited plati-
num reflector �with a chromium adhesion undercoat�; this
configuration prevents reflector detachment due to tensile
spall. Two NP Photonics “Rock” lasers �operating near
1550.000 nm� were used to create a frequency-conversion
PDV: the target was illuminated with a tunable laser, and the
Doppler shifted reflection was mixed with a fixed wave-
length laser. The PDV signal frequency started at roughly 4
GHz and increased as the free surface moved to the right.
Figure 6 shows a velocity history extracted from the PDV
signal. A second measurement of the steady state velocity

was obtained with a custom air-delay VISAR �National Se-
curity Technologies� set to its highest sensitivity �532 nm
wavelength, 19 ns delay�.

Table I shows the free surface velocity determined by
shorting pins, VISAR, and PDV in the validation experiment.
The shorting pin measurement is shown for comparison, but
this value is not a strong constraint on the free surface ve-
locity; the VISAR measurement �206.11�0.28 m /s� pro-
vides a much more rigorous test for PDV performance.
When PDV analysis is performed with a common time scale
�19 ns�, the result �205.95�0.32 m /s� differs from the
VISAR result by 0.16 m/s, which is less than the uncertainty
in either diagnostic. VISAR has slightly less uncertainty than
PDV in this example, though the difference can be attributed
to the number of detectors in each measurement.

Unlike VISAR, different analysis time scales may be
applied to PDV measurements after the experiment. Analysis
at different time scales �Table I� indicates that � determines
the uncertainty, but not the mean value, of the PDV measure-
ment. This behavior is consistent with the Monte Carlo simu-
lations: PDV measurements are precision, not accuracy, lim-
ited above the low-frequency shoulder. Furthermore, the
measured uncertainties vary with the �3/2 power of analysis
time scale �Fig. 7� as expected from Eq. �9�, though the
variations are systematically larger than the limiting reso-
lution. Much of this bias comes from the use of a Hamming
window, which leads to a steeper rise time �relative to the
boxcar window� at the expense of reduced frequency preci-
sion �Appendix�. To compensate for this effect, Fig. 7 shows
a scaled version of the data in Table I that are close to, but
always above, the theoretical prediction.
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TABLE I. Free surface velocity measured in the validation experiment.
VISAR uncertainty is calculated as 2% of the fringe constant �14 m/s�, while
PDV uncertainty is estimated from velocity variations in the steady state
�Fig. 6�.

Diagnostic
Time scale

�ns�
Velocity change

�m/s�

Pins 
1000 206.6�1.1
VISAR 19 206.11�0.28
PDV 19 205.95�0.32
PDV 10 205.93�0.64
PDV 1 206�21
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FIG. 7. PDV velocity uncertainty as a function of analysis time. Circles
indicate the measured values �Table I� with a best fit line �slope set to �3/2�;
squares show the same data scaled by the relative rise time of the Hamming
window �64%�. The dashed line indicates the limiting uncertainty for a 25
Gsamples/s sampling rate and the �8% noise fraction of the frequency-
conversion PDV.
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For a broader understanding of the relative performance
of PDV and VISAR, consider measurements having a com-
mon � �analysis duration and interferometer delay, respec-
tively�. The limiting velocity resolution in VISAR �Refs. 3
and 13� is approximately 1–2% of the fringe constant K
=�0 /2�. The velocity resolution ratio ���v1 /�v2 �PDV/
VISAR� is as follows:

� =
�1

�2
� 6

fS�

�

��
, � � 1 – 2%. �11�

While PDV typically operates at a longer wavelength than
VISAR ��1=1550 nm and �2=532 nm, respectively�, the
value of � is often close to unity, implying similar perfor-
mance between diagnostics. A single PDV measurement with
25 samples/ns and 8% signal noise �comparable to the vali-
dation experiment� has a performance ratio of 3.6–1.8 when
�=1 ns, but several factors may lower this ratio in favor of
PDV.

• The value of � decreases with �� ��=1.1–0.57 for �
=10 ns�.

• PDV rise times are faster than VISAR using a common �
�Appendix�. Incorporating this effect changes � to 2.0–1.0
for �=1 ns.

• Multiple-signal PDV measurements decrease � as �L: av-
eraging two independent signals brings the performance
ratio to 1.4–0.7 ��=1 ns, rise time corrected�. For com-
parison, push-pull VISAR �Ref. 14� measurements use
four signals in quadrature sensing, and eight signals are
typically needed to resolve fringe ambiguity.

• Obtaining 1–2% fringe accuracy in VISAR requires pre-
cise system characterization,15 without which the value of
� increases considerably �5–10% is not uncommon�. Non-
quadrature PDV analysis requires little or no system
characterization.

Although displacement interferometry is less sensitive at
1550 nm than at 532 nm, the ability to make accurate fre-
quency measurements allows PDV to be competitive with
�and sometimes superior to� standard VISAR measurements.
By the same token, there is no resolution advantage for a
1550 nm VISAR relative to a 1550 nm PDV.

VI. SUMMARY

While the uncertainty principle describes the general
scaling between time and velocity resolution, PDV perfor-
mance is usually much better than predicted by these criteria.
Extremely accurate PDV measurements can be made with
the appropriate configuration, leaving precision as the domi-
nant uncertainty. Some analysis methods are advantageous in
specific settings, but the limiting velocity resolution in PDV
is controlled by the sampling rate, the noise fraction, and the
analysis duration; multiple-signal measurements can further
reduce uncertainty. With little effort, PDV time/velocity res-
olution can rival or exceed VISAR under typical operating
conditions.
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APPENDIX: TIME RESOLUTION
All PDV measurements smear velocity changes over a

time scale related to �. The corresponding time resolution �t
depends on the velocity history and convention. For this dis-
cussion, �t is defined as the 10–90% rise time in the analysis
of a velocity step. The purpose of this Appendix is to inves-
tigate the relative values of �t in PDV and VISAR, not nec-
essarily the absolute magnitudes, for a consistent compari-
son.

Consider a velocity step with magnitude vm at time t
=0. For convenience, let vm match a complete VISAR fringe
�266 m/s� for �0=532 nm and �=1 ns. The velocity step
may be converted to ideal �noise-free� PDV and VISAR sig-
nals and analyzed to reveal the limiting time resolution of
each method. Following Sec. III, the PDV signal is sampled
25 times every nanosecond and the signal is frequency
shifted by 3 GHz to avoid the low-frequency shoulder. Fig-
ure 8�a� shows an example of the time-frequency analysis
��=1 ns� for a particular PDV signal �phase �=0�. The ve-
locity profile �obtained by Gaussian fits at each time point� is
clearly smeared during the analysis, though �t��.

Figure 8�b� shows phase-averaged step profiles for box-
car, Hamming, and Hann STFT analysis over 1 ns. The PDV
time resolutions in this example are 0.58, 0.37, and 0.34 ns
using boxcar, Hamming, and Hann windows �respectively�;
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FIG. 8. �Color� �a� Time-frequency analysis �Hamming window, 1024
points� for a PDV measurement of a 266 m/s velocity step �frequency
shifted to 3 GHz�. The colors indicate relative intensities of 0.5 �blue� to 1.0
�red�, and the dashed line shows the extracted profile. �b� Step responses for
boxcar �solid line�, Hamming �dashed line�, and Hann �dash-dot line� FFT
windows using a 1 ns analysis window. The heavy line indicates an ideal
VISAR measurement with a 1 ns interferometer delay.
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quadrature analysis with a first-order Savitzky–Golay deriva-
tive has a similar step profile �not shown� as the boxcar FFT.
The step response of a 532 nm VISAR measurement is also
shown in Fig. 8�b�; this profile is essentially linear, corre-
sponding to a time resolution of 0.80 ns.

Since Eq. �11� compares PDV and VISAR measure-
ments with the same �, the performance ratio is biased to-
ward VISAR, which has poorer time resolution. To achieve a
common rise time �0.80��2� with a VISAR having delay �2,
PDV analysis should be performed over a �1�1.38��2 time
scale using a boxcar FFT window. Hamming and Hann win-
dows yield higher time resolution that the boxcar window,
though at the expense of frequency resolution �as shown in
Fig. 3�.
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