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Motivation
As component size is reduced to 100’s of microns, grain size must be 

correspondingly reduced to ensure homogeneity.

Can shockwave consolidation be used to consolidate 
nanocrystalline powders into bulk components without significant 

grain growth?
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Outline

I. Material System
– Processing
– Microstructures

II. Computational
– Initial configuration
– Results: US-uP, P-V

III. Concluding Remarks



Slide 4

• Formed through frequency 
modulation assisted 
machining

• Morphology and degree of 
nanocrystallinity
– Rotational velocity
– cutting (rake) angle
– Frequency of modulation

I. M4 Sciences Al 6061-T6

C.J.Saldana (2006)
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I. M4 Sciences Al 6061-T6

Equiaxed
50 x 50 x 30

Needles
30 x 100 x 20
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II. Simulation Environment

• Particles w/o shell
– Mie Gruneisen EOS
ρ0=2.703 g/cm3, C0=5.22 km/s, S=1.37, 
γ=1.97

– Steinberg-Guinan Strength
Model
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No Shell Y0 = 0.29 Gpa

Shell Y0 = 0.5 Gpa (Y0 ~ HV/3)

D.J. Steinberg (1980)
Taylor, P.A., CTH Reference Manual: The Steinberg-Guinian-Lund Viscoplastic Model.
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II. Simulation Environment

• CTH
– Eularian/Lagrangian

• Accommodate large strains
• ~ 1.3μm square mesh

– Parallel Processing
• 24 processors (SNL)

– Meso-scale (Particle Level)
• Deformation and stress transfer

• Initial Density
– EQ = 73.5 %, NE = 75.0% TMD
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II. Simulation Environment

•Constant Up (m/s)
– 150, 200, 250, 300, 

325, 350, 400, 550, 
700, 850

• (No) Shell effects
– Us –up

– P - V
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II. US - uP

Equiaxed
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II. US - uP

Needles
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• Presence of high strength surface layer causes 
increase in measured US

– Strength and morphology effect reduction in 
increased US with increasing driver velocity

• Dynamic yield (Steinberg) 
– EQ = 325 m/s   (min @ 325)
– NE = 300 m/s   (min @ 400)

• Needles show larger increases in US
– Aspect ratio
– Hard:Soft   EQ = 0.195,  NE = 0.270 

II. US - uP
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II. P - V

• Pressure histogram
- average pressure
- average density

t3

t4

t5
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II. P – V (Crush-up)

Stiffer response exhibited by shelled particles
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II. P – V (Crush-up)

Needles exhibit stiffer response
- exacerbated by presence of shell (EQ=.186, NE=.270)
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Higher compression than predicted from McQueen

II. P – V
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- Surface energy of particles 

neglected
- γ is same for porous and solid 

at same volume
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- Homogeneous/heterogeneous 

temperature distribution
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II. P – V

EQ No Shell EQ With Shell
P (calc) P (meas) P (calc) P (meas)
0.169 0.105 0.199 0.1181
0.218 0.150 0.248 0.1580
0.333 0.256 0.360 0.2570
0.473 0.407 0.497 0.3940
0.658 0.598 0.666 0.5800
0.772 0.704 0.769 0.6940
0.887 0.826 0.886 0.8220
1.154 1.063 1.158 1.0720
2.150 1.994 2.158 2.0230
3.385 3.193 3.401 3.2580
4.847 4.650 4.880 4.7490

( ) PSuUcalcP 00ρ=
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Porous Hugontiot*

*R.G. McQueen, et al. (1970)

Calculated stress over predicts 
measured stress over entire range
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III. P – V

NE No Shell NE With Shell
P(calc) P(meas) P(calc) P(meas)
0.188 0.132 0.228 0.144
0.240 0.175 0.268 0.188
0.363 0.296 0.402 0.302
0.519 0.473 0.554 0.476
0.730 0.711 0.751 0.700
0.852 0.850 0.873 0.846
0.980 0.997 1.006 1.001
1.267 1.279 1.275 1.331
2.282 2.332 2.338 2.455
3.588 3.720 3.679 3.995
5.230 5.334 5.250 5.622

( ) PSuUcalcP 00ρ=

Calculated stress transitions from over 
to under prediction of measured stress
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III. Concluding Remarks: US-uP

• Piecewise EOS
– Quadratic (150-300 m/s), Linear (300-850 m/s)

• Surface layer causes increase in US
– More prevalent at low uP

• ∆US decreases with increasing driver velocity uP
– Minimum depends on Steinberg σYS and morphology

• Larger increase in ∆US for needles
– Higher aspect ratio, increased amount of surface layer
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• Stiffer response for shelled particles

• Morphology influenced P-V response
– Needles exhibit stiffer response

• Differences between measured and calculated 
porous Hugoniot
– Lower volume measured then predicted

• Assumptions in calculations
• Distribution of energy/temperature

– EQ: measured P below calculated (known US,uP)
– NE: measured P transitions, under then over

III. Concluding Remarks: P-V 
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IV. Concluding Remarks
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Anthony Fredenburg
gth795c@mail.gatech.edu

(404)-385-2851  (GT)
dafrede@sandia.gov

(505)-845-0742   (SNL)

Questions?
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• Subtitle 24 pt
– Second level 22 pt

• Third level 20 pt
– Fourth level 18pt

• Fifth level 18pt
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