
SAND2004-2583P

Verification: Improving the Regression Test Suite

Lisa Cordova
Sandia National Laboratories

Regression Testing:

Like many other codes, ITS contains a regression test suite. The suite is a series of test
problems designed to check to see if the code is still operating properly after a
modification by the developers or to determine if there is a system incompatibility for the
code user. The test problems have known solutions in the form of output files. When the
regression test suite is run, the output files that are generated from the run are compared
to the known solution output files. If the two sets of output files are identical, or the
changes in the new set are expected, the tests have passed. If the output files do not
match the solution output files, or do not contain the expected changes, the tests have
failed, indicating a problem with the code or the system it is being run on.

Regression testing is a relatively fast and easy way to ensure the code is operating
correctly and is an especially useful tool for code developers. Ideally one would like
100% of the source code to be executed during the testing, however for a particularly
large code like ITS, that can be built into many executables, one could expect a good
practical coverage of around 80%.

The Project:

My job was to determine the amount of source code being executed during the regression
tests and then to make changes to increase the amount. This required the use of a
software tool that determines the amount of executed lines and the writing of many input
files to test the modeling capabilities of the TIGER, CYLTRAN, and ACCEPT codes.

The software tool I used to determine the coverage, or the number of lines being executed
during testing, is called Aprobe, a commercial product from OC Systems. It determines
coverage percent by probing with code patches during execution and identifies the
unexecuted lines and writes them to a data file. Below are two views of an Aprobe data
file. The first snapshot shows the coverage percent for some of the subroutines in the
code, and the second specifies the line numbers and subroutine location of the lines that
were not executed.

With this information, I was able to write more comprehensive input files to trigger the
execution of more lines of code during the regression testing. Once I had revised the
input files, I used Aprobe to determine how much the coverage had increased. Because
Aprobe can probe only one executable at a time, I had to probe and re-probe many times,
to test all of the major ITS executables. I wrote shell scripts for the repetitious part of
this process to make the job easier.

Writing input files for CYLTRAN and ACCEPT was probably the most challenging part
of this project. I was not familiar with 2 and 3-D modeling, and when I tried to
concatenate a number of test problems into one long input file for each executable, I
discovered minor code bugs. I used Sabrina and Cg2ACIS, two visualization tools for 3-
D geometries, to help construct my problems. To pinpoint the code bugs, I used a code
debugger.

In addition to learning Aprobe, Sabrina, Cg2ACIS, and the debugger, I learned a great
deal more about using ITS and how to modify the source code to fix bugs. I was also
able to increase regression test coverage to 70-80% for the executables I worked on.

Computer Skills Acquired:

Running Aprobe
Use of Sabrina and Cg2ACIS
Code Debugging and Modifications
Running the CYLTRAN and ACCEPT Codes

Other Lessons Learned:

I think one of the most important things I learned in this project was to not be afraid to
contact individuals outside my department for help. Because Aprobe wasn't working
properly for some of our executables, and because no one on our team had experience
with this tool, I was forced to find help elsewhere. I contacted the vice president of the
OC Systems directly and was delighted at how approachable the man was and how
quickly we were able to solve the problem together.

Acknowledgement
Sandia is a multiprogramming laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000.

