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High-energy photons can escape Be liner and reveal
Information about the stagnating plasma
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High-energy x-rays (> 10 keV) of dopants co-located
with the fusion fuel [12] are reasonable neutron proxies
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Z has extensive
spectroscopic instrumentation
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We routinely field up to eight
spectrometers per shot,
spanning the spectral range
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Spatial, temporal, and spectral resolution are all important.
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K-shell spectroscopy can tell us a lot
about fusion plasmas at stagnation
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Fig. 1. (color online) Calculated emission spectra at stagnation from two spherical ICF targets with
degraded yields, with the plasma conditions for the simple two-layer plasma models given in the upper
right. The dark black lines are emission from a plasma with sub-nominal temperature (case 1) while the
light lines are emission from a plasma with sub-nominal density (case 2). Both plasmas have a Kr fuel
dopant and some shell material mixed in with the hot fuel. The dashed lines exclude the effect of
fluorescence in the cold shell due to photoionization from the hot plasma core. The figure is annotated with
the parameters that can be diagnosed from various emission, absorption, and fluorescence features.
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We have developed reliable non-LTE
atomic models with spectroscopic accuracy
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... While retaining
spectroscopic accuracy
in resonance lines,
important satellite
Fine structure (FAC) levels are features’ and emission

combined with terms (UTA) from metastable states.

Hybrid level structure [7]
ensures statistical
completeness in high-n
states, multiply excited
states, and d.r. channels...
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To keep things tractable, we only model in detail what can be measured in detail
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A good atomic model is not enough:
self-consistent radiation transport is critical

Time-gated, radially resolved expt. spectrum

Imploding
plasma "N\ photons from shell edges

are unshifted (v, = 0)

photons from shell
center are maximally

shifted (v, = v) Model with full transport including Doppler effects

Gradients & absorption along
instrumental line of sight can lead
to complex emission signatures
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We are developing a tabular, iterative on-the-spot approach that fully integrates Doppler effects,
determining self-consistent emissivities using 3-D ray tracing in Cartesian geometry and
generating spatially resolved line profiles for ions and mixtures of arbitrary complexity [11].
Self-consistent transport is important both for diagnostics
based on simple plasma models and for post-processing simulations
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How can we combine all of the data we collect -
for a complete picture of the stagnation plasma?

Spectroscopy can tell us about T, rho, rho-r, gradients, mix...

PCDs give absolute x-ray yields & timing: important consistency
checks

X-ray imaging directly informs dimension
Neutrons also tell us about T, rho-r, duration

IS everything consistent?
= Springer’s isobaric model
= |s pressure balance (thermal, magnetic, kinetic) a valid constraint?
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Intensity (arbitrary units)
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Reliable hybrid models offer new
diagnostic opportunities with L-shell spectra
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L-shell diagnostics have attractive features including unambiguous
temperature dependence and resolution-independent density sensitivity
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