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1st generation MagLIF, Be liner, DT gas fill, 27MA, Bz 30 T 



Here with instantaneous and uniform preheat 



Here with instantaneous and uniform preheat 











Yields sensitive to 
heating method and 
radiation cooling 
 



1st generation MagLIF, Be liner, DT gas fill, 27MA, Bz 30 T 





Here with Gaussian laser profile and density 
dependent preheat 



Here with Gaussian laser profile and density 
dependent preheat 









Density dependence of  
resistivity dominates early 
development of  instability 
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Investigating the Effect of  Axial Magnetic Field on the MRT Instability 

Provides a degree of  stabilisation but only at stagnation 

Hollow aluminium liner imploded by 20MA driving current 
MRT seeded by 400µm sinusoidal perturbation as in Sinars et al  
but without central tungsten rod and with the addition of  an initial Bz of  30T 
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2nd generation MagLIF, Be liner, DT gas & ice , 69MA, Bz 11T 
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Particles produced near axis can 
undergo large axial displacement 
due to singular orbits (axial fields 
can enhance this effect) 

Alpha particle trajectories in igniting Bennett pinches 

Alpha particles have both off-axis magnetised 
trajectories and singular orbits. 

B field profile in a Z-
pinch allows significant 
nonlocal alpha transport 



Large densities in high-gain MagLiF reduce the effects of nonlocal transport. 

From MHD simulations fuel radius at stagnation ~ 0.5mm.  

Mean free paths decrease with R, B fields less important for confinement.  

Dense DT edge prevents alpha particles from penetrating liner. 

Yield for kinetic model and local heating model are similar (~2 MJ/cm).  

mfp ~ 200μm 

mfp ~ 100μm 

mfp ~ 10μm 

 



Goal: homogeneous isentropic 
compression of a uniform ideal gas Kidder’s spherical compression Cylindrical compression 

Lagrangian volume change 

Mass conservation 
 

Equation of motion 
 

Ideal gas isentrope 
 

Solve ODE 

Result 

Boundary pressure 



















Application to pulsed power machines 

We obtain the current profile, which could be supplied 
by a pulsed power machine, from the outer radius and 

the boundary pressure of the fluid 
 



Generalization of Kidder’s solution 
to an arbitrary EOS Ideal gas General EOS 

Fluid density as a function of time 
 

Isentrope 
 

Equation of motion 
 

ODE 
 

Solve ODE 



Numerical verification 

Kidder’s self similar implosion requires the somehow artificial situation of a non-uniform initial pressure profile. Nevertheless, when Kidder’s 
boundary pressure is applied to an initially uniform fluid, the implosion remains closely isentropic. 

• the movement of the boundary of the fluid  in the simulation differs from the theoretical result 
• in Kidder’s solution all fluid elements start to move towards the center at t=0 
• this is due to a non-uniform initial pressure profile 
• therefore the boundary of the fluid in the simulation is lagging behind the theoretical boundary 
• In contrary, there is hardly any difference in the current profile between the simulation and the theoretical result 
• since the boundary speeds up slowly at early times, the increase in current is due to an increase in pressure.   
• At the final stages of the implosion, the boundary in the simulation catches up with the theoretical result. The fluid in the simulation is 

starting to move self similarly. 
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2nd generation MagLIF, Be liner, DT gas & ice , 69MA, Bz 11T 
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