Liszt 2.0

A DSL for Particles and Meshes
Targeted to Exascale Computers

Pat Hanrahan
Alex Aiken
Mattan Erez

\ Stanford and UT-Austin

)
c
]
£
c
o

=
>
c

L
c

o

5

e

T
C

-2
©

.E
)
o
c

o
S
0

S
S

-
c
]

©

)

-
L

0O

i
S
C

o

PSAAP li

Multi-scale, Multi-physics
Computers

* Chip (50 mm [45 nm features]) - teraflop
— Hybrid chip multiprocessor (CMP)
— Multi-core (CPU-like) and many-core (GPU-like)
* Board (~¥50 cm) — fraction of a petaflop

— Node with multiple CMPs
— Shared memory multiprocessor (SMP)

 Room of racks (~¥50 m) - exaflop
— Cluster of SMPs

Multiple Software Abstractions

* Cluster
— Message passing — MPI
* Node
— Threads and locks — OpenMP, pthreads, ...
e CMP
— GPU cores — OpenCL, CUDA, ...

MPl+ X +Y

Hard to Program

¢l

Portable Parallel Programming
Trade-off Generality vs. Specialization

Performance

—
AN ——
S QL@ @ pixARS @ﬁ‘i b]ava
RenderMan G’Y @3¥+
£
o o
\‘e
@ /MATLAB
/
Productivity Generality

High-Performance DSL

Our Working Definition: A high-performance DSL is
a library/framework that uses domain
knowledge to compile optimized code to a
parallel platform

NB.

* Not a new language per se; DSL is embedded in a
base language

* High-level means that it uses the natural
abstractions of the domain

Co-Design
Close knit team

Computation scientists
— Juan Alonso, Eric Darve, Gianluca laccarino, ...
— Provide application perspective on abstractions
— Provide well-tuned, exemplar system

Computer Scientists
— Pat Hanrahan, Alex Aiken, Mattan Erez, ...

— Provide computing perspective on abstractions
— Implement more general system

i) Liszt 1.0

var i = 0; Fields
while (1 < 1000) {
Flux((mesh)) = @.f; Mesh
JacobiStep((mesh)) = 0.f;
for (e <- (mesh)) { Sets
val vl = (e)
val v2 = (e) E

val dP = Position(vl) - Position(v2)
val dT = Temperature(vl) - Temperature(v2)
val step = 1.0f/(length(dP)) 0
Flux(vl) += dT*step H
Flux(v2) -= dT*step

JacobiStep(vl) += step

JacobiStep(v2) += step

1 +=1

} Stanford PSAAP I (&

160

80

%) Portable and Performant
<

=—mpi (cpu only)
~B-gpu+mpi
ideal gpu scaling

2 3 4 5 6 7 8
#Nodes

(2 Nodes/Machine, 1 GPU/Node)

If we scale the problem size (double mesh size)

as we scale the cluster size, then we scale Stanford PSAAP I

PSAAP: Lessons Learned

* |nteroperate, Interoperate, Interoperate
— e.g. need to call legacy libraries from DSL
— e.g. need to drop DSL code into apps
— e.g. multiple interoperating DSLs

* Easy, Easy, Easy
— Easy to embed DSLs in existing languages

— Easy to implement domain-specific program
transformations

 Dynamic code generation to support auto-tuning and
just-in-time compilation, and adaptive meshing

PSAAP2 Proposed Work

Liszt 2.0 (meshes + particles) - All
Terra (Hanrahan, Aiken)
Legion (Aiken)

Containment domains (Erez)

Terra-Lua System

Terra: Low-level language
— statically typed, monomorphic (like C)
— dynamic compilation via LLVM

— manual memory management

Lua: High-level language
— dynamically typed, polymorphic
— efficient interpreter (LuallT)
— garbage collection

Lua&Terra
— similar syntax and shared lexical scope
— co-embedded (can call back and forth)
— state shared through lualJIT FFI

Terra Example

--dynamic scripting language (Lua):
function add(a, b)
returna +b
end
print(add(3,4)) --7

--combined with a low-level language (Terra)
terra addt(a : int, b : int) : int
returna +b
end
print(addt(3,4)) -7
-- addt is JIT compiled when called

Terra Interoperability

local BLAS

terra
var
var

useblas ()
lda,1ldb, ldc 3,2,2
a,b,c array(0.11,
0.21,
array (1011,
1021,
1031,
array(0.00, 0.00,
0.00, 0.00
BLAS.sgemm(BLAS.RowMajor,
BLAS.NoTrans,
2, 2, 3,

//
0.12,
0.22,
1012,
1022,
1032

end

terra.includec("gsl/gls cblas.h")

int
0.13,
0.23),

// : double[2][3]

)/
)

BLAS .NoTrans,
1.0, A,1da,

B,1db, 0.0, C,1ldc);

useblas() — jit and run useblas example

Staged Metaprogramming

function gen_square(x)
-- backquote " operation — returns quoted code (AST)
return 'x * x

end

terra mse(a: float, b: float): float
-- escape operator [and] — interpolate lua expression
return [gen_square(a)] - [gen_square(b)]

end

-- this technique allows us to embed and compile DSLs
-- Inspired by lisp macros, MetaOCaml, MetaHaskell, forth

8D ATLAS in Terra

DGEMM SGEMM

30 1 Peak 60 1 Peak
MKL

50
. ATLAS (fixed)
% 20 % 40 Terra
Q15 - Qa0
T T |
© 10 - © 201
5 10 -
Blocked & S-IE)Lcﬁgd(on g.)
0 mNalve 0 Naive
5 10 20 0 5 10 15 20
Matrix Size (in MB) Matrix Size (in MB)

Optimizations: vectorization, register and cache blocking,
unrolling
Size: <150 lines of code (ATLAS much larger and more

com plex) Stanford PSAAP I

~Terra

A low-level counterpart to Lua

Download View On
TAR Ball GitHub
Getting Started

AP| Reference

Publications

Zach DeVito
zdevito at stanford dot edu

Theme bv orderedlist

Terra is a new low-level system programming language that is designed to
interoperate seamlessly with the Lua programming language:

-- This top-level code is plain Lua code.
print("Hello, Lua!")

-- Terra is backwards compatible with C
-- we'll use C's io library in our example.
C = terralib.includec("stdio.h")

-- The keyword 'terra' introduces

-- a new Terra function.

terra hello(argc : int, argv : &rawstring)
-- Here we call a C function from Terra
C.printf("Hello, Terra!\n")
return 0

end

-- You can call Terra functions directly from Lua
hello(0,nil)

-- Or, you can save them to disk as executables or .o
-- files and link them into existing programs
terralib.saveobj("helloterra”,{ main = hello })

Like C, Terra is a simple, statically-typed, compiled language with manual
memory management. But unlike C, it is designed from the beginning to
interoperate with Lua. Terra functions are first-class Lua values created using the
terra keyword. When needed they are JIT-compiled to machine code.

You can use Terra and Lua as...

A scripting-language with high-performance extensions. While the

performance of Lua and other dynamic languages is always getting better, a

Legion

* A runtime system for hierarchical, heterogeneous machines
— Implemented as a C++ library

* |deas
— Regions
* To describe data
— Deferred execution
* To deal with high and variable latency
— Mapping

* Full programmer control over where data & computation are placed in the
machine

 Adding Resilience
— Maintain information to recover from soft and hard faults

Logical Regions

Field Space
fo f1 f2 f3
Logical regions: p0
— Have no implied layout pl
— Have no implied
location p2

Described by:

Index Space
©
D

— Index space (set of
keys) P>
— Field space (set of P6
fields) p7
e p3

Partitioning into

subregions o
— In either dimension pl0
pll

Legion Tasks

* Legion tasks specify: Task 1
— Region usage Region R
— Field usage Re';'j_'svéite
— Access modes

° «J__Copy

* Legion runtime: Task 2
— Infers data dependences Region R
— Inserts copies ReFaI\ZI-%in

e Tasks are asynchronous
— Deferred execution
— Hide long latency events I NodeO ! I Nodel !

Legion Mapping

* Mapping

— Assigns tasks to processors
— Assigns regions to memories

* Programmer selects:
— Where tasks run

— Where data is placed
— Data layout

* Provide default mapper

Array-of-Structs (Sequential CPU)

Struct-of-Arrays (GPU)

Hybrid (Vector CPU)

Resilience

* Resilience for exascale computing should be:

— Hierarchical
* Preserve data where most efficient and effective

— Distributed

— Proportional
* Tunable redundancy and recovery
 Different errors/faults handled differently

— Abstract

* Portable
* Amenable to auto-tuning and analysis

 Embed resilience in application

\ ‘: Ve % W \
’ 4';11: ‘: = 95) ;,'/)(\‘} 7" i) &) 5 *

Containment Domains

Single consistent abstraction

— Encapsulates resilience techniques

— Spans levels: programming, system, and analysis
Express resilience as a tree of CDs

— Match CD, task, and machine hierarchies

— Escalation for differentiated error handling

Semantics

Root CD

— Erroneous data never communicated

— Each CD provides recovery mechanism

or escalates

Components of a CD

Preserve

— Preserve data for recovery

. Domain
— Compute (domain body) Body
— Detect failures/errors before domain commits Detect
— Recover from detected errors Recover

Child CD

23

..........

Runtime Research Issues

Legion interoperation with Lua/Terra
— Already (mostly) working

Mapping for Liszt
— Liszt mapper will control Legion runtime decisions
— Can we write a general (Liszt) mapper?

Mapper interactions

— Some library components (e.g., solvers) may be written in Legion
* With their own mappers written by library experts

— How do we compose multiple mappers?

Containment Domains in Legion
— Natural fit with Legion’s hierarchical partitioning
— Provide mechanism, expose resilience policy decisions to Liszt

Liszt

Putting it All Together

Legion
Mapper

Terra Vendor
Kernels IR/LLVM

Legion RT

Exascale
Computer

local conduct

Liszt 2.0 In Terra

= liszt kernel(e in M.edges)

var vl = e.

var v2 = e.

var dp = vl.position - v2.position

var dt = vl.temperature - v2.temperature

var step = 1.0 / length(dp) Fields
vl.flux = vl.flux - dt * step Mesh

v2.flux = v2.flux + dt * step

vl.jacobistep = vl.jacobistep + step

v2.jacobistep = v2.jacobistep + step Sets
end
for i = 1, 1000 do conduct

conduct ()

end

can be called from terra
can be linked to a C library

Meshes + Particles

Extend Liszt abstractions to include particles
* Particle (represent transport and radiation)

* Fields[particle]
— Position, velocity
— Mass, energy, albedo, ...
* Relationships (modeled with mutable sets)
— c = cell(p) // return cell containing particle
— for(val p <- particles(cell)) ...
— for(val p <- neighbors(p)) ...

Challenges

Co-optimization
— Optimizations for meshes and particles
— Optimization with conflicting requirements

Particles
— Motion
* mutable sets

— Preferential concentration
* Load balancing

How to

Liszt wil

Relational Representation

create co-optimized data structures?

| accept relations as input

— Wider range of mesh representations
— Particle relationships
— Particle-cell relations

Inspirec
on com

by Setl, Loci, OP2 and Alex Aiken’s work
niling data structures from relations

Inspirec

by recent work in “NoSQL” databases

Synergistic Efforts
Exascale Co-Design Centers

e ExMatEx, T. Germann, J. Belak, A. McPherson

— Design and implementation of terra
— Couple Lulesh to CoMD

e ExaCT, J. Chen, J. Bell, P. McCormick

— Design and implementation of legion
— Orion —regular grids and finite differences

* PSAAP2

— Liszt 2.0: Meshes + particles
— Develop code for radiation + particle-laden flow

