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C-SWARM is a Good “CS Problem”

• Problem sizes that can challenge any capability machine	


• More than just an “adaptive mesh”	


• Multiple “zones” of computation, with moving boundaries	


• Significantly different computational paradigms in each	


• Data-driven algorithmic feedback to ensure accuracy	



• Not just dynamic load-balancing but also dynamic data 
migration and dynamic control at run-time	



• No single current architecture/software model is a good fit	


• Different kernels need different computational mixes	


• Fine-grained variation in load and computation scheduling	


• Significant memory/communication demands
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Three Key CS Questions

• How can we guide C-SWARM development to mesh 
most effectively with future “Exascale” systems?	


• How can we manage the highly dynamic C-SWARM 

computations to run efficiently on such systems?	


• How can we simplify the production of the C-

SWARM code in ways that provide continuing and 
long-term improvements in performance and 
productivity?
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Technology Events Have Radically Changed the 
 Architecture Base of Future Exascale Candidates

Single core microprocessors: 	


• more capable & faster	


• power increase offset by lower 

voltages	


Memory: more memory/chip	


• Due to density increase and bigger 

chips	


• Memory speed grows slowly	


System Interconnect: track clock	


• Wire driven 20

04

Moore’s Law: transistor size and intrinsic delay continue to decrease

• Operating Voltage stopped decreasing	


• Coolable max power/chip hit stops	


• Off-chip I/O maxed out	


• Economics of DRAM inhibited bigger chips	


• Wire interconnect peaked

2020TodayTime

The rise of multi-core:	


• More, simpler, cores per die	


• Slower clocks	


• Relatively constant off-die bandwidth	


Memory: 	


• Slow density increase	


• Slow grow in off-memory bandwidth	


Interconnect: 	


• Complex, power consuming wire	


• Very complex fiber optics
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Real NNSA Codes are also NOT LINPACK
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How are applications changing?

What we traditionally care about

What industry 
cares about

Informatics Applications

From: Murphy and Kogge, On The Memory Access Patterns of 
Supercomputer Applications: Benchmark Selection and Its 
Implications, IEEE T. on Computers, July 2007
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Getting C-SWARM to Exascale

• Target architectures will become	


• Very massively parallel	


• Heavily heterogeneous	


• With many FPUs per core	


• And at best small memory and limited per core bandwidth	


• And power dissipation a 1st class design constraint	



• At limits of capability machines – 1 billion+ ops must be 
managed every cycle	



• We must understand key performance metrics and how 
they scale across emerging architectures	



• We must understand optimal policies for scheduling and 
load balancing	



• We must focus on designing C-SWARM around memory 
and communications activity	


• With efficient flops a secondary concern
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Answering the “Metrics Vs Architecture” Question
• Cross cutting theme in C-SWARM	


• Work in tandem with algorithm and application designers	


• Understand scaling of basic kernels	


• Select/instrument/measure metrics that reflect “tall poles” 

in kernel execution, especially memory & node-node	


• Develop architecture-based models for predicting future 

C-SWARM performance	


• Explore alternative policies for scheduling kernels	


• Validate against execution on C-SWARM clusters	


• Use continuing ties to other DOE/NNSA Exascale 

initiatives to expand applicability
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Computer Science Contributions to C-SWARM

• Empower scientists to do science (not computer 
science)	



•Develop software infrastructure to make C-SWARM 
applications possible on current and next-generation 
(Exascale) HPC platforms	



• Efficiency and scalability	



• Productivity and reliability	



• Separate domain science from details of runtime 
system, computer architecture via advanced software 
libraries (ASLib) and run-time interfaces (XPI)

At the same time
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What is the Need?

•Quotes	



• “I spend 80% of my time trying to trick 
MPI into doing what it doesn’t want to 
do.”	



• “20% of existing code is physics”	



•Our response	



• No tricks needed with HPX runtime – 
control needs of problem are met by 
mechanisms of runtime system	



• Active System Libraries facilitates 
separation of concerns between science 
description and machine-oriented 
optimization
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Implementation Model
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Compiler

Metaprogramming Framework

Machine Code

Computer
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Abstract
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Domain-Specific
Active Libraries

• Scientist writes software in domain-specific fashion	



• Computer scientist specifies mapping from high-level (domain) to 
low-level (exec target)	



• Compiler/Library framework applies mappings	



• Runtime system carries out load-balancing, fault tolerance, adaptive 
tuning/optimization	



•H/W accessed via interface to runtime system

C-SWARMConventional
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Computer Science Strategy

• Apply and extend advanced execution model with essential properties for 
computational challenges 	



• For dramatic improvements in efficiency and scalability	



•Deliver runtime system for dynamic resource management and task 
scheduling	



• Exploit runtime information for continuous and adaptive control	



•Develop domain-specific hierarchical programming interface	



• For rapid algorithm development and testing	



• To enable separate optimization (parameterization and composition)	



• Support UQ and V&V	



• Phased development for immediate impact on project and long term 
improvements in performance and productivity	



• Leverage on-going research for mutual benefit of DOE programs

���14



Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Concrete Computer Science Deliverables

• ParalleX execution model	



• Cross-cutting guiding principles for co-design of application and system software	



•HPX runtime system	



•Dynamic adaptive resource management and task scheduling	



• Advanced control policies and parallelism discovery	



• XPI low-level programming interface	



• Stable interface to HPX	



• Target for high-level programming methods	



• ASLib(s) — Separation of concerns	



• Generic libraries (compositional)	



•Domain-specific language (DSL) 	



• Semantics necessary for physics, hiding system-specific issues	



•Optimization framework 
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A Quick ParalleX Overview

• Localities – Synchronous Domains	



• AGAS – Active Global Address Space	



• ParalleX Processes – with capabilities protection	



• Computational Complexes – threads & fine grain 
dataflow	



• Local Control Objects – synchronization and 
global distributed control state	



•Distributed control operation – global mutable 
data structures	



• Parcels – message-driven execution and 
continuation migration	



• Percolation – heterogeneous control	



•Micro-checkpointing – compute-validate-commit	



• Self-aware – introspection and declarative 
management
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HPX Runtime System

• ParalleX execution model provides conceptual framework for C-SWARM 
software co-design and integration	



• Attacks performance degradation for efficiency and scalability	



• Starvation, latency, overhead, contention, uncertainty of asynchrony	



• Addresses critical C-SWARM needs for dynamic adaptive system software	



• Provides support for multi-scale multi-physics time-varying application	



•Dynamic adaptive resource management and task scheduling for 
unprecedented efficiency and scalability	



•Optimized scheduling and allocation policies	



• Reliability through micro-checkpointing and compute-validate-commit cycle	



• XPI low-level programming interface	



• Low-risk means of building C-SWARM on top of HPX	



• Leverages and complements prior and ongoing work of other programs
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HPX Addresses C-SWARM Computational Needs
• Starvation	



•Discover parallelism within adaptive runtime data structures	



• Lightweight dynamic threads deliver new parallelism relative to static MPI 
processes	



• Load balance to match algorithm parallelism to physical resource	



• Pipeline to overlap success phases of computation	



• Latency	



•Overlap computation and communication (multithreading)	



•Message-driven computation (move work to data)	



•Overheads	



• Active global address space	



• Powerful but lightweight synchronization constructs	



• Lightweight thread context switching

���19



Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Overview

• Challenges and Goals	



• Exascale Overview	



•Overall Computer Science Strategy	



• ParalleX and HPX Runtime System	



• Active System Libraries

���20



Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Enabling Software Technology

Maxwell’s compatibility criterion	


• Retains Lagrangian representation in WAMR solver	


Enhance GFEM for PGFem3D	


• Coupled with Lagrangian face-offsetting tracking method	


• Surfaces represented explicitly	


Immersed Boundary Method for WAMR	


• Unstructured triangulated surface grid	


• Riemann problem in a local coordinate system	


Enhance Multi-time / Multi-domain Geometric Integrators	


• Mixed mode of integration (explicit & implicit)	


• Asynchronous time steps	


Enhance GCTH and Develop MPU	


• Nested coupling algorithm between M&m
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Macro-scale Meso-scale

shock zone
transition zone

inert zone

Micro-scale

O(0.1 m) O(0.1 mm) O(0.1 μm)
Macro-continuum Micro-continuum

Computational and Computer Science Synergies

Dynamic adaptive resource management and task 
scheduling - ParalleX execution model	


Reliable runtime system - HPX embodiment of ParalleX	


Productive code development - XPI and ASLibs

Starvation, latency, overhead, contention, uncertainty of 
asynchrony, etc.	


C-SWARM software suite reliability

‣BSP-based programming  with 
MPI is static and inefficient. 
Time is spent on data-structures, 
domain decomposition, load 
balancing, communications, etc.
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Starvation

t = 100 µs t = 200 µs

• Number and position of collocation points is not know a priori	


• Extensive use of adaptive space/time/model refinements

‣ Lightweight user threads	


‣Exploiting new forms of parallelism

Computational and Computer Science Synergies
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‣Multi-threaded local execution control	


‣Message-driven computation that moves work to data

• Order of solution of cells is not known a priori	


• Concurrent coupling based on nested iterations 

Latency

Figure 5.6. The representative ellipsoidal pack for the 75 % wt rice, 25 % wt black mustard
pack. Particles are identified as either rice (purple) or mustard (yellow) based off of their
average grayscale values. Notice that that individual particles may be traced back to their
voxel pack equivalents in Figure 5.4(a).

63

Macro-scale
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Figure 5.6. The representative ellipsoidal pack for the 75 % wt rice, 25 % wt black mustard
pack. Particles are identified as either rice (purple) or mustard (yellow) based off of their
average grayscale values. Notice that that individual particles may be traced back to their
voxel pack equivalents in Figure 5.4(a).
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Computational and Computer Science Synergies
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Overhead

‣ Light-weight synchronization like dataflow	


‣ Percolation, a form of controlled workflow management

Macro-scale

shock

Implicit
∆t2

Explicit
∆t1

Meso-scale

RUC fails to reach 
required tolerance

RUC required
tolerance passed

Computational and Computer Science Synergies

• Asynchronous time integration (explicit and implicit)	


• Error control in space time and constitutive update
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I2-MPI/I2-ASLib/I2-XPI

high-level abstractions 
of interface data

• physics-aware	


• input data-aware	


• numeric-aware	


• V&V/UQ-aware	


• visualization-aware

‣ Similar to the Roccom module - ASC CSAR center

Typically solvers exchange data horizontally	


We propose vertical coupling across scales	


Modularity preserved with exceptional scaling properties

Software Integration Framework

Data

• WAMR
• Maxwell’s compatibility 
• Immersed boundary
• Variational Integrators
• Constitutive Update
• MPU

• WAMR - HPX

Exascale
Architecture

ParalleX
model

HPX

I2 - MPI

Macro-Continuum

Micro-Continuum

V&V/UQ
• DAKOTA

• PGFem3D
• Phase-transformation
• Chemical kinetics
• L12 plasticity
• Transient GCTH
• MPU

• PGFem3D - HPX

Profiling

I/O

Visualization

I2 - ASLib

XPI
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Active System Libraries

•Metaprogramming-based interfaces to low-level libraries	



• Rather than just calling functions, library and calling code influence each other	



• Code generation and customized compilation enable usability and performance	



• Benefits:	



• Check uses of library and better diagnose errors	



• Configure library to specific computer system, use case	



•Domain-specific notation	



•Optimize code using library	



• Techniques:	



• C++ template metaprogramming (cf. Parallel Boost Graph, AM++, STAPL, …)	



• Compiler infrastructures (e.g., ROSE, LLVM)	



• Run-time code generation (e.g., SEJITS, CorePy)
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Progressive Implementation Strategy

Basic domain specific libraries layered on XPI	


Generic programming approach to separate concerns	



Allow simultaneous development of M&m and HPX	


Provide declarative semantics of M&m codes	


Bridge abstraction-performance divide	


Provide“insulation layer” between the C-SWARM 
framework, the HPX runtime system, and the 
hardware	



Evolve to “DSL”	


Reliability through micro-checkpointing and compute-
validate-commit cycle
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