
Computer Science !
Andrew Lumsdaine	

!

Center for Shock Wave-processing of!
Advanced Reactive Materials!

(C-SWARM)

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Overview

• Challenges and Goals	

• Exascale Overview	

•Overall Computer Science Strategy	

• ParalleX and HPX Runtime System	

• Active System Libraries

���2

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

C-SWARM is a Good “CS Problem”

• Problem sizes that can challenge any capability machine	

• More than just an “adaptive mesh”	

• Multiple “zones” of computation, with moving boundaries	

• Significantly different computational paradigms in each	

• Data-driven algorithmic feedback to ensure accuracy	

• Not just dynamic load-balancing but also dynamic data
migration and dynamic control at run-time	

• No single current architecture/software model is a good fit	

• Different kernels need different computational mixes	

• Fine-grained variation in load and computation scheduling	

• Significant memory/communication demands

���3

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Three Key CS Questions

• How can we guide C-SWARM development to mesh
most effectively with future “Exascale” systems?	

• How can we manage the highly dynamic C-SWARM

computations to run efficiently on such systems?	

• How can we simplify the production of the C-

SWARM code in ways that provide continuing and
long-term improvements in performance and
productivity?

���4

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Overview

• Challenges and Goals	

• Exascale Overview	

•Overall Computer Science Strategy	

• ParalleX and HPX Runtime System	

• Active System Libraries

���5

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Technology Events Have Radically Changed the
 Architecture Base of Future Exascale Candidates

Single core microprocessors: 	

• more capable & faster	

• power increase offset by lower

voltages	

Memory: more memory/chip	

• Due to density increase and bigger

chips	

• Memory speed grows slowly	

System Interconnect: track clock	

• Wire driven 20

04

Moore’s Law: transistor size and intrinsic delay continue to decrease

• Operating Voltage stopped decreasing	

• Coolable max power/chip hit stops	

• Off-chip I/O maxed out	

• Economics of DRAM inhibited bigger chips	

• Wire interconnect peaked

2020TodayTime

The rise of multi-core:	

• More, simpler, cores per die	

• Slower clocks	

• Relatively constant off-die bandwidth	

Memory: 	

• Slow density increase	

• Slow grow in off-memory bandwidth	

Interconnect: 	

• Complex, power consuming wire	

• Very complex fiber optics

���6

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Real NNSA Codes are also NOT LINPACK

���7

How are applications changing?

What we traditionally care about

What industry
cares about

Informatics Applications

From: Murphy and Kogge, On The Memory Access Patterns of
Supercomputer Applications: Benchmark Selection and Its
Implications, IEEE T. on Computers, July 2007

Original(Chart(from(R.(Murphy,(SNL,(June(2010(

Our(Systems(Are((
Designed(for(Here(

But
$NN

SA$A
pps

$(&$
C-SW

ARM
)$

Goi
ng$T

his$
Way$

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Getting C-SWARM to Exascale

• Target architectures will become	

• Very massively parallel	

• Heavily heterogeneous	

• With many FPUs per core	

• And at best small memory and limited per core bandwidth	

• And power dissipation a 1st class design constraint	

• At limits of capability machines – 1 billion+ ops must be
managed every cycle	

• We must understand key performance metrics and how
they scale across emerging architectures	

• We must understand optimal policies for scheduling and
load balancing	

• We must focus on designing C-SWARM around memory
and communications activity	

• With efficient flops a secondary concern

���8

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Answering the “Metrics Vs Architecture” Question
• Cross cutting theme in C-SWARM	

• Work in tandem with algorithm and application designers	

• Understand scaling of basic kernels	

• Select/instrument/measure metrics that reflect “tall poles”

in kernel execution, especially memory & node-node	

• Develop architecture-based models for predicting future

C-SWARM performance	

• Explore alternative policies for scheduling kernels	

• Validate against execution on C-SWARM clusters	

• Use continuing ties to other DOE/NNSA Exascale

initiatives to expand applicability

���9

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Overview

• Challenges and Goals	

• Exascale Overview	

•Overall Computer Science Strategy	

• ParalleX and HPX Runtime System	

• Active System Libraries

���10

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM) ���11

Computer Science Contributions to C-SWARM

• Empower scientists to do science (not computer
science)	

•Develop software infrastructure to make C-SWARM
applications possible on current and next-generation
(Exascale) HPC platforms	

• Efficiency and scalability	

• Productivity and reliability	

• Separate domain science from details of runtime
system, computer architecture via advanced software
libraries (ASLib) and run-time interfaces (XPI)

At the same time

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

What is the Need?

•Quotes	

• “I spend 80% of my time trying to trick
MPI into doing what it doesn’t want to
do.”	

• “20% of existing code is physics”	

•Our response	

• No tricks needed with HPX runtime –
control needs of problem are met by
mechanisms of runtime system	

• Active System Libraries facilitates
separation of concerns between science
description and machine-oriented
optimization

���12

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Implementation Model

Data
Structures

Algorithms

Specialized
Source Code

Machine Code

Hardware
Information Environment

Meta-data

Data

Compiler Results Libraries

Scientist

���13

Compiler

Metaprogramming Framework

Machine Code

Computer
Scientist

Scientist

Results

Data

metaprogram

Environment Hardware
Information

Scientific Program
Domain

Algorithms
Abstract

Code
Specialization

Hints

Domain-Specific
Active Libraries

• Scientist writes software in domain-specific fashion	

• Computer scientist specifies mapping from high-level (domain) to
low-level (exec target)	

• Compiler/Library framework applies mappings	

• Runtime system carries out load-balancing, fault tolerance, adaptive
tuning/optimization	

•H/W accessed via interface to runtime system

C-SWARMConventional

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Computer Science Strategy

• Apply and extend advanced execution model with essential properties for
computational challenges 	

• For dramatic improvements in efficiency and scalability	

•Deliver runtime system for dynamic resource management and task
scheduling	

• Exploit runtime information for continuous and adaptive control	

•Develop domain-specific hierarchical programming interface	

• For rapid algorithm development and testing	

• To enable separate optimization (parameterization and composition)	

• Support UQ and V&V	

• Phased development for immediate impact on project and long term
improvements in performance and productivity	

• Leverage on-going research for mutual benefit of DOE programs

���14

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Concrete Computer Science Deliverables

• ParalleX execution model	

• Cross-cutting guiding principles for co-design of application and system software	

•HPX runtime system	

•Dynamic adaptive resource management and task scheduling	

• Advanced control policies and parallelism discovery	

• XPI low-level programming interface	

• Stable interface to HPX	

• Target for high-level programming methods	

• ASLib(s) — Separation of concerns	

• Generic libraries (compositional)	

•Domain-specific language (DSL) 	

• Semantics necessary for physics, hiding system-specific issues	

•Optimization framework

���15

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Overview

• Challenges and Goals	

• Exascale Overview	

•Overall Computer Science Strategy	

• ParalleX and HPX Runtime System	

• Active System Libraries

���16

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

A Quick ParalleX Overview

• Localities – Synchronous Domains	

• AGAS – Active Global Address Space	

• ParalleX Processes – with capabilities protection	

• Computational Complexes – threads & fine grain
dataflow	

• Local Control Objects – synchronization and
global distributed control state	

•Distributed control operation – global mutable
data structures	

• Parcels – message-driven execution and
continuation migration	

• Percolation – heterogeneous control	

•Micro-checkpointing – compute-validate-commit	

• Self-aware – introspection and declarative
management

���17

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

HPX Runtime System

• ParalleX execution model provides conceptual framework for C-SWARM
software co-design and integration	

• Attacks performance degradation for efficiency and scalability	

• Starvation, latency, overhead, contention, uncertainty of asynchrony	

• Addresses critical C-SWARM needs for dynamic adaptive system software	

• Provides support for multi-scale multi-physics time-varying application	

•Dynamic adaptive resource management and task scheduling for
unprecedented efficiency and scalability	

•Optimized scheduling and allocation policies	

• Reliability through micro-checkpointing and compute-validate-commit cycle	

• XPI low-level programming interface	

• Low-risk means of building C-SWARM on top of HPX	

• Leverages and complements prior and ongoing work of other programs

���18

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

HPX Addresses C-SWARM Computational Needs
• Starvation	

•Discover parallelism within adaptive runtime data structures	

• Lightweight dynamic threads deliver new parallelism relative to static MPI
processes	

• Load balance to match algorithm parallelism to physical resource	

• Pipeline to overlap success phases of computation	

• Latency	

•Overlap computation and communication (multithreading)	

•Message-driven computation (move work to data)	

•Overheads	

• Active global address space	

• Powerful but lightweight synchronization constructs	

• Lightweight thread context switching

���19

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Overview

• Challenges and Goals	

• Exascale Overview	

•Overall Computer Science Strategy	

• ParalleX and HPX Runtime System	

• Active System Libraries

���20

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Enabling Software Technology

Maxwell’s compatibility criterion	

• Retains Lagrangian representation in WAMR solver	

Enhance GFEM for PGFem3D	

• Coupled with Lagrangian face-offsetting tracking method	

• Surfaces represented explicitly	

Immersed Boundary Method for WAMR	

• Unstructured triangulated surface grid	

• Riemann problem in a local coordinate system	

Enhance Multi-time / Multi-domain Geometric Integrators	

• Mixed mode of integration (explicit & implicit)	

• Asynchronous time steps	

Enhance GCTH and Develop MPU	

• Nested coupling algorithm between M&m

���21

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)Center for Shock Wave-processing of Advanced Reactive Materials (C-SWARM) ���22

Macro-scale Meso-scale

shock zone
transition zone

inert zone

Micro-scale

O(0.1 m) O(0.1 mm) O(0.1 μm)
Macro-continuum Micro-continuum

Computational and Computer Science Synergies

Dynamic adaptive resource management and task
scheduling - ParalleX execution model	

Reliable runtime system - HPX embodiment of ParalleX	

Productive code development - XPI and ASLibs

Starvation, latency, overhead, contention, uncertainty of
asynchrony, etc.	

C-SWARM software suite reliability

‣BSP-based programming with
MPI is static and inefficient.
Time is spent on data-structures,
domain decomposition, load
balancing, communications, etc.

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)Center for Shock Wave-processing of Advanced Reactive Materials (C-SWARM) ���23

Starvation

t = 100 µs t = 200 µs

• Number and position of collocation points is not know a priori	

• Extensive use of adaptive space/time/model refinements

‣ Lightweight user threads	

‣Exploiting new forms of parallelism

Computational and Computer Science Synergies

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)Center for Shock Wave-processing of Advanced Reactive Materials (C-SWARM) ���24

‣Multi-threaded local execution control	

‣Message-driven computation that moves work to data

• Order of solution of cells is not known a priori	

• Concurrent coupling based on nested iterations

Latency

Figure 5.6. The representative ellipsoidal pack for the 75 % wt rice, 25 % wt black mustard
pack. Particles are identified as either rice (purple) or mustard (yellow) based off of their
average grayscale values. Notice that that individual particles may be traced back to their
voxel pack equivalents in Figure 5.4(a).

63

Macro-scale

Meso-scale ensemble 1

Figure 5.6. The representative ellipsoidal pack for the 75 % wt rice, 25 % wt black mustard
pack. Particles are identified as either rice (purple) or mustard (yellow) based off of their
average grayscale values. Notice that that individual particles may be traced back to their
voxel pack equivalents in Figure 5.4(a).

63

shock

Meso-scale ensemble 2

Computational and Computer Science Synergies

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)Center for Shock Wave-processing of Advanced Reactive Materials (C-SWARM) ���25

Overhead

‣ Light-weight synchronization like dataflow	

‣ Percolation, a form of controlled workflow management

Macro-scale

shock

Implicit
∆t2

Explicit
∆t1

Meso-scale

RUC fails to reach
required tolerance

RUC required
tolerance passed

Computational and Computer Science Synergies

• Asynchronous time integration (explicit and implicit)	

• Error control in space time and constitutive update

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)Center for Shock Wave-processing of Advanced Reactive Materials (C-SWARM) ���26

I2-MPI/I2-ASLib/I2-XPI

high-level abstractions
of interface data

• physics-aware	

• input data-aware	

• numeric-aware	

• V&V/UQ-aware	

• visualization-aware

‣ Similar to the Roccom module - ASC CSAR center

Typically solvers exchange data horizontally	

We propose vertical coupling across scales	

Modularity preserved with exceptional scaling properties

Software Integration Framework

Data

• WAMR
• Maxwell’s compatibility
• Immersed boundary
• Variational Integrators
• Constitutive Update
• MPU

• WAMR - HPX

Exascale
Architecture

ParalleX
model

HPX

I2 - MPI

Macro-Continuum

Micro-Continuum

V&V/UQ
• DAKOTA

• PGFem3D
• Phase-transformation
• Chemical kinetics
• L12 plasticity
• Transient GCTH
• MPU

• PGFem3D - HPX

Profiling

I/O

Visualization

I2 - ASLib

XPI

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Active System Libraries

•Metaprogramming-based interfaces to low-level libraries	

• Rather than just calling functions, library and calling code influence each other	

• Code generation and customized compilation enable usability and performance	

• Benefits:	

• Check uses of library and better diagnose errors	

• Configure library to specific computer system, use case	

•Domain-specific notation	

•Optimize code using library	

• Techniques:	

• C++ template metaprogramming (cf. Parallel Boost Graph, AM++, STAPL, …)	

• Compiler infrastructures (e.g., ROSE, LLVM)	

• Run-time code generation (e.g., SEJITS, CorePy)

���27

Center for Shock Wave-procession of Advanced Reactive Materials (C-SWARM)

Progressive Implementation Strategy

Basic domain specific libraries layered on XPI	

Generic programming approach to separate concerns	

Allow simultaneous development of M&m and HPX	

Provide declarative semantics of M&m codes	

Bridge abstraction-performance divide	

Provide“insulation layer” between the C-SWARM
framework, the HPX runtime system, and the
hardware	

Evolve to “DSL”	

Reliability through micro-checkpointing and compute-
validate-commit cycle

���28

Exascale Plan !
Andrew Lumsdaine	

Center for Shock Wave-processing of!
Advanced Reactive Materials!

(C-SWARM)

