Sandia National Laboratories
NMR Facilities
Poster Gallery
Past Group Members
Group Photo

Nuclear Magnetic Resonance (NMR) Spectroscopy Facility


The Sandia National Laboratories NMR Spectroscopy Facility maintains both high resolution solution and solid state capabilities for the characterization of chemical structure, reaction kinetics, morphologies and dynamic properties for a wide range of materials. Our research includes the development and implementation of both multi-frequency and multi-dimensional NMR experiments to probe specific chemical or materials science related questions.

New and Notable: HRMAS NMR Spectroscopy in Material Science

Advanced Aspects Spectroscopy

Research Interests

Graphene/Liquid Crystal Composites

NMR provides the perfect tool to measure the orientational order in LC composites. Our recent work has concentrated on the impact of the highly anisotropic graphene on the magentically oriented LC systems.

Recently Published: Impact of Graphene Incorporation on the Orientational Order of Graphene/Liquid Crystal Composites (2013)

Liquid Crystal - NMR Figure


Structure and Dynamics in Ionomers

Precise manipulation of structure within ionomer membranes continues to be an area of interest. In collaboration with University of Pennsylvania a series of poly(ethylene-co-acrylic acid) copolymers P(E-AA) have been prepared to address the role of carboxylic acid spacing.Utilizing samples with precise versus random placement of the pendant carboxylic acid group, the effect on structure, morphology, and dynamics is being investigated. Solid state 1H and 13C MAS NMR spectroscopy is being used to characterize these changes. The NMR reveals that the changes in the P(E-AA) structure and dynamics imposed by these carboxylic acid defects are distinct, and vary with temperature and the degree of Zn2+, Li+ or Na+ neutralization. These results are being combined with ab initio calculations of NMR shielding parameters to understand the experimental results.

Recently Published: Computing the 7Li NMR Chemical Shielding of Hydrated Li+ Using Cluster Calculations and Time-Averaged Configurations from Ab Initio Molecular Dynamics Simulations


C. Francisco Buitrago, Janelle E. Jenkins, Kathleen L. Opper, Brian S. Aitken, Kenneth B. Wagener, Todd M. Alam, and Karen I. Winey, “Room Temperature Morphologies of Precise Acid- and Ion-Containing Polyethylenes”, Macromolecules, ASAP (2013). http:/dx/

C. Francisco Buitrago, Todd M. Alam, Kathleen L. Opper, Brian S. Aitken, Kenneth B. Wagener, and Karen I. Winey, “Morphological Trends in Precise Acid- and Ion-Containing Polyethylenes at Elevated Temperature”, Macromolecules, ASAP (2013). http:/dx/

Todd M. Alam, Janelle E. Jenkins, Dan S. Bolinitineanu, Mark J. Stevens, Amalie L. Frischknecht, C. Francisco Buitrago, Karen I. Winey, Kathleen L. Opper and Kenneth B. Wagener, “Heterogeneous Coordination Environments in Lithium-Neutralized Ionomers Identified Using 1H and 7Li MAS NMR”, Materials,  5, 1508-1527 (2012).

Structure and Dynamics in Inorganic Systems

Both solution and solid-state NMR has been use to look at a range of inorganic materials. Recently we have employed solid state 6,7Li MAS NMR and wide line 139La NMR to probe the impact of processing on Li-La-Nb/Ta Garnet electrolytes and lanthanum halides. High speed 1H MAS NMR has also been employed to look at the role of templating in ruthenium oxide electrodes. The dynamics in Uranyl Nanocapsules utilizing23Na solution and solid state has also been descriped in JACS:


May Nyman and Todd M. Alam, “Dynamics of Uranyl Peroxide Nanocapsules”, J. Am. Chem. Soc., 134, 20131-20138 (2012).

Todd M. Alam, Zuolei Liao, Lev N. Zacharov, May Nyman, “Solid-State Dynamics of Uranyl Polyoxometalates”, Chemistry, A. Eur. J., 20(27), 8302-8307 (2014).


Dynamics in Ionic Liquids

With the increasing interest in room temperature ionic liquids (ILs) for a variety of application our recent research has focused on the use of NMR to probe the local dynamics and transport properties in these materials. We recently demonstrated in collaboration with UT Austin that 14N NMR provides the perfect tool to determine reorientational correlation times in quaternary ammonium ILs and cyclic pyrrolidinium ILs. The diffusion properties of these ionic liquids have also been measured by using pulse field gradient (PFG) NMR techniques. We have also begun efforts to combine ab initio calculations of ILs to the observed NMR parameters.

Todd M. Alam, Daniel R. Dreyer, Christopher W. Bielawski, and Rodney S. Ruoff, “Combined Measurement of Translational and Rotational Diffusion in Quantenary Acyclic Ammonium and Cyclic Pyrrolidinium Ionic Liquids”, J. Phys. Chem. B, 117, 1967-1977 (2013).

Todd M. Alam, D.R. Dreyer, C. W. Bielwaski, R. S. Ruoff, "Measuring Molecular Dynamics and Activation Energies for Quaternary Acyclic Ammonium and Cyclic Pyrrolidinium Ionic Liquids using 14N NMR Spectroscopy", The Journal of Physical Chemistry A, 115 (17), 4307-4316 (2011).


Theoretical Calculations of CWA/Water/Interfaces



This research is aimed at developing a molecular level understanding into the role water, including dissolved electrolytes plays on the interaction, lifetime and reaction kinetics of chemical warfare agents (CWA), particularly nerve agents or organophosphate agents (OPA), on inorganic surfaces. The importance of water, including dissolved electrolytes, on CWA-surface interactions remains unclear and is the driving force of this effort. Combined molecular dynamics (MD) simulations and ab initio quantum calculations are being used to understanding and predicting these water-CWA-surface interactions. Current efforts include understanding the micro-hydration of CWA, and the impact of water adsorption on the interaction of CWA with silica surfaces.

DMMP and Sarin calculations
Figure 4: a) Dimethyl methylphosphonate (DMMP), a simulant used for Sarin, adsorbed to an amorphous silica surface. Adsorption was calculated using the ONIOM method, ONIOM (b3lyp/6-311++g(2d,2p):UFF), with the ball and stick representing "High" theory and the wireframe representing "Low." b) Sarin adsorbed to H3SiOH in the presence of three explicit waters. Adsorption calculated using b3lyp/6-311++g(2d,2p).

Todd M. Alam, C.J. Pearce and Janelle Jenkins, “Ab Initio Investigation of Sarin Micro-Hydration”, Computational and Theoretical Chemistry, 995, 24-35, (2012). paper

For more information, contact Todd M. Alam

MS&E logo

NMR Facility Director - CV

Todd M. Alam

Related Links

Arizona State University Chemistry Department

ASU Magnetic Resonance Reseach Center

The University of New Mexico

New Mexico Resonance


last update: March 24,2011
content owner: Todd M. Alam
page author: Sarah McIntyre