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National and economic security and the quality of life in the U.S. depend on reliable operation of 
complex infrastructures. The National Infrastructure Simulation and Analysis Center, or NISAC, 
provides modeling and simulation capabilities for analyzing critical infrastructures. NISAC was founded 
by Congress in the late 90’s as a joint effort between Sandia and Los Alamos National Laboratories. 
When DHS was formed NISAC moved over to DHS/IAIP where it has continued its efforts. 
NISAC analyses focus on the such things as projecting the consequences of disruptions in infrastructure 
services and changes in security policy (power outages, hurricanes, floods, terrorist attacks, security 
measures, etc.).  NISAC combines simulation of the various infrastructures with perturbations (natural 
and anthropogenic) along with disease and economic models to evaluate consequences to public health, 
economics of the region, their distribution and duration. 
A major focus of NISAC is understanding interdependencies, quantifying their effects and identifying 
effective strategies for reducing the potential consequences. We are focused on how and when a 
perturbation spills over or cascades from one infrastructure to another. We use coupled network models, 
agent-based simulation tools and system dynamics models with feedbacks within and between 
infrastructures to try to model and understand this process, evaluate consequences, and ultimately suggest 
mitigation strategies that minimize the compounded effects. 
Of course, there’s a lot of integration that you have to do to play this game. 
 
What I will introduce you to today is some of our work being done within the Advanced Modeling and 
Techniques Investigations Task (AMTI), one of NISAC’s long-term investments in understanding 
critical infrastructures and their interdependencies (Glass et al., 2003). Our mandate is to identify 
theories, methods, and analytical tools from the study of general complex adaptive systems that are 
useful for understanding the structure, function, and evolution of complex interdependent critical 
infrastructures. 
In one of AMTI’s efforts, we are focusing on cascading failure as can occur with devastating results 
within and between infrastructures.  
 
References: 
Glass, R.J., W.E. Beyeler, S.H. Conrad, N.S. Brodsky, P.G. Kaplan, T.J. Brown, Defining research and 
development directions for modeling and simulation of complex, interdependent adaptive infrastructures, 
32 pages (SNL paper SAND 2003-1778P). 
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First Stylized Fact 
Infrastructures are very large multi-component systems. 
Many multi-component systems exhibit “heavy tails” that can often be represented as a power law 
for event frequency as a function of event (or outage) size. 
The green curve represents a standard normal distribution while the orange line is a power law. The 
“heavy tail”  region of the power-law shows that big events are not rare in such systems. 
Power-law behavior is also typical of what has been called “1/f noise” found in many natural and 
anthropogenic systems. 
What about infrastructures? 
Certainly Power grid blackouts have heavy tails, but also Telecom outages, Traffic jams and 
Market crashes as well. 
Note that roll off in the power law at both ends occurs in all natural systems of finite size. 
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What is behind this power-law behavior? 
In equilibrium systems, power-laws are correlated with critical behavior as often found at phase 
transition boundaries. 
Phase transitions occur at specific critical points, Tc, and systems generally must be tuned to be 
there. 
A magnet is a classic example where below the Curie point it behaves collectively (as a magnet) but 
above, does not. 
Percolation theory has been developed to understand system behavior at the critical point where 
spatial-temporal fractals and power laws emerge. 
What about non-equilibrium systems? 
Many non-equilibrium systems (e.g. BTW sand-pile in the next slide) maintain themselves in a 
critical state.  This can occur through the interaction of a driving process which pushes the system in 
one direction, and a dissipating process which only becomes effective because of properties that 
emerge (perhaps via long-range correlations) at the phase transition boundary. 
For non-equilibrium systems to behave this way, they must be placed and maintained within an 
energy gradient. 
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BTW Sand-pile or Cascade model 
In 1987, Bak, Tang, and Wiesnefeld formulated a very simple model that generates cascades with 
power-law distributions within a multi-component system from simple local rules operating on a 
square lattice within a slow random drive: the BTW sand-pile. 
In the BTW sand-pile, a grain of sand is added to a site chosen at random within a two dimensional 
square lattice. When the number of grains at a site exceeds 4, it distributes a grain of sand to each of 
its non-diagonal neighbors. If any of these sites are pushed over their thresholds, they too distribute 
their sand grains and thus contribute to the cascade. Sand is removed from the domain when it 
encounters the edge of the network. 
Model relies on a separation of time scales such that the drive is very slow relative to the 
relaxation process. Thus cascades evolve to completion before additional sand is applied. 
Dissipative system: for the original BTW sand-pile, dissipation occurs only at the boundaries where 
sand is lost. However, dissipation can occur within the local rule as well (i.e., friction). 
This simple model  based on local rules creates a state of Self Organized Criticality with power law 
distributions for cascades and fractals in space and time. 
Since it’s introduction, this simple model has been modified and applied in nearly every scientific 
field and the original paper has been referenced over 2000 times. 
 
References: 
Bak, P., C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of 1/f noise, Physical 
Review Letters, 59:4:381-384, 1987. 
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Second Stylized Fact 
Another important feature of many natural and man made systems are that components are linked 
into complex and often ramified networks.  
Designed by evolution or by man, networks are ubiquitous. Here are three examples from Strogatz 
(2001). 
Nearly every system can be formulated and analyzed as a network! 
We find: King pins, keystone species, critical nodes, critical reactions, rate determining steps… 
 
References: 
Strogatz, S.H., Exploring Complex networks, Nature, 410:268-276, 2001. 
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Idealized Network Topology 
Graph theorists have generated and explored the properties of many idealized network topologies 
thus allowing us to identify and classify attributes. 
At one end of the spectrum are perfectly ordered, regular lattices: crystals are an example. 
Regular lattices have the property of “clustering”, that is, your neighbors are often connected to each 
other. 
At the other end of the spectrum are disordered, random networks, first studied by Erdos and 
Renyi (1959). Such networks are formed by joining two nodes at random and then repeating this 
selection and joining process over and over until a specified link density is achieved. Random 
networks have what is called the “small world” property, that is, it takes just a few steps within the 
network to go from one place to another. However, random networks are devoid of clustering. 
Blending a Ring lattice with a Random network yields both the small world characteristic and 
clustering. This was first proposed by Watts and Strogatz (1998) as representative of many social 
networks. 
In many naturally occurring networks, one finds a power-law or near power-law for the nodal degree 
distribution such that a significant number of highly connected nodes exist (i.e., a heavy tail). 
Networks with this power-law distribution have fractal properties and are often called scale-free 
(Barabasi and Albert, 1999).  
 
References: 
Erdos, P., and A. Renyi, On Random Graphs, I, Publicationes Mathematicae (Debrecen), 6:290-297, 
1959. 
Watts, D.J., and S.H. Strogatz, Collective dynamics of ‘small world’ networks, Nature, 393:440-442, 
1998. 
Barabasi, A.-L., and R. Albert, Emergence of scaling in random networks, Science, 286:5439:509-
512, 1999.  
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Special properties of the scale free network 
Scale-free networks can be formed by many different processes or models.  
The preferential attachment algorithm of Barabasi and Albert (1999) was used to create the network 
shown in this slide. 
Two additional features that one often finds in real and engineered systems are “king-pin” or “key 
stone” nodes that are critical to the operation of the entire system, and hierarchies or “tree” 
structures where some (or all but one) nodes are subservient to others. Both of these features are 
found in the Scale-free network. 
Albert, Jeong and Barabasi (2000) demonstrated the critical properties of such a network: tolerant to 
random failure but vulnerable to informed attack. For example, if one chose a node at random to 
remove from the network in the slide, a degree one node would likely be selected, and its removal 
would do little to the connectivity at large. But if the red, highest degree node were selected, the 
network would fragment into many pieces, loosing its large scale connectivity. 
 
References: 
Albert, R., H. Jeong, A.-L. Barabasi, Error and attack tolerance of complex networks, Nature, 
406:378-382, 2000.  
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Our conceptual approach 
We combine the 2 Stylized Facts to formulate our conceptual approach: Bottom’s up Simulation or 
Rules on Networks. 
Our general approach distills the system of interest to a network (or multiple networks) of nodes and 
connections with a set of tailored interaction rules (static to adaptive) for each. Combined with drives 
and dissipations we can evaluate how general features, such as network connectivity and interaction 
rules, can influence cascading failure and the choice of mitigation strategy once a cascade begins. 
We have rolled all of this into an easily adapted code we call Polynet. Polynet is written in Java and 
inherits many of its classes from Repast written by researchers at Argonne National Laboratories and 
the University of Chicago. 
In the remainder of the talk, I will present one abstract example (the BTW Sand-pile on arbitrary 
network topology) and three very different applications: 1) Cascading blackouts in the high voltage 
electric power transmission system which relays electricity from generators to groups of distribution-
level consumers; 2) Cascading liquidity loss in payment systems, which are central bank services for 
sending large-value payments between banks and other large financial institutions; and 3) Cascading 
epidemics within a structured community of people when vaccine is low. In each, network topology 
and interaction rules are specifically tailored.  
Note that the Abstract Example and all Applications are highly “stylized”. 
 
References: 
Glass, R.J., W.E. Beyeler, K.L. Stamber, Advanced simulation for analysis of critical infrastructure: 
Abstract cascades, the electric power grid, and Fedwire,  18 pages (SNL paper SAND 2004-4239). 
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Abstract Example: BTW sand-pile on varied topology 
To generalize the BTW sand-pile and apply it to arbitrary network topologies, let us consider grains of sand to represent units 
of “energy”, E, and specify a constant threshold value across all sites, Ec, at which a site changes state and distributes one unit 
of E to each of its neighboring sites. Let us also choose a small number of randomly distributed sites within the network to act 
as sinks that absorb all E distributed to them. These sites play the role of the edges of the original BTW sand-pile and allow 
closed networks to be considered. In this generalized form, we can now apply the BTW sand-pile to any network topology.  
Example BTW sand-pile simulations for 10,000 node problems for fish-net and scale-free stylized network exhibit time series 
that are highly erratic (see top right plot). In the plot, cascade size (defined by the number of times nodes in the network are 
pushed about threshold and distribute E) is shown in time defined by the number of unit additions of E to the network.  The 
time between cascades appears to be random and the size of the cascade unpredictable. Cascade size distributions for each 
network type (see lower right plot) exhibit the typical BTW sand-pile power-law with eventual exponential “roll-off” at 
large values. The power-law is indicative of self-organized criticality while the roll-off reflects the finite size of the 
simulation. We see that the exponent of the power-law (slope of the line) is dependent on the network topology. 
The BTW sand-pile considers simple local nearest neighbor interactions between nodes and models a transmission process 
within a network that is fast relative to the addition of accumulating perturbations. As it stands, such a model may have 
application to a variety of situations of importance in the analysis of critical infrastructures. However, the constraints of the 
BTW sand-pile can be relaxed or replaced with others quite generally within Polynet and thus transform the model in many 
directions. In the remainder of the talk, we explore such transformations in context of three applications: the electric power 
grid, a payment system, and the spread of an infectious disease.  
 
Reference: 
Glass, R.J., W.E. Beyeler, K.L. Stamber, Advanced simulation for analysis of critical infrastructure: Abstract cascades, the 
electric power grid, and Fedwire,  18 pages (SNL paper SAND 2004-4239). 
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Application 1: Cascading Blackouts 
A Stylized power grid is represented by ideal networks that “bracket” what we find in real systems: regular fish-net lattice 
and scale-free. Nodes represent sources, sinks, and relays stations for electricity. Sources and sinks are assigned 
representative values for power grids. DC circuit analogy is solved on the network to yield loads at each node and then 
nodes are given failure loads specified by a uniform safety factor representative of grid design. The system is driven by a 
random, unregulated market where pairs of sources and sinks are chosen at random to buy and sell electricity. After each 
transaction, load is recalculated within the network. This sequence continues until a node is pushed above failure threshold. 
The failed node is then removed, load is recalculated, nodes which are now pushed above threshold then fail and are removed, 
etc. The resulting load based cascade is followed to its completion. Following a cascade, the network is placed at its initial 
condition and random transactions are once again accumulated until the next cascade occurs, etc. 
Cascade size (number of nodes that fail) as a function of time (transactions) for two example networks each containing 400 
nodes are shown in the plots on the right. 
Fishnet: Cascades are either very small, or near the size of the system 
Scale-free: sets of cascades occur that are specific to a given network realization and determined by the specifics of the 
network topology, natural breaks occur that fragment the system when cascades occur. 
Also note that the time scales for the two networks are over 2 orders of magnitude different suggesting the fish-net to be 
much more robust to market perturbations than the scale-free (i.e., it can accumulate many more perturbations before 
cascading) 
 
References: 
Glass, R.J., W.E. Beyeler, K.L. Stamber, Advanced simulation for analysis of critical infrastructure: Abstract cascades, the 
electric power grid, and Fedwire,  18 pages (SNL paper SAND 2004-4239). 
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Application 2: Cascading Liquidity Loss within Payment Systems 
Payment systems allow banks to move money and securities between each other. An example of a 
payment system is Fedwire, the Federal Reserve’s service for sending large-value payments between 
banks and other large financial institutions. It is worth noting that nearly every central bank across 
the globe has adopted Fedwire-like payment systems to allow the smooth flow of funds. The average 
daily volume transmitted within Fedwire is ~ $1.6T, while the total of the reserve account balances 
supporting this flow is typically only ~ $10B. This extremely efficient use of capital (characterized 
by the turnover ratio of transaction volume to total balances) arises from and depends upon the 
close coordination of payments among banks. Failure of a participant to make timely payments, 
either through communications failure or liquidity shortfalls, can affect the ability of payees to fulfill 
their own obligations. The close coordination engendered by a reliable payment system creates a 
network of inter-bank dependencies, which is potentially subject to cascade failures in the absence of 
mitigating interventions.  
In our stylized example, banks form nodes and transactions are links. Through a training period 
(several thousands of trading days) banks adapt their balances to reduce the risk of borrowing or 
loosing the use of funds at the end of the day. We then trigger a cascade by removing a bank. 
Payments to the bank are tied up while payments it should make do not arrive. Neighboring banks 
eventually default and pass the cascade of liquidity loss on to their neighbors contagiously. 
We consider a scale-free network of transactions between banks and study the influence of: 
1) increasing the number of transactions/period 
2) patterning as one might expect to occur due to processes that occur periodically between certain 
banks 
3) removing a bank at random versus selecting the highest degree bank. 
 
Reference: 
Glass, R.J., W.E. Beyeler, K.L. Stamber, Advanced simulation for analysis of critical infrastructure: 
Abstract cascades, the electric power grid, and Fedwire,  18 pages (SNL paper SAND 2004-4239). 
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Cascading Liquidity in Scale-free Network 
The influence of increasing the number of transactions is shown in the upper left plot. Banks 
adjust balances such that the ratio of total reserves to total transaction volume, which we define as 
turnover ratio, is proportional to N-1/2, where N is the number of trading period transactions. Thus, 
as we increase the number of transactions, we reduce the turnover ratio. Cascades are greatly 
accelerated. 
The influence of patterned transactions is shown in the upper right plot. Again, banks adjust to the 
patterning and cascades are accelerated. 
Random removal vs Attack of the Highest Degree node is shown in the lower left. The two blue 
curves bracket the set of simulations where random nodes were removed, the red curves bracket the 
set that were attacked. Again, cascades are accelerated by attack. 
Important observation: Payment systems should have a very high tendency to cascade, but in 
practice they don’t. The reason for their robustness is due to the role of the policies of the central 
bank that catch and mitigate such cascading, often before it can even start. 
 
Reference: 
Glass, R.J., W.E. Beyeler, K.L. Stamber, Advanced simulation for analysis of critical infrastructure: 
Abstract cascades, the electric power grid, and Fedwire,  18 pages (SNL paper SAND 2004-4239). 
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Application 3: Cascading Flu 
In Fall 2004, there was quite a bit of stir around the lack of usual levels of flu vaccine. The current  
policy for vaccination places those that have a high risk of death at higher priority for receiving 
vaccination, especially during a shortage. Does this policy make sense? We can apply Polynet to 
evaluate the cascade of flu on a structured network of social contacts within a community. This 
work was performed by Laura Glass under the guidance of Robert Glass and Walter Beyeler and will 
be presented at the 2005 Intel International Science and Engineering Fair in Phoenix, Arizona, the 
week of May 9, 2005. 
For this application, Nodes/agents become Kids, Teens, Adults and Seniors in proportions 
specified by demographics. To build the social network in a structured community or village, agents 
belong to multiple groups also specified by demographics. Those groups for teen Laura Glass are 
shown in the slide as an example. Within each group, a network is imposed of given ideal topology 
(random and ring topologies are used in this example) and the number of links and their frequency 
of activation specify the network of contacts in time. 
Parameters for the disease are chosen to be representative of the flu: incubation period, 
infectious period, symptomatic period, average infectivity, infectivity and mobility when 
symptomatic, mortality, and the inference of immunity. 
Agent class specific parameters change the disease parameters in a relative fashion for: 
infectivity, mobility when symptomatic, mortality, and probability of vaccination. 
Once the network of social connection is built, flu epidemics are instigated with the arrival of 10 
infected adults (travelers) chosen at random from the population. The spread of the disease is 
followed in time: number infected, number recovered, number of deaths, etc. 
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Flu Epidemic in Structured Village of 10,000 
Here we show the influence of increasing realism beginning with average agents that hold average 
values for all parameters but reside within a structured Village of 10,000. 
Without immunity, the flu reaches an average value of 3000 people sick at any one time. 
Adding Immunity after being sick and Mortality, the number infected rises to below 2000 and then 
falls to zero after ~100 days. These results would be represented very well by a standard SIR model 
(based on ordinary differential equations) with an empirical fit for its parameters. 
Adding behavioral changes when symptomatic that reduce the contact rate with those that are sick 
drops the peak infected to below 250 and shifts the peak to later time. 
Now, differentiating agents with relative values for parameters such that kids and teens are more 
contagious and seniors less contagious than adults, the peak is pushed to ~25 days and rises to 
~2500! 
Having highly infectious Kids and Teens together in schools has a huge influence on the spread 
of the flu. 
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Flu Epidemic Mitigation: Vaccination Strategies 
We now consider vaccination strategies. The red curve is the final, most realistic simulation from 
the previous slide. No one yet is vaccinated.  Current policy is shown in blue (26% for kids and 
teens, 30% for adults, and 59% for seniors) and indeed decreases the speed of the spread of the flu 
and the number of people that get sick and die. If we had a vaccine shortage, we could choose to 
vaccinate only the highest risk group – seniors – resulting in the yellow curve. However, this does 
almost nothing to the spread of the flu, and others within the population die. If instead we vaccinate 
only the kids and teens, the flu doesn’t even spark! In fact only 60% of the kids and teens in our 
structured Village need to be vaccinated for the complete suppression of a flu epidemic. 
The projected shortfall of vaccine last fall would have been well within that needed to vaccinate all 
Kids and Teens. Ira Longini and coworkers at Emery have published similar results just in the past 
few months using a structured stochastic model that assumes full mixing within each group. Keeping 
networks within groups as we do is useful beyond the constraints of this particular application. 
In the case of highly virulent flu (likely avian) that breaks out without the pre-development of an 
effective vaccine, mitigation strategies including antiviral and behavioral modification such as 
quarantine can also be considered in light of such network modeling. Additionally, concepts such as 
“shielding” in context of bio attacks can also be informed through analysis and simulation that 
focuses on the underlying social network. 
 
This application has shown that the combination of topology and grouping of agents of like 
properties is important. This combination is inherent in the concept of “structure”. Our results from 
this application have obvious implications for the prior two applications where stylized topologies 
were used to represent power grids and payment systems. 
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Concluding Remarks: 
Results of analysis as presented in this talk allow us to better understand how general features, such 
as network connectivity and interaction rules, can influence system robustness and the choice of 
mitigation strategy. In all of these applications we are working with domain experts to better 
represent critical specifics of each application:  
•Network topology 
•Refined interaction rules 
•Adaptive response 
Besides the examples shown here today, we are also working ones on information systems, bank 
systems and reaction in social nets, some of which involve a spatial domain as well. But our effort is 
also to generalize and distil what we learn from specific applications to further our general 
understanding of how critical infrastructures can fail. 
Critical infrastructures are formed by a large number of components that interact within complex 
networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of 
hardware/software control, or implicitly through the action/reaction of people. Individual 
infrastructures influence others and grow, adapt, and evolve in response to their multifaceted 
physical, economic, cultural, and political environments. Simply put, critical infrastructures are 
complex adaptive systems. 
 
Contact us if you are interested! rjglass@sandia.gov 
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