
SANDIA REPORT
SAND2010-4313
Unlimited Release
Printed July 2010

Efficient Nearest Neighbor Searches
in N-ABLETM

Greg E. Mackey

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2010-4313
Unlimited Release
Printed July 2010

Efficient Nearest Neighbor Searches in N-ABLETM

Greg E. Mackey
Computational Economics Group
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185
gemacke@sandia.gov

Abstract

The nearest neighbor search is a significant problem in transportation modeling and sim-
ulation. This paper describes how the nearest neighbor search is implemented efficiently with
respect to running time in the NISAC Agent-Based Laboratory for Economics. The paper shows
two methods to optimize running time of the nearest neighbor search. The first optimization uses
a different distance metric that is more computationally efficient. The concept of a magnitude-
comparable distance is described, and the paper gives a specific magnitude-comparable distance
that is more computationally efficient than the actual distance function. The paper also shows
how the given magnitude-comparable distance can be used to speed up the actual distance cal-
culation. The second optimization reduces the number of points the search examines by using
a spatial data structure. The paper concludes with testing of the different techniques discussed
and the results.

3

4

1 Introduction

The nearest neighbor search is a significant problem in transportation modeling and simulation.
Transportation infrastructures are naturally represented by graphs. Often, queries against the
graph are not restricted to the vertices of the graph but are allowed for any points in the continuous
space in which the graph exists. The nearest neighbor search is one method to translate from the
continuous space to the discrete set of vertices of the graph. The nearest neighbor search can be
defined as given a set of points P in the continuous space S and a point q ∈ S, find the point in P
that is nearest to q.

This paper discusses the nearest neighbor search and describes how it is implemented efficiently
with respect to running time in the NISAC Agent-Based Laboratory for Economics (N-ABLETM)
[3]. There are two main optimizations for the nearest neighbor search. The first optimization is to
use a more computationally efficient distance metric because the distance calculation is repeated
numerous times in the search. The exact distance is the distance between two points on the earth
which can be approximated as a great-circle distance. A great-circle distance is the shortest distance
between any two points on the surface of a sphere measured along a path on the surface of the
sphere. Unfortunately, the great-circle distance calculation is somewhat expensive. A magnitude-
comparable distance can be a less expensive substitute. The second optimization is to reduce the
number of points examined by the search. The simple approach is a linear search, but using a
spatial data structure can significantly decrease the number of points examined by the search.

This paper begins by describing the problem of calculating the distance between two points on
the earth and discusses using the haversine formula to calculate great-circle distance in Section 2.
In Section 3 the concept of a magnitude-comparable distance, which is a calculated distance that
is often less expensive and can be used when the result of the comparison of the magnitudes of
distances is more important than the distances themselves, is described. The author also explains
how to use it to speed up the nearest neighbor search. Section 4 describes how to use a magnitude-
comparable distance to speed up the great-circle distance calculation. Section 5 discusses various
spatial data structures that can speed up the nearest neighbor search. Section 6 discusses how
N-ABLETM performs distance calculations and uses the nearest neighbor search. Section 7 gives
the testing and results. Finally, Section 8 gives some concluding thoughts, and Section 9 gives some
acknowledgments.

2 Calculating the Distance between Two Points on the Earth

One excellent source that discusses finding the distance between two points on the earth is Section
5.1 of the Geographic Information Systems FAQ [2]. Assuming that the earth can be represented
as a perfect sphere, the problem can be represented as finding the great-circle distance between
two points on a sphere. The assumption introduces a small amount of error into the calculation,
but for the author’s purposes the error is acceptable.

Let φ refer to latitude and λ refer to longitude. All latitudes and longitudes are assumed to be
in radians. The goal is to find the distance between the two points p1 = (φ1, λ1) and p2 = (φ2, λ2).
The latitudinal difference is ∆φ = φ2 − φ1, and the longitudinal difference is ∆λ = λ2 − λ1. Let s
be the great-circle distance, or arc length, and let θ be the central angle. Also, let r be the radius.

5

Figure 1. Great-circle (s) and tunnel-through (d) distances.

Figure 1 shows the geometry of the problem.

The general formula for arc length is
s = rθ.

Since finding the arc length is a simple calculation involving the central angle, the author focuses
on finding the central angle. One way to calculate the central angle is to use the spherical law of
cosines:

θ = arccos (sinφ1 sinφ2 + cosφ1 cosφ2 cos ∆λ) .

This method can have large rounding errors when the points are close to each other, so it is normally
not used. The preferred method is the haversine formula [6]:

θ = 2 arcsin

(√
sin2

(
∆φ

2

)
+ cosφ1 cosφ2 sin2

(
∆λ

2

))
.

This formula is accurate for all cases except where the points are near antipodal, or on opposite
ends of the earth. When this happens rounding errors can make the parameter of arcsine greater
than one for which arcsine is undefined. To protect against this case, a min function is introduced
around the square root to ensure the value passed to arcsine is not greater than 1. Expressing in
equation form and plugging into the general equation for arc length yields the formula:

s = 2r arcsin

(
min

[
1,

√
sin2

(
∆φ

2

)
+ cosφ1 cosφ2 sin2

(
∆λ

2

)])
.

Listing 1 shows C++ code that performs this computation efficiently.

3 Optimizing the Nearest Neighbor Search’s Distance Calculation

The natural distance metric for performing a nearest neighbor search for points on a globe is
great-circle distance, which can be calculated using the haversine formula. However, the haversine
formula is somewhat expensive. The nearest neighbor search would perform faster if the distance
calculation required less work to calculate.

One potentially less expensive distance calculation is a magnitude-comparable distance. A
magnitude-comparable distance guarantees that its comparison to another magnitude-comparable

6

double g r e a t C i r c l e D i s t a n c e (const Point& p1 , const Point& p2)
{

// 2 ∗ average rad ius o f ear th (in mi l e s)
const double rad ius2 = 7912 ;

double s i n L a t D i f f = s i n ((p2 . l a t − p1 . l a t) ∗ . 5) ;
double s inLonDi f f = s i n ((p2 . lon − p1 . lon) ∗ . 5) ;

double a = s q r t (s i n L a t D i f f ∗ s i n L a t D i f f +
cos (p1 . l a t) ∗ cos (p2 . l a t) ∗
s inLonDi f f ∗ s inLonDi f f) ;

i f (a > 1) a = 1 ;

return rad ius2 ∗ as in (a) ;
}

Listing 1. Great-circle distance using haversine formula.

distance will always yield the same relative result as the comparison of the two actual distances the
magnitude-comparable distances replace. Let n1 be the actual distance between the two points p1
and p2, and let m1 be some other distance metric between the same two points. Likewise, define
n2 and m2 for the points p3 and p4. The distance m is a magnitude-comparable distance for n if
and only if the following are true:

n1 < n2 ↔ m1 < m2

n1 = n2 ↔ m1 = m2

n1 > n2 ↔ m1 > m2 .

The nearest neighbor search is one such problem where a magnitude-comparable distance can be
substituted for the actual distance since the relative ordering of the distances is more important
than the actual distances.

One candidate for a magnitude-comparable distance is the “tunnel-through” distance, the chord
of the great-circle arc connecting the two points. This distance, shown as d in Figure 1, is inexpen-
sive to calculate if the Cartesian coordinates of the points are known. With the Cartesian points
p1 = (x1, y1, z1) and p2 = (x2, y2, z2), the tunnel-through distance can be calculated using the
standard Cartesian distance formula:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

An even more inexpensive distance metric can be achieved by using the square of the tunnel-through
distance, d2, which avoids the cost of the square root operation. This method requires only eight
floating point operations while the haversine formula requires ten floating point operations, one
square root operation, and five trigonometric operations. Listing 2 shows C++ code that performs
the computation efficiently.

7

double comparableDistance (const Point& p1 , const Point& p2)
{

double x d i f f = p2 . x − p1 . x ;
double y d i f f = p2 . y − p1 . y ;
double z d i f f = p2 . z − p1 . z ;

return x d i f f ∗ x d i f f + y d i f f ∗ y d i f f + z d i f f ∗ z d i f f ;
}

Listing 2. Magnitude-comparable distance using square of
tunnel-through distance.

Sometimes only latitude and longitude coordinates are available. Converting latitude and lon-
gitude to Cartesian coordinates is performed with the formulas:

x = r cos(λ) cos(φ)

y = r sin(λ) cos(φ)

z = r sin(φ).

Since the calculation of the Cartesian coordinates for two points is about as expensive as the
calculation of the great-circle distance, the Cartesian coordinates should be calculated once for
each point and stored.

4 Optimizing the Great-Circle Distance Calculation

The time spent calculating the great-circle distance occurs almost entirely within the calculation
of the central angle, θ. Therefore, that is the calculation to optimize. Trigonometric operations
are usually considerably more expensive than normal floating point operations, and the haversine
formula contains five of them. The author seeks a way to optimize the calculation of the central
angle by reducing the number of trigonometric operations. The chord function for a circle is

crd θ = 2r sin
θ

2
.

Consider the right diagram of Figure 1, which shows a slice of a great circle of the earth. Noting
that d is the chord yields a chord function of

d = 2r sin
θ

2
,

and solving for θ gives us

θ = 2 arcsin
d

2r
.

This yields the following formula for great-circle distance:

s = 2r arcsin
d

2r
.

8

double g r e a t C i r c l e D i s t a n c e (const Point& p1 , const Point& p2)
{

const double rad ius2 = 7912 ; // 2 ∗ average rad ius o f ear th
const double invRadius2 = 1 .0 / rad ius2 ;

double a = s q r t (comparableDistance (p1 , p2)) ∗ invRadius2 ;
i f (a > 1) a = 1 ;

return rad ius2 ∗ as in (a) ;
}

Listing 3. Optimized great-circle distance calculation.

To protect against undefined arcsine values, the parameter to arcsine should again be wrapped in
a min function yielding the following formula:

s = 2r arcsin

(
min

[
1,
d

2r

])
.

Since it has already been shown how to calculate d inexpensively when the Cartesian coordinates
of the points are available, this formulation is less expensive than the haversine formula. Both
formulas require one square root and ten floating point operations. However, the optimized formula
has only one trigonometric operation compared to the haversine formula’s five. Thus, the optimized
formula has a savings of four trigonometric operations. Listing 3 shows C++ code that performs
the computation efficiently.

5 Optimizing the Nearest Neighbor Search Using Spatial Data
Structures

The simple way to perform a nearest neighbor search is a linear search, comparing point q with
every point in the set P . However, methods that compare less points are possible if the points
in S are related spatially. Many data structures that take advantage of spatial information exist
and can be used to reduce the number of points tested in P . Examples of spatial data structures
include quadtrees, octrees, k-d trees, r-trees, and grid partitioners. The author considered and
tested several versions of grid partitioners and k-d trees.

The general idea of a spatial data structure is to partition the space S, and consequently the
points in P , such that a small subset of P needs to be considered during a search. A search starts
in the partition that contains q and expands to neighboring partitions as necessary. The search
can stop when a bounds test proves that the nearest neighbor is contained in the space represented
by the partitions searched so far. Operations performed by a spatial data structure include finding
the partition that contains a given point in S, finding the neighbors of a partition, and the bounds
test.

The search cost is roughly equal to the sum of the cost of determining q’s partition, the cost of

9

determining neighboring partitions, and the cost of searching the points in the examined partitions.
The spatial data structures described in this paper utilize a maximum number of points per partition
to determine the number of partitions. Let g be the maximum number of points per partition. The
best running time occurs when the points are spread evenly across all the partitions. In this case
the expected number of points examined is O(g), regardless of the size of P . Many searches will
terminate after searching one partition and few, if any, should search more than a small constant
number of partitions. Thus, the best case time for a partitioner is independent of the problem size.
However, the number of points examined by a search has a worst case of O(|P |) that occurs when
the points are concentrated in a few partitions.

Since the running time in the best case depends on only g, one might think that setting g to
1 would achieve the best performance. Even though having a few number of points per partition
usually causes fewer points to be examined, the number of partitions examined in a search increases.
As there are costs associated with both examining points and examining partitions, reducing g too
much can cause a search to run slower.

Another issue that affects running time is the location of q in comparison to the points in P .
Let T be a bounded version of S that is created by placing a bounding box around all the points in
P . When q is located far away from any of the points in P , whether q is inside or outside of T , the
running time can be adversely affected because a greater number of partitions may be searched.

5.1 Grid Partitioners

Let k be the number of dimensions in the space S. Partition each dimension of S into even divisions
creating identically sized k-dimensional rectangular block partitions. The size of the partitions is
chosen to ensure that the average points per partition is at most g. Each point is located in a single
partition. Points that occur exactly on a division are consistently placed in the “left” partition.

Let the partition in which q lies be called level 0. Level n is all of the surrounding partitions
that touch level n − 1 even if only at a corner. The levels are nested shells that have a thickness
of one partition. The search occurs in phases where phase n is associated with level n. The search
radius for a phase is the distance from q to the nearest outer edge of its level. Phase 0 examines
the points in level 0 that lie within its search radius. Phase n examines the points that lie between
the search radius of phase n − 1 and the search radius of phase n. Note that the points could lie
in partitions from level n or level n − 1. If a point lies exactly on a phase’s search radius, it is
considered in the next phase. If no points from S lie within a phase’s search radius, the search
continues to the next phase. A phase must examine all of its points to guarantee that the solution
point is the nearest.

Consider the 2D grid partitioner shown in Figure 2 where S = {p1, · · · , p8}. Dotted gray lines
indicate partition divisions. Level 0 is the center partition which contains q. Level 1 is the eight
partitions surrounding the center partition. The search radius for phase 0 is shown as sr0, while
the search radius for phase 1 is shown as sr1. In phase 0 of the search, there are no points within
sr0, so the search continues to phase 1. In phase 1 there are four points to choose from that lie
between sr0 and sr1: p1, p2, p3, and p4. The search examines all four points and finds that p2 is
the closest point.

The author tested both 2D and 3D grid partitioners for N-ABLETM. Even though points on

10

S

T

sr0

sr1

q

p2

p1 p3

p4

p7

p6

p5

p8

Figure 2. 2D grid partitioner example.

the earth really exist in 3D space, they can be considered to exist in a 2D space that is wrapped
around a sphere. The coordinate system in this 2D space is latitude and longitude. Points are
assigned to partitions using latitude and longitude; however, latitude and longitude do not provide
a good distance metric. The great-circle distance is the appropriate metric, but the tunnel-through
distance can be substituted as a less expensive magnitude-comparable distance.

Unfortunately, the 2D grid partitioner has problems. Using latitude and longitude for parti-
tioning introduces some error as longitudinal lines are not parallel. Near the equator the error
is minimal, but it becomes quite significant nearing the poles. Additionally, the partitioner must
wrap the space in both dimensions. Wrapping in the longitudinal direction happens neatly, but
wrapping in the latitudinal direction does not make much sense. The latitudinal “line” converges
to a point at the poles causing all the partitions surrounding a pole to touch. The meaning of
neighboring partitions is a bit vague in this circumstance. Additionally, using great-circle distance
to calculate the search radius creates a circle that is slightly skewed with respect to the latitude
and longitude search space. However, a reasonably accurate nearest neighbor search can still be
performed with a 2D grid partitioner if neither q nor any of the points in P are close to the poles.

A 3D grid partitioner solves the error problems of a 2D grid partitioner as it partitions points
based on Euclidean space and uses a Euclidean metric for distance. Unfortunately, it can be
considerably slower than the 2D grid partitioner. In 3D the number of partitions in a level grows
much faster than in 2D. Let l be the current level where level 0, the first level, has 1 partition. The
level l is a border that defines an n-cube with (2l + 1)n partitions. The number of partitions in
level l, where l > 0, is equal to the difference between the number of partitions in level l’s n-cube
and level (l − 1)’s n-cube. For 2D and 3D grid partitioners, the number of partitions in level l is

2D : (2l + 1)2 − (2l − 1)2 = 8l
3D : (2l + 1)3 − (2l − 1)3 = 24l2 + 2,

which means the number of partitions grows linearly with increasing levels in 2D but quadratically
in 3D. If q is chosen such that it lies in a partition with points, then the 2D and 3D grid partitioners

11

will perform the same, but the 3D grid partitioner will perform much worse if q is chosen such that
it lies many partitions away from a partition that contains points.

Thus, one important issue affecting the running time of a grid partitioner is the location of q.
When q is located in a partition that is many partitions away from the nearest point, many levels of
empty partitions must be examined before a partition containing points is found. Additionally, the
number of points initially considered may be large as a high level contains many partitions. This
occurs when q is outside of T . It can also occur when q is inside T and the points are concentrated
in a few small areas.

Another important issue affecting the running time of a grid partitioner is the distribution of
the points across the partitions in T , which affects the number of points examined during a search.
The fewest number of points the grid partitioner can examine is O(g). This occurs when q is inside
T and the points are spread evenly across all the partitions. Unfortunately, the grid partitioner can
suffer a worst case of O(|P |) points examined during a search when the points are concentrated in
a few small areas that are far apart. One situation that would cause this worst case occurs when a
2D partitioner has a single point located in the top left partition of T and all the remaining points
are located in the bottom right partition of T . A q in or near the bottom right partition could
require a search through the |P | − 1 points in that partition.

5.2 K-d Trees

A k-d tree [1, 4] is a type of binary tree that provides fast geospatial queries for multidimensional
point data. Each node in the tree represents a partition of the space S that defines a subset of the
points P . The root node represents the entire space S, and each child node represents a partition
of its parent’s space. Each leaf node stores all the points defined by its partition of S. A non-leaf
node stores no points.

A k-d tree is created as follows. Set a maximum points per partition that defines the maximum
number of points that can be stored in a leaf node. Starting with the root node, choose the
dimension of the node’s space that has the largest range. This dimension is called the partition
dimension. Find the point in the subset of P defined by the node’s space that has the median value
for the partition dimension. Partition the node’s space in the partition dimension at the median
value. The node’s left child receives the subdivision of the space that is less than the median, and
the right child receives the subdivision of the space that is greater than or equal to the median.
For the partition dimension, the left child has boundaries of [parent’s left boundary, median) while
the right child has boundaries of [median, parent’s right boundary]. For all other dimensions, the
children inherit their parent’s boundaries. Now, partition the child nodes’ spaces. Continue the
partitioning until the number of points defined by a node’s space is less than the maximum points
per partition. At this point create a leaf node. Each leaf node stores the set of points that fall
within the boundaries defined by its space.

To perform the nearest neighbor search, search the tree in a depth-first fashion. The search
starts at the root node and proceeds down the tree to the leaf node whose boundaries contain q.
It performs a linear search of all of the leaf’s points to find the closest point. Let the search sphere
be the n-sphere with center q and radius of the distance between q and the current closest point.
If the search sphere is contained entirely within the leaf’s boundaries, the search can terminate.
Otherwise, a point may exist in another node that is closer, and the search travels back up the

12

2

1

3

4

6 7

8

5

T

S

q
p2

p1
p3

p4

p7

p6

p5

p8

x: p5

x: p3 y: p6

y: p3y: p1 y: p8 x: p7

p4 p3p1p2 p7p6p8p5

Figure 3. K-d tree: division of S space and the generated tree.

tree. When the search returns to a parent node after checking its first child, it checks if the search
sphere overlaps the other child’s boundaries. If so, the other child is searched down to a leaf, and
the new leaf’s points are checked for a closer point. If one is found, the search updates the closest
point and search sphere accordingly. Once both a parent node’s children have been considered,
the search can terminate if the search sphere is contained entirely within the node’s boundaries.
Otherwise the search must continue back up the tree.

Consider Figure 3, which is the same example as shown in Figure 2 for the grid partitioner. For
this 2D example the maximum points per partition is 1. The left diagram shows how the search
space is divided by the tree. Dotted gray lines indicate partition divisions. Gray numbers are the
partition numbers. Point pn is in partition n. The right diagram shows the generated tree. Leaf
nodes show the point they contain. Non-leaf nodes show the dimension partitioned on and the
point whose value in that dimension was the median. The red arrows show the path the search
follows when looking for the nearest neighbor to q.

The search for q happens as follows. The search starts at the root and follows the left side of
the tree down to the leaf that contains p2. This is the leaf in whose boundaries q is located. The
points of this leaf are searched, and p2 is the closest point. Since the search sphere is not contained
entirely in the bounds of the node, the search proceeds to the parent. The other child does not
need to be checked, but the search sphere is still not contained within the node’s boundaries. The
next parent, which is the left second level node, is checked, and its other child needs to be searched.
The search proceeds down to the leaf containing p4. None of the points in node are closer than
p2, so p2 remains the closest point. Since the search sphere is not contained entirely in the bounds
of the node, the search proceeds to the parent. Again, the search sphere is not contained entirely
in the bounds of the node, so the search proceeds to the next parent which is the left second level
node. The search sphere is contained entirely within the node’s boundaries, so the search stops,
yielding p2 as the closest point.

The implementation of the k-d tree described in this paper is the one from [4]. There is a
slightly different implementation described in [1] which assigns a single point to each node in the
tree including internal nodes. The author tested this version of the k-d tree as well. It had similar

13

performance, but the first tree performed slightly better.

The author tested a three-dimensional k-d tree for N-ABLETM. The 3D k-d tree has several
improvements over the grid partitioners. It does not suffer from any of the accuracy errors that
the 2D grid partitioner does, and it is much faster than both of the grid partitioners. One reason
is because its partitions are dynamically sized at creation to evenly divide the points between
the partitions while the grid partitioner’s partitions are statically sized. A k-d tree contains no
empty partitions no matter how the points are distributed across S. Thus, the number of points
examined is expected to be O(g) as long as q is inside T . Unfortunately, many partitions can still
be examined when q is far outside of T , but that number should be considerably less than the
number of partitions considered by a grid partitioner as a k-d tree has no empty partitions.

6 Implementation in N-ABLETM

The NISAC Agent-Based Laboratory for Economics (N-ABLETM) is an agent-based discrete-event
microeconomic simulation tool that captures complex internal supply chain and market dynam-
ics of businesses in the U.S. economy. Firms are modeled as economic agents that produce and
consume commodities and buy and sell them from each other. N-ABLETM models the shipping
of commodities as packages sent between buyers and sellers using a shipping agent. The shipping
agent provides several types of transportation modeling. The simplest is a diffusion mode that
models the movement of packages along a straight line between the buyer and seller. The shipping
agent also provides a network mode that models the movement of packages along a transportation
network. The network mode captures the flows of traffic along the infrastructure and can simulate
disruptions to the infrastructure. The infrastructure network used in N-ABLETM is an intermodal
network comprised of truck, rail, and water subnetworks connected by intermodal terminals. This
network is a slightly modified version of an intermodal network created by the Center for Trans-
portation Analysis at Oak Ridge National Laboratory [5].1 The truck and rail networks represent
the truck and rail networks in North America. The water network represents inland water routes
in North America plus ocean routes across the globe.

The shipping agent performs both the calculation of the distance between two points on the
globe and the nearest neighbor search. The agent calculates the distance between two points when
sending a package using the diffusion mode. The shipper performs a nearest neighbor search when
using the network mode as the shipper must find the nearest transportation vertices to the buyer
and seller. These two calculations are performed many times by the shipper, so the author desired to
make them run as fast as possible. In fact, the initial implementation of the nearest neighbor search,
which utilized the simple linear search and great-circle distance, took a noticeable percentage of
the total simulation time. Currently, N-ABLETM uses the optimized distance calculation described
in this paper when calculating the distance between two points for the diffusion mode. It uses a
3D k-d tree with a distance metric of the square of the tunnel-through distance to perform nearest
neighbor searches for the network mode. After including the optimizations, the nearest neighbor
search took a minuscule fraction of the runtime.

Since the vertices in the networks are static throughout a simulation, extra initialization time
is acceptable as the initialization is performed once. A moderate amount of extra storage is also

1The version of the network on the website is cks02. N-ABLETMuses a modified version of the newer ck34, which
was mailed directly to the author by Bruce Peterson.

14

acceptable as a tradeoff for speed improvements. Each agent in N-ABLETM has a location, which
stores geographic coordinates (latitude and longitude). The transportation network vertices also
have locations. The enhancements described in this paper require the calculating and storing
of 3D Cartesian coordinates in addition to the geographic coordinates. The k-d tree requires
additional storage and the time cost of initializing the tree. The time cost of initializing the
Cartesian coordinates and the k-d tree are small compared to the time savings during a normal
simulation run, and the space cost is very modest compared to the memory already consumed by
the simulation. The maximum points per partition was set to 30 for the k-d tree as this seemed to
provide the best overall performance when considering q’s that were both inside and outside of T .

7 Testing and Results

The tests were performed on an Apple Mac Pro with a single 2.8 GHz Intel Xeon quad-core
processor running OS X 10.5 and using GCC v4.0.1, the version of the GCC compiler that comes
with Xcode 3.1. The test codes were compiled with O2 optimizations. The timings do not include
the initialization time for computing the Cartesian coordinates or the time for initializing the data
structures. The maximum points per partition for all the spatial data structures was set to 30 for
the tests, and the spatial data structures use the magnitude-comparable distance as their distance
metric.

The tests use two sets of locations for the set of points P : the vertices from the N-ABLETM rail
network and the vertices from the N-ABLETM truck network. The rail network has 14,680 vertices
and the truck network has 67,790 vertices. For q the tests use two sets of points. The first set is the
land points set, which is a grid of points bounded by three rectangles placed to attempt to cover
most of the land in the US. The three rectangles are defined by the following sets of latitude and
longitude coordinates:

(46.5,−118.3), (46.5,−88.0), (33.8,−118.3), (33.8,−88.0)
(33.8,−113.0), (33.8,−88.0), (31.5,−113.0), (31.5,−88.0)
(41.5, −88.1), (41.5,−79.0), (30.0, −88.1), (30.0,−79.0).

A point is placed every .1 degrees in both directions, creating 54,961 points. The land points
represent well-behaved queries and the typical range of queries an N-ABLETM simulation will
provide for q. The second set of points used for q is the water points set, which is a similarly sized
grid of points bounded by three rectangles placed to represent locations off the US west coast, off
the US east coast, and in the Gulf of Mexico. The three rectangles are defined by the following
sets of latitude and longitude coordinates:

(48.0,−152.0), (48.0,−129.0), (25.0,−152.0), (25.0,−129.0)
(26.0, −93.0), (26.0, −86.0), (24.0, −93.0), (24.0, −86.0)
(38.7, −70.0), (38.7, −69.3), (35.0, −70.0), (35.0, −69.3).

A point is placed every .1 degrees in both directions creating 54,846 points. The water points
represent a range of queries that cause the geographical data structures to perform poorly because
q is outside T .

Table 1 shows the results for the different distance functions. The numbers in the left column
for each distance metric are the times in seconds for each test to complete. The numbers in the

15

Network Test Points Haversine GCD Optimized GCD MCD

Rail Land 120.991 14,680 54.375 14,680 6.794 14,680
Rail Water 133.326 14,680 64.210 14,680 6.781 14,680

Truck Land 558.927 69,790 254.759 69,790 34.226 69,790
Truck Water 613.198 69,790 299.369 69,790 36.155 69,790

Table 1. Great-circle and magnitude-comparable distance run-
ning times (secs) and points examined.

2D Grid 3D Grid
Network Test Points Partitioner Partitioner 3D K-d tree

Rail Land 0.312 45.2 0.397 66.4 0.029 53.4
Rail Water 1.468 37.3 6.214 45.7 0.354 836.3

Truck Land 0.266 29.4 0.363 53.7 0.032 36.3
Truck Water 9.521 42.4 94.283 88.1 2.623 5264.5

Table 2. Nearest neighbor search running times (secs) and points
examined using different spatial data structures.

right column are the average number of points examined by each test. If the exact great-circle
distance is needed, then the optimized GCD calculation can be used. In all the tests, the optimized
GCD calculation performed more than twice as fast as the haversine GCD calculation. If the
magnitude-comparable distance is sufficient, then greater speeds can be achieved. In all the tests,
the magnitude-comparable distance calculation performed about 20 times faster than the haversine
GCD calculation. As all of these searches are linear, the number of points examined during each
search is equal to the number of points in P . The times for the water points are only slightly
higher than the times for the land points. As expected, the linear searches perform roughly the
same regardless of where q is located.

Table 2 shows the results for performing the nearest neighbor search using the different spatial
data structures. The numbers in the left column for each distance metric are the times in seconds for
each test to complete. The numbers in the right column are the average number of points examined
by each test. The spatial data structures perform much better than the MCD linear search for the
land points, and each structure has roughly the same performance for the land points regardless
of the number of points in P . The 2D grid partitioner and the k-d tree perform better than the
linear search for the water points, but the 3D grid partitioner performs as bad or worse. This fits
with the analysis in Section 5.1 of the growth of the search space for grid partitioners when q is
not near partitions that contain points.

The partitioners search far fewer points on average for a search than the linear search. The grid
partitioners consistently search a small number of points. The k-d tree searches a similar number
of points during the land tests as the grid partitioners, but it searches a more sizable number of
points during the water point tests. However, it still takes less time than the grid partitioners.

The k-d tree performs much better than the linear and grid partitioner searches. Its search
times are the fastest in every category. It doesn’t suffer from the accuracy errors that can occur in

16

the 2D grid partitioner, and it doesn’t suffer from the same horrible performance for difficult data
as the 3D grid partitioner. For the land points, the k-d tree performed over 200 times faster and
over 1,000 times faster than the linear search for the rail and truck networks, respectively. For the
water points, it performed an order of magnitude faster than the linear search.

N-ABLETM originally used a linear search with the haversine GCD metric to perform nearest
neighbor searches. The combination of switching to the MCD and the k-d tree yielded an enormous
speedup to the searches. For the land test points, we achieved speedups of three and four orders
of magnitude for the rail and truck networks, respectively. For the water test points, we achieved
speedups of two orders of magnitude.

8 Summary

The author has described how to use a magnitude-comparable distance to speed up the nearest
neighbor search and the calculation of great-circle distance. The author has also described spatial
data structures that can further speed up the nearest neighbor search. The improvement to the
distance metric requires Cartesian coordinates for the points which can be precalculated and stored
if they are not already available. The k-d tree requires additional storage and the one-time cost of
initializing the tree.

The new method for calculating great-circle distance performed twice as fast as the standard
method. Using a 3D k-d tree with the magnitude-comparable distance for the nearest neighbor
search performed four orders of magnitude better in the best case and two orders of magnitude
better in the worst case compared to the original method using a linear search with the great-circle
distance. Including these optimizations in N-ABLETM changed the time spent performing nearest
neighbor searches from a noticeable percentage of the simulation runtime to a minuscule fraction
of the runtime.

9 Acknowledgments

This work was performed with funding from the DHS Science and Technology Directorate.

17

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM, 18(9):509–517, 1975.

[2] R. G. Chamberlain. Geographic Information Systems FAQ 5.1. Originally posted to comp.
infosystems.gis newsgroup, April 1997. http://www.faqs.org/faqs/geography/infosystems-faq/
accessed on January 27, 2010.

[3] E. D. Eidson and M. A. Ehlen. Nisac agent-based laboratory for economics (N-ABLETM):
Overview of agent and simulation architectures. SAND Report, 2005.

[4] J. H. Freidman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–226, 1977.

[5] B. E. Peterson. Intermodal Transportation Network. Oak Ridge National Laboratory - Center
for Transportation Analysis, August 2000. http://cta.ornl.gov/transnet/Intermodal Network.
html accessed on January 27, 2010.

[6] R. W. Sinott. Virtues of the haversine. Sky and Telescope, 68(2):159, 1984.

18

DISTRIBUTION:

1 MS 1138 Eric Eidson, 06371 (electronic copy)

1 MS 1138 Mark Ehlen, 06371 (electronic copy)

1 MS 1137 Greg Mackey, 06371 (electronic copy)

1 MS 1138 Lillian Snyder, 06371 (electronic copy)

1 MS 1138 Eric Vugrin, 06371 (electronic copy)

1 MS 0899 Technical Library, 9536 (electronic copy)

19

20

