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ABSTRACT 

A model of malicious intrusions in infrastructure facilities 
is developed that uses a network representation of the sys-
tem structure together with Markov models of intruder 
progress and strategy. Simulation is used to analyze vary-
ing levels of imperfect information on the part of the in-
truders in planning their attacks. This provides an explicit 
mechanism to estimate the probability of successful 
breaches of physical security, and to evaluate potential 
means to reduce that probability. 

1 INTRODUCTION 

There is widespread interest in protection of critical infra-
structure from malicious attack. The attacks might be ei-
ther physical intrusions (e.g., to steal vital material, plant a 
bomb, etc.) or cyber intrusions (e.g., to disrupt information 
systems, steal data, etc.) and the attackers may be interna-
tional terrorists, home-grown hackers, or ordinary crimi-
nals. In 1997, the report of the U.S. President’s Commis-
sion on Critical Infrastructure Protection (PCCIP) 
identified eight critical infrastructures “whose incapacity or 
destruction would have a debilitating impact on our de-
fense and economic security” (PCCIP, 1997). These eight 
are: telecommunications, electric power systems, natural 
gas and oil, banking and finance, transportation, water 
supply systems, government services and emergency ser-
vices. 
 
In this analysis, we focus primarily on transportation facili-
ties, but the approach we suggest could also be used in 
other infrastructure contexts. For example, a similar type of 
analysis has been applied to information systems by Carl-
son, et al. (2004). The objective of the analysis presented 
here is to provide guidance to system owners and operators 
regarding effective ways to reduce vulnerabilities of spe-
cific facilities. To accomplish this, we develop a Markov 
Decision model of how an intruder might try to penetrate 

the various barriers designed to protect the facility. This 
intruder model provides the basis for consideration of pos-
sible strategies to reduce the probability of a successful at-
tack on the facility. 
 
Our primary attention in this paper is on how varying lev-
els of information about the infrastructure system affects 
the strategies of potential intruders, how the overall prob-
ability of intruder success is affected by their level of in-
formation, and what implications this has for effective de-
fense of the system against intrusion. 
 
We represent the system of interest as a network of nodes 
and arcs. Nodes represent barriers that an intruder must 
penetrate, and arcs represent movements between barriers 
that an intruder can make within the system. Several previ-
ous authors have used graph-based methods to represent 
attackers or defenders in security analyses. Phillips and 
Swiler (1998) introduced the concept of an “attack graph” 
to represent sets of system states and paths for an attacker 
to pursue an objective in disrupting an information system. 
Several subsequent papers (e.g., Swiler, et al., 2001; Jha, et 
al., 2002; Sheyner, et al., 2002) have extended these initial 
ideas. 
 
The adversaries first must penetrate entry points to the sys-
tem, and if an attempted penetration at a particular entry 
node is successful, they can traverse edges from the suc-
cessfully breached node to other nodes in the network that 
are connected to the one breached. Traversing an edge en-
tails a risk of detection. The adversary is assumed to make 
the decision that maximizes what he/she perceives to be 
the probability of successful attack. If this perception is in-
accurate, the strategy pursued may not be optimal and the 
overall probability of success is reduced. 
We can think of this analysis as having three layers. At the 
bottom layer, the physical characteristics of individual bar-
riers are translated into summary probabilities of detection, 
success, etc., for use in the middle level model. This mid-
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dle layer is a Markov Decision Process (MDP) model that 
represents the optimization of the intruder’s strategy, given 
the perceived values of detection probabilities, etc. The 
perceptions may have different levels of accuracy. At this 
level, we use both simulation and optimization tools. Simu-
lation is used to represent varying perceptions of the sys-
tem parameters by intruders, and optimization is used to 
create strategies on the part of intruders, given those per-
ceptions. At the top layer of analysis, the system operator 
(or defender) examines the probabilities of success on the 
part of potential intruders and the paths that they are likely 
to follow through the network, and makes changes to re-
duce the system vulnerabilities. Those changes may be de-
signed either to reduce the real success rates of intruders in 
penetrating system barriers, or to decrease the accuracy of 
the information available to the intruders so that their at-
tempts to optimize strategies are less effective. 
 
At the lowest layer, we use Hidden Markov Models 
(HMM) to represent an intruder’s actions at a single node 
(barrier) in a system and the associated “signals” those ac-
tions provide that can lead to detection. Then we develop 
an aggregated representation of that single-node model for 
inclusion in an MDP model of intruder strategy within a 
network representation of the entire system at the middle 
layer. These parts of the analysis are described in detail by 
Carlson, et al. (2004) and Jones, et al. (2005). In the inter-
ests of space, they will not be included here, so that we 
may focus this paper on the interaction of simulation and 
optimization analysis at the middle layer. 

2 MARKOV DECISION MODEL OF INTRUDER 
STRATEGY 

At the system level, we represent a network of barriers and 
potential movements as shown in the example in Figure 1, 
representing a simplified hypothetical attempt by an in-
truder to place a delayed-action (e.g., altitude detonated) 
explosive device on an aircraft sitting at a gate in an airport 
terminal.  
 
The intruder must first gain access to the apron area of the 
terminal. We postulate that this can occur either by gaining 
illicit access through the employee gate (e.g., by stealing 
an employee ID and using it to enter the area), or by enter-
ing in a service vehicle at a gate (e.g., in a catering truck). 
If the intruder is successful in getting access to the area, 
he/she must then impersonate a legitimate worker in the 
aircraft gate area – either an airline employee or a service 
contractor. The “cross-over” arcs between “entry” and 
“impersonation” in Figure 1 indicate that even if the in-
truder gained access to the apron area using an employee 
ID, he/she may switch ID’s and impersonate a service con-
tractor within the area (or vice versa). This impersonation 

must be successful for the period of time required to get 
from the entrance to the aircraft itself. 
 
Approaching the aircraft carries a risk of detection, and the 
approachable areas on the aircraft if the intruder is imper-
sonating an employee may be different from those that are 
approachable if he/she is impersonating a service contrac-
tor. For example, a person who appears to be an airline 
maintenance employee might not attract attention ap-
proaching the under-wing area around the landing gear, 
whereas a person who appears to be a catering contractor 
would. For purposes of this example, we consider three ar-
eas of the aircraft where an explosive device might be hid-
den – inside the wing around the landing gear, in the cargo 
hold, or in the catering supplies delivered to the galley. 
 
If access to the aircraft is gained, the device must be placed 
without arousing suspicion. This is represented by the arcs 
connecting the aircraft area nodes to the exit node. Each of 
these arcs has a probability of detection. 
 
Finally, if the intruder succeeds in gaining access to the 
aircraft and placing the device, he/she must exit without 
detection, and this represents the last barrier. Our modeling 
premise is that if the intruder is detected after placing the 
device, it will trigger a thorough search of the aircraft and 
the device will be discovered, so that the attempted attack 
will be foiled. 
 

 
To generalize from this specific example, in a network rep-
resenting some infrastructure facility or system, if the in-
truder is successful at breaching a particular barrier, he/she 
has choices about where to go next (which arc to cross). 
Crossing arc ij entails a probability of detection ijδ , and 
this is represented in the transition matrix. 

Employee
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Service
Vehicle

Airline
Employee

Contractor

Landing
Gear

Cargo
Hold

Galley

Undetected
Exit

Entry 
Nodes

Impersonation 
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Place 
Device

Figure 1:  Illustrative network for analyzing an at-
tempted placement of an explosive device on an aircraft

 
If the intruder is in state i and chooses action ai, we denote 
the expected value of the future stream of rewards by 
w(i,ai). Each possible action ai implies a change in the 
transition probabilities that govern the process. We denote 
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the elements of the transition matrix resulting from choos-
ing action ai as Pij(ai). The MDP we define for this prob-
lem is positive bounded, and we can find the optimal pol-
icy through either policy iteration or linear programming 
(Puterman, 1994). 
 
Table 1 summarizes the hypothetical node data used for the 
example analysis, and Table 2 shows the probabilities of 
detection used for the arcs in the example network. Note 
that we assume there is no retreat at the stage of exiting af-
ter placing the device – at that stage either the attack is 
successful or it is detected. Also note that the probability of 
detection on the arcs leading to the “impersonation” nodes 
is zero. This is because we are treating impersonation 
process (and time) as a barrier (node), so the probability of 
detection is lumped at the nodes, rather than on the arcs. 

 
Table 1 : Example data for network nodes 

Node 
# 

Node 
Description 

(see 
Figure 1) 

Expected 
Time For 

At-
tempted 
Breach 
(min) 

Prob. 
Of 

 Suc-
cess 

Prob. 
of  

Detec
tion  

Prob. 
of  

Re-
treat  

1 Employee 
Gate 

1 0.2 0.65 0.15 

2 Service 
Gate 

2 0.25 0.7 0.05 

3 Impersonate 
Employee 

10 0.2 0.6 0.2 

4 Impersonate 
Contractor 

15 0.4 0.5 0.1 

5 Landing 
Gear 

5 0.15 0.8 0.05 

6 Cargo Hold 3 0.1 0.75 0.15 

7 Galley 15 0.15 0.75 0.1 

8 Undetected 
Exit 

10 0.8 0.2 0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Probability of detection for possible moves 
Arc Prob. of 

Detection 
Empl. Gate – Impersonate Employee 0 
Empl. Gate – Impersonate Contractor 0 

Service Gate – Impersonate Empl. 0 
Service Gate – Impersonate Contr. 0 
Impersonate Empl. – Landing Gear 0.7 
Impersonate Empl. – Cargo Hold 0.7 
Impersonate Contr. – Cargo Hold 0.6 

Impersonate Contr. – Galley 0.6 
Landing Gear – Exit 0.4 
Cargo Hold – Exit 0.2 
Galley – Exit 0.3 

 
 
If an intruder knew the structure of the network (Figure 1) 
and the values in Tables 1 and 2, we would consider 
him/her to be perfectly informed. Under this assumption, 
an optimal intrusion strategy (i.e., one that maximizes the 
probability of successful attack) can be constructed by 
solving the MDP. For the set of input data in Figure 1 and 
Tables 1 and 2, the solution for the optimal intruder strat-
egy can be summarized as shown in Figure 2. To the left of 
each node is the probability of successful attack, given that 
the intruder is “arriving at” that barrier. To the right of 
each node is the probability of success, given that the in-
truder has successfully negotiated that barrier. There is 
only one value shown for the exit node (i.e., the “approach-
ing” probability), because once that node is successfully 
negotiated, the attack has been a success, by definition. 
 
The light colored arcs indicates the optimal path for an in-
truder (i.e., the path that maximizes the probability of suc-
cess). This is the path of greatest vulnerability to the sys-
tem. In our simple example, we would compute a 
probability of successful attack of 0.0034 for an intruder 
whose strategy is to gain entry to the apron area through 
the service vehicle gate, then impersonate a contractor 
(probably a catering service worker) to access the aircraft 
galley and place the device there before exiting. 
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The existence of this strategy does not mean that all intrud-
ers will always proceed in exactly the way indicated. It 
does mean that if an intruder were perfectly informed, this 
would be a strategy through which the probability of a suc-
cessful attack could be maximized. In actuality, the prob-
ability of successful attack is likely to be less than this 
maximum value because intruders will have less-than-
complete information and may not optimize their strategy. 
The solution to the MDP also provides useful information 
on the conditional probability of success for an attacker 
that reaches a certain point in the network, regardless of  
whether or not he/she followed the optimal strategy. For 
example, if an intruder succeeds in reaching the cargo hold 
of the aircraft (despite the fact that this is not an optimal 
strategy), the probability of a successful attack from that 
point on is 0.064. 

 

 

3 REPRESENTING IMPERFECT INFORMATION 

One useful representation of imperfect information is to 
assume that a potential intruder does not know the values 
of the probabilities in Tables 1 and 2, but has perceptions 
of those probabilities that contain errors. An intruder with 
imperfect information will attempt to construct an optimal 
strategy, but because of errors in perception of detection 
probabilities, the strategy is likely to actually be subopti-
mal against the real probabilities. Simulation is an effective 
tool to explore the effects of imperfect information repre-
sented in this way. 
 
Suppose that the perception of a given detection probabil-
ity is represented as a beta random variable with parame-
ters a > 0 and b > 0. The mean of such a random variable is  

ba
a
+

, and the variance is 2))(1( baba
ab

+++
. If the in-

truder’s perception of an unknown probability π is unbi-

ased, π=
+ ba
a  , and we can express one of the parame-

ters in terms of the other – e.g., 
π
π ab )1( −

=  . By varying 

a, we can change the variance (i.e., the level of uncertainty 
in the perception of π) and set b in terms of a to maintain 
the same expected value. A convenient way to create ex-
periments is to set the coefficient of variation for the distri-
bution and then solve for the values of a and b that will 
maintain the desired mean and achieve the required stan-
dard deviation. The coefficient of variation for the beta dis-

tribution is  
)1( ++ baa

b . 

 
Alternatively, we can assume that the intruder’s perception 
of the unknown probability may be biased. If we specify 
both the coefficient of variation in the distribution and the 

degree of bias (
ba

a
+

−π  ), we can solve for values of a 

and b to satisfy those requirements. 
 
For any setting of the values for the parameters a and b, we 
can sample from the perception distribution to simulate an 
intruder operating with some specified level of imperfect 
information. Of course, this concept extends to imperfect 
information with respect to any number of probability es-
timates. Replicating this simulated sampling leads to vary-
ing choices of paths through the network by the imper-
fectly informed intruder, each of which has a different 
probability of success. This allows construction of an esti-
mated probability distribution for the likelihood of success-
ful attack by an intruder operating at that level of imperfect 
information, as well as a probability distribution over pos-
sible paths through the network. The distribution of path 
choices allows us to reach some conclusions regarding the 
likelihood that an intruder will appear at certain points in 
the network. 

4 ILLUSTRATIVE SIMULATION RESULTS 

To illustrate these ideas, we will consider a series of ex-
periments using the basic network from Figure 1, and 
compare the results to the perfect-information solution in 
Figure 2. As a first experiment we assume that the in-
truder’s perception of the detection probabilities (at the 
nodes and along the arcs) is unbiased, but has a coefficient 
of variation of 0.1 for all non-zero probabilities (i.e., ex-
cluding the first four entries in Table 2). 
 
As an example of the beta distribution parameter computa-
tions, consider the detection probability for the arc con-
necting “Impersonate Contractor” to “Cargo Hold” (the 
seventh row of Table 2). The true value for this probability 
is 0.6. To determine the a and b parameters of the beta dis-

Figure 2: Summary of intruder strategy and prob-
ability of success under perfect information 
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tribution to represent imperfect information, we establish 
the two equations: 

 

6.0=
+ ba
a      (1) 

 

1.0
)1(
=

++ baa
b     (2) 

 
We then solve for a and b, leading to the values a = 39.4 
and b = 26.27. This computation is repeated (for different 
underlying probabilities in equation 1) to produce a and b 
parameters for all the non-zero detection probabilities. 
 
In each simulation experiment, the success probability for 
a given node or arc is adjusted to accommodate the sam-
pled value of the detection probability. The retreat prob-
abilities at the nodes are unchanged. This adjustment en-
sures that the required probabilities sum to 1.0. 
 
Table 3 summarizes the results of 30 replications of the 
simulation. The path descriptors use the node numbering 
scheme from Table 1, and are listed in order of decreasing 
probability of success. The probabilities of use are rounded 
to two decimal places, and may not add exactly to 1.0. The 
path found in the perfect-information case (2-4-7-8) is one 
of the two most likely paths when the intruder has imper-
fect information, but approximately 63% of the time, the 
imperfectly informed intruder will choose a suboptimal 
path, even when the variability in the perceptions of detec-
tion probabilities (as measured by the coefficient of varia-
tion) is relatively small (0.1). The average probability of 
success for an intruder with this level of information is 
.00279, approximately 17% lower than for the perfect in-
formation case. This experiment indicates that even a little 
reduction in information about the system can have a sig-
nificant effect on reducing the likelihood of a successful 
attack. 

 
Table 3: Summary of results when probability esti-

mates are unbiased and coefficient of variation is 0.1 
Chosen 
Path 

Probability 
of Use 

Probability 
of Success 

2-4-7-8 0.37 .00336 
1-4-7-8 0.17 .00269 
2-4-6-8 0.37 .00256 
1-4-6-8 0.07 .00205 
2-3-5-8 0.03 .00108 

 
In addition to information on average probability of suc-
cess, the path data and probabilities in Table 3 can be used 
to estimate the likelihood that an intruder will appear at a 
given point in the network, given the level of imperfect in-

formation hypothesized. This is done simply by summing 
probabilities for paths that include a given node or arc. For 
example, we might be particularly interested in the relative 
likelihoods of attempts to place explosives in the three dif-
ferent areas of the aircraft. In this case, we could use the 
results in Table 3 to conclude that the probabilities of an 
intruder attempting to use the landing gear (node 5), the 
cargo hold (node 6) and the galley (node 7) are .03, .44 and 
.54, respectively (again rounded to two decimal places). 
 
Further insight into the effects of imperfect information 
can be obtained by increasing the level of uncertainty. A 
second experiment increased the coefficient of variation in 
the detection probability perceptions to 0.3. The percep-
tions are still considered to be unbiased. Table 4 summa-
rizes the results, again based on 30 replications of the 
simulation. 

 
 

Table 4: Summary of results when probability esti-
mates are unbiased and coefficient of variation is 0.3 

Chosen 
Path 

Probability 
of Use 

Probability 
of Success 

2-4-7-8 0.33 .00336 
1-4-7-8 0.23 .00269 
2-4-6-8 0.27 .00256 
1-4-6-8 0.07 .00205 
2-3-5-8 0.03 .00108 

1-3-5-8 0.07 .00086 
 
Comparing Table 4 to Table 3, we see that the increase in 
uncertainty about the correct detection probabilities causes 
the optimal path to be chosen less frequently, and a very 
suboptimal path (1-3-5-8) appears in the list of possibili-
ties. Overall, the average probability of success is .00266. 
This is a decrease from the case where the coefficient of 
variation is 0.1, but only about 5%. In this sample problem 
at least, a small amount of uncertainty in the perceived de-
tection probabilities is important, but making that uncer-
tainty much larger has relatively little effect on the ex-
pected probability of successful attack, as long as the 
perceptions are unbiased. 
 
There is a somewhat more noticeable effect of the increase 
in uncertainty on the probabilities of the intruder attempt-
ing to use different parts of the aircraft. From the results in 
Table 4, we can compute estimates of the probability that 
the intruder would attempt to use the landing gear (node 5), 
the cargo hold (node 6) and the galley (node 7) as 0.1, 
0.34, and 0.56, respectively. There is a noticeable shift in 
likelihood from the cargo hold to the landing gear for less 
well-informed intruders. This insight can be helpful to se-
curity forces. 
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To test the effects of biased perceptions, we have con-
ducted a third simulation experiment. The coefficients of 
variation in the detection probability perceptions are set to 
0.1, as in the first experiment, but we introduce a bias on 
two of the perceived probabilities – the detection probabili-
ties associated with a contractor approaching the aircraft, 
either the cargo hold or the galley. In Table 2, the “true” 
values are indicated to be 0.6, but we assume that the in-
truder believes (on average) that the values are 0.9 for both 
probabilities. Intuitively, we expect that these mispercep-
tions will tend to drive the intruder’s attack path away from 
paths that use those two arcs, and since one of the two arcs 
is part of the optimal path under perfect information, the 
net effect should be a reduction in success probability for 
the intruder. 
 
Table 5 summarizes the results of the experiment, again 
based on 30 simulation replications. The overall average 
probability of success for an attack is reduced to .00144, a 
reduction of 48% from the value in experiment 1 (.00279), 
and a reduction of 57% from the original value based on 
perfect information. The misperception of detection prob-
abilities on the two arcs makes it much less likely that the 
intruder will attempt to use those arcs (probability of 0.23 
versus 0.97 in the first experiment). Attacks are much more 
likely to be focused on paths (and areas of the aircraft) 
where the real detection probability is higher, leading to 
much lower success probability for the intruder. In the re-
sults shown in Table 5, the probability of the intruder at-
tempting to use the landing gear area is 0.37, as compared 
to 0.03 in experiment 1, and the probability of attempts 
through the galley has decreased from 0.54 to 0.1. 

 
Table 5: Summary of results when probability esti-

mates are biased on arcs 4-6 and 4-7 
Chosen 
Path 

Probability 
of Use 

Probability 
of Success 

2-4-7-8 0.10 .00336 
2-4-6-8 0.13 .00256 
2-3-5-8 0.33 .00108 
2-3-6-8 0.33 .00096 

1-3-5-8 0.03 .00086 
1-3-6-8 0.07 .00077 

 
The level of bias in the perceptions of the detection prob-
abilities on arcs 4-6 and 4-7 used in this experiment is sub-
stantial, and smaller assumed biases would create less 
dramatic results. However, we have only introduced the 
bias on two arcs in the network. More widespread misper-
ceptions would be likely in a larger system. This experi-
ment does indicate that creating biased perceptions of de-
tection probabilities among potential intruders can be very 
effective in reducing the likelihood of successful attacks by 
“steering” those attacks into areas where detection really is 
very likely. 

 
There are several means through which a system operator 
might create such misperceptions. Implementing inexpen-
sive, highly visible (though perhaps not really very effec-
tive) detection mechanisms might be one means. Supplying 
disinformation about real operations or procedures may be 
another, although this has obvious drawbacks as well. 

5 EXTENSIONS 

Several possible extensions to this analysis are possible. 
First, other aspects of imperfect intruder information could 
be included, such as imperfect knowledge about what bar-
riers (nodes) and arcs exist in the system. This type of im-
perfect information can be incorporated into the general 
analysis framework described in this paper. 
 
A second useful extension is to consider where improve-
ments in security (i.e., increases in detection probability) 
would be most effective against several classes of potential 
intruders (i.e., intruders with differing levels of information 
about the system). The analysis of possible investments to 
improve security is a vital part of the overall approach we 
have outlined here, and this is an active area of current 
work. 
 
A third useful extension is to create semi-Markov models 
for the processes of attempted penetration of barriers. This 
would allow more accurate representation of the uncertain 
time required to penetrate a given barrier, as well as offer 
the opportunity for time-dependent detection probabilities 
(i.e., the longer an intruder is present at a barrier, the more 
likely it becomes that he/she will be detected). This exten-
sion could improve the range of applicability of the model. 

6 CONCLUSIONS 

We have developed a model of intruder actions in attack-
ing an infrastructure system based on a Markov Decision 
Process (MDP). Lower level models of intruder detection 
at barriers (nodes) of the system can be built as Hidden 
Markov Models, and the results of those lower level mod-
els can be aggregated for use in the MDP of intruder strat-
egy for attacking the system. A key aspect of this analysis 
is representing imperfect information on the part of the in-
truders, and this paper focuses on that part of the analysis. 
Simulation is used as a tool to evaluate the effects of vary-
ing levels of imperfect information, sampling from distri-
butions of detection probabilities and using those samples 
to construct distributions of intruder path choices through 
the network and overall success probability. 
 
A small example problem illustrates that even relatively 
small amounts of uncertainty in the information the intrud-
ers have about the system can significantly affect the prob-
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ability that they can mount a successful attack. If the un-
certainty is combined with bias in the perceptions of some 
system parameters, the effect on the intruders is magnified. 
In the small example studied, biased perceptions of two 
key detection probabilities combined with small amounts 
of uncertainty in perceptions of all the detection probabili-
ties reduces the likelihood of a successful attack by a factor 
of about two. In addition to allowing us to estimate the 
probability of a successful intrusion, the simulation also 
allows us to estimate the likelihood of attacks appearing at 
specific locations in the network. This is very useful in-
formation for security forces. 
 
Several extensions are possible within the framework of 
the model developed here, and efforts to extend and im-
prove the analyses are ongoing. This approach appears to 
offer a significant new tool for evaluating and improving 
the security of infrastructure facilities. 
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