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1. Introduction 

Three influenza pandemics occurred in the U.S. in the 20th century, with varying degrees of impact depending on the virulence of the influenza. Each pandemic resulted in a tragic number of deaths: approximately 500,000 in 1918, 70,000 in 1958, and 34,000 in 1968. Currently, many in the public and private sectors have concerns about the impacts of a future influenza pandemic on the U.S. population, critical infrastructure, and economy. The U.S. Department of Homeland Security (DHS) directed the National Infrastructure Simulation and Analysis Center (NISAC) and the Critical Infrastructure Protection Decision Support System (CIPDSS) project to analyze the implications of pandemic influenza.
 The NISAC team conducted 2 sets of analyses: assessment of the character and potential magnitude of population, critical infrastructure, and economic impacts; and uncertainty analysis of infrastructure and economic impacts. Uncertainty is a characterization of what is not known about a system.

The NISAC team determined the potential magnitude of population, critical infrastructure, and economic impacts from pandemic influenza by evaluating a series of intervention strategy scenarios. The team compared scenarios in terms of the relative efficacy of simulated response and mitigation strategies on population, workforce, infrastructure operations, demand for infrastructure services, and economy due to an influenza strain with disease characteristics similar to those of the 1918 pandemic. The approach for performing these analyses (Figure 1-1) starts with detailed epidemiological simulations of a 1918-like pandemic influenza. Without effective intervention, the disease infects half of the population, 66 percent of whom develop symptoms.

Alternative scenarios of societal response to the disease and intervention strategy implementation yield different impacts on the population and healthcare infrastructure. The epidemiological results translate to workplace absenteeism estimates, which are analyzed for impacts on infrastructure operation and service provision. The combination of absenteeism, mortality, infrastructure service impacts, and demand shocks cause adjustments to the structure of the U.S. economy. Macroeconomic models provide estimates of the net impact by economic sector at the state and national level.
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Figure 1-1: Pandemic influenza impacts on population, infrastructures, 
and economy analysis elements
Using a simulated influenza strain similar to the 1918 influenza strain, the study team analyzed 7 intervention strategy scenarios for infrastructure, population, and economic impacts. The Homeland Security Council generated 3 of the 7 scenarios: unmitigated disease spread (baseline), targeted layered containment (TLC), and TLC Lite.
 The 4 other strategies include fear-based self isolation (Fear-40), the use of Strategic National Stockpile antiviral treatment (SNS-AV), the use of a partially effective vaccine (PE Vac), and the combination of interventions analysts anticipate being applied (anticipated intervention). The 7 scenarios represent a wide range of intervention strategies and allow for characterization of government, business, school, and individual behavior modifications. Merged results from 2 epidemiological simulators (EpiSimS and EpiCast) provide a national-scale characterization of the disease progression and its implications in terms of illness, deaths, and associated workforce reductions. 
Note: After this supplemental document was completed, the Centers for Disease Control and Prevention (CDC) changed the designations of the TLC and TLC Lite scenarios to Community Management Guidance (CMG) and Community Management Guidance – Selected Elements (CMS-SE), respectively.

Table 1-1 describes the intervention strategies used in these analyses.
Table 1-1: Pandemic intervention scenarios

	Scenario
	Medical Intervention
	Non-household Transmission Reduction by Social Distancing
	School Closures
	Home Isolation by Fear or Choice
	Other Interventions 

	Baseline
	None
	None
	None
	None
	None

	Fear-40
	None
	None
	None
	12.5 days x 40% beginning day 57
	None

	Targeted Layered Containment (TLC)
	Unlimited antiviral therapeutic plus household prophylaxis
	50% starting when 0.1% of population is symptomatic (day 48)
	100% starting when 0.1% of population is symptomatic (day 48)
	None
	Household quarantine (30%, start day 1); children’s activity curtailment (30%) and liberal leave start day 48

	TLC Lite
	Unlimited antiviral therapeutic 
	50% starting when 0.1% of population is symptomatic (day 33)
	None
	None
	None

	Strategic National Stockpile Antiviral Drugs (SNS-AV)
	SNS-AV (20M courses) therapeutic plus household prophylaxis
	None
	None
	None
	None

	Partially effective vaccination (PE Vac)
	Half effective pre-formulated vaccine, 10% of population vaccinated per week
	None
	None
	None
	None

	Anticipated intervention
	SNS antiviral (20M courses) therapeutic plus household prophylaxis
	10% starting when 0.1% of population is symptomatic (day 44)
	20 percent starting when 0.1% of population is symptomatic (day 44)
	53 days x 15% beginning day 44
	Strain-specific vaccine delivered to 5% of the population per week beginning on day 150


Note: M = million
This report presents analysis of impacts of pandemic influenza-induced workforce absenteeism on the transportation sector. 

2. Transportation Sector Analysis
In general, impact assessment of workforce absenteeism in the transportation sector considers possible impacts across a wide variety of transportation modes, including airlines, trucking, railroads, mass transit, pipelines, barges, and ports. In a broad sense, concerns can be divided into those related to passenger transportation and those related to freight transportation. 
Worker absenteeism in transportation carriers does not affect trips made by private automobile (approximately 91 percent of commuting trips and 90 percent of long-distance trips nationwide) and is not a concern for this analysis.
 Absenteeism could potentially affect specific highway maintenance tasks at particular times (for example, snowplow operators during winter months in the northern states), but these impacts are likely to be localized and of short duration. Apart from private automobile trips, the next largest categories of passenger travel are by airline and mass transit. Air carriers handle approximately 7 percent of long-distance (that is, intercity) trips and mass transit carries about 5 percent of commuting trips.

Workforce absenteeism among airline employees and airport employees will reduce the capacity of the airline sector, creating a potential concern. However, the demand for airline travel will likely decline even more than the reduction in capacity, as was seen in Asian countries during the 2003 Severe Acute Respiratory Syndrome (SARS) outbreak. In Taiwan, for example, airline passenger traffic declined by 58 percent.
 Foreign travel to Hong Kong declined by 48 percent and to China by 55 percent.
 The situation during a pandemic influenza outbreak in the U.S. might not match the SARS experience exactly, but it is highly likely that the reduction in demand for passenger travel by air during such an outbreak will be greater than the reduction in available capacity due to workforce absenteeism, which in most scenarios peaks at values less than 15 percent. For the one scenario in which workforce absenteeism is quite large (Fear-40), the study team projected the reduction in air travel demand to be very large. Thus, it seems reasonable to conclude that workforce absenteeism among airline or airport employees is unlikely to cause unsatisfied demand for passenger air travel.
A similar argument can be made with respect to mass transit in large urban areas. The number of people who are not going to work because they are symptomatic or self-isolating is likely to be comparable to the absenteeism among transit employees. An additional segment of the working population that normally uses mass transit systems is likely to switch to a private car to limit exposure, further reducing the demand for transit services. Thus, it is likely that the reduction in demand will be much larger than the reduction in available capacity occasioned by absenteeism among bus drivers, mechanics, subway train operators, and so forth. As a result, unavailability of transit service capacity is not likely to be a serious problem.
The demand for freight transportation services is unlikely to fall very much during a pandemic. The basic human needs for food and a wide variety of other consumer goods will continue, driving the need for transport of all types of materials. Purchases of some consumer durables may be postponed, leading to a slowdown in parts of related supply chains; however, on the whole, the demand for freight movement is likely to change relatively little. Reduction in capacity resulting from workforce absenteeism in freight transportation services may create the largest disruptions.
Within freight transportation, some operations are likely to be more susceptible to absenteeism than others. It is unlikely, for example, that modest workforce reductions will create significant operational problems in pipelines. Inland waterway (barge) operations are also unlikely to suffer serious operational problems because they are not labor intensive and the barge tow crews are somewhat isolated from contact with large numbers of infectious people. 
The trucking industry is relatively labor-intensive, with labor costs accounting for about 53 percent of total operating costs.
 Driver turnover is a major problem in the trucking industry, with recent turnover rates for line-haul drivers of approximately 130 percent per year among truckload carriers.
 Global Insight estimates that, in addition to a high rate of “churn” (drivers changing employers), there is a chronic shortage of approximately 1.5 percent of long-haul, over-the-road, heavy truck drivers.
 Substantial absenteeism due to pandemic influenza could be expected to exacerbate the chronic shortage, but in the midst of such a high “normal” turnover rate, the excess absenteeism of a pandemic might not significantly affect commodity flow. Drivers refusing to take loads to specific areas with high current infection rates could also be a problem; but, in general, the isolation of over-the-road drivers may produce a lower infection rate and less absenteeism in this sector than in other parts of the transportation industry. On the whole, analysis suggests that the effects in trucking will be “spotty” rather than systemic. 

Air freight, railroads, and container port operations are the 3 transportation areas in which absenteeism is most likely to produce significant effects. Analyses in these 3 areas were guided by the set of scenarios defined for this study, as described in the introduction. Figure 2-1 shows the projected nationwide absentee rate trajectories during the second to sixth months of a pandemic for a baseline (no intervention) and 5 scenarios. The peak absentee rate varies from about 1 percent in the TLC scenario to just above 28 percent in the Fear-40 scenario. Absentee rates of about 1 percent are unlikely to create serious disruptions and the transportation models are not sufficiently “fine-tuned” to be able to predict with any confidence the small effects that might occur at such absentee rates. Little attention has been focused on the TLC and TLC-Lite scenarios because their effects are likely to be “within the noise limits” of the models.
This study focuses on the peak absentee rates for the baseline, anticipated intervention, and Fear-40 scenarios, recognizing that the actual timing of the peak rate varies across the scenarios. The study team used values identified in an earlier study for the peak absentee rates in the transportation sector of 5.8 percent for the baseline scenario, 13.6 percent for the anticipated intervention scenario, and 28.3 percent for the Fear-40 scenario.
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Figure 2-1: The nationwide absentee rate trajectories during the second month through the fifth month of a pandemic
Events at the ports of Los Angeles and Long Beach in 2004 illustrate the effects of insufficient labor. These 2 ports are operated separately, but are physically adjacent. Taken together, they handle nearly one-half of all U.S. container imports, almost 16 million twenty-foot-equivalent units (TEUs) per year. There are approximately 36,000 truck trips per day into or out of the ports, delivering or picking up containers. About half of these container imports leave the Los Angeles area on intermodal trains operated by the Union Pacific and the Burlington Northern Santa Fe railroads. Approximately 60 trains enter or leave the rail yards near the ports every day.
In 2001, a change in federal law allowed railroad workers with sufficient seniority to retire at age 60, rather than at 62. This change triggered an increased retirement rate at most railroads, but particularly at Union Pacific. During 2002 and part of 2003, the economy was slumping and the reduced workforce was adequate to handle the lower level of traffic, but as the economy rebounded starting in late 2003, freight demand increased more rapidly than the workforce. By mid-2004, the popular press was reporting plans across the rail industry to hire 80,000 new workers over 6 years.
During the summer of 2004, Union Pacific did not have enough trained workers to handle the level of container traffic coming through Los Angeles/Long Beach and heading east by rail. The problem was exacerbated by a shortage of longshoremen in the port itself. The rail yards near Los Angeles became clogged and then the congestion reached back into the container storage areas in the port and eventually to ships in the anchorage waiting to unload. By September of that year, truckers were reporting 6-hour delays in the terminal to pick up containers,
 and the news was reporting queues of more than 30 ships anchored off the coast waiting for berths.

During 2004, Union Pacific increased its total workforce by about 2,000 people
  and terminal operators in the ports of Los Angeles and Long Beach added about 3,000 longshoremen.
 Eventually, these additional workers increased the throughput capacity of both the rail lines and the port facilities, and the delays largely disappeared by the end of the year. However, this experience illustrates the potential effects of labor shortages on railroad operations and port operations and emphasizes the interconnectedness of those 2 types of operations.
The following sections describe our analyses of 3 key segments of the transportation industry: air freight, railroad, and container port operations.
2.1 Air Freight

There are 2 major subsets of air freight movements: freight carried in passenger flights (so-called “belly freight”) and freight carried by all-cargo aircraft. Approximately 40 to 45 percent of all air freight is carried in the belly of passenger flights. All-cargo aircraft are operated by the major airlines and by freight-only carriers. A substantial part of the airline workforce is highly specialized (such as pilots) and cannot operate many different types of equipment. This reduces flexibility in reassigning people to cover for absenteeism. The issue is further complicated by the need for complex scheduling of crews and aircraft to cover sequences of flights over a period of time and by strict federal limitations on hours-of-service for on-duty crews. Thus, cancellation of a single flight for lack of crew can result in a series of subsequent flight cancellations because the crew and aircraft are not where they should be later in the day or at the beginning of the next day.

Table 2-1 shows all airports in the U.S. that handled more than 200,000 tons of airfreight in 2004. Because freight movements are not as symmetric as passenger movements, the inbound and outbound tons may be quite different. Another reason for differences between inbound and outbound values in Table 2-1 is that the table reflects only domestic movements and does not include international movements. For example, at Anchorage, Alaska, there appears to be much more outbound freight than inbound freight. This is likely due to the focus on domestic movements. A cargo flight from Asia, stopping over in Anchorage before continuing on to another U.S. city, would have its freight counted as “domestic originating” freight, but the inbound international flight would not be reflected in the numbers in Table 2-1. A similar situation exists at Kennedy Airport in New York, but in the opposite direction, as the departing movements to Europe are not reflected in the outbound value shown.

Several airports on this list are not usually considered large airports (as measured by passenger activity). Memphis and Louisville, for example, are the 2 largest freight hubs, but are not considered large passenger hubs. Memphis is the central hub for Federal Express, and Louisville is the central hub for United Parcel Service (UPS). A little further down the list, Airborne Airpark in Wilmington, Ohio, is a freight-only facility that serves as the central hub for Airborne/DHL.

Table 2-1: Large airfreight hubs, as ranked by total 
domestic tons handled in 2004
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The study team’s analysis of the effects of absenteeism on the movement of air freight is based on the Air Transportation Optimization Model (ATOM) developed by NISAC for assessment of a variety of DHS concerns related to air transportation. Further information on the ATOM formulation and the process used to estimate an air freight origin-destination table is contained in the reports by Jones and others.

In a pandemic influenza outbreak, it is likely that the number of available flight crews will be reduced. This is reflected as a reduction in capacity to move freight between airports. Based on the “Air Carrier Statistics (Form 41 Traffic)” data,
 the study team estimated routings and available capacity for air freight using 2004 data. The team scaled down the available capacity to approximate the reduction caused by absenteeism stemming from a pandemic influenza outbreak. For example, suppose the flights from one airport to another represent 200,000 pounds of air freight capacity daily. If the absentee rate is 20 percent, then the estimated daily capacity for that routing is reduced to 160,000 pounds. 
In the baseline scenario, absenteeism in the transportation sector peaks at 5.8 percent in the third month after the onset of the pandemic outbreak. In the anticipated intervention scenario, absenteeism peaks at 13.6 percent early in the fourth month following onset of the pandemic. In the Fear-40 scenario, the peak absentee rate in the transportation sector is 28.2 percent in the third month after initiation of the outbreak. The study team used these peak absentee rates for each scenario as the basis for the analysis and the rescaling of available capacity on all routings, applied uniformly across the national network for each scenario. Although peak absentee rates will likely not occur at all places simultaneously, the scenario definitions do not include that level of geographic variation, so the team made uniform reductions in effective capacity.

The analysis also assumed that the available set of routings for air freight is constant across the scenarios. That is, air freight carriers are unlikely to make significant changes to their available route structure over a short-duration episode (a few weeks) with significant amounts of employee absenteeism. The team also assumed that the set of origin-destination movements that the system is trying to accommodate remain fixed. This is likely to be a conservative assumption for estimating the effects of potential absenteeism. In reality, shippers of air freight are also experiencing absenteeism and are likely to be reducing production and distribution requirements, leading to a reduction in demand for air freight shipments. However, this analysis did not assume that such a reduction would take place, but did estimate the effects of the reduction in air freight capacity against the “nominal” (that is, normal conditions) origin-destination movement data.
Table 2-1 lists the percentage of nominal (2004 levels) cargo moved through each of the 28 large air freight hubs under the 3 scenarios (baseline, anticipated intervention, and Fear-40). Because the study team applied the reduction in available route capacity uniformly across the system for each scenario, the overall reduction in volume handled through the hubs declined approximately in proportion to the absentee rate, and there were only minor variations from one hub to another.

The various air freight hubs in Tables 2-1 and 2-2 serve somewhat different roles in the global air freight system. For example, Anchorage International has a large volume of international shipments in transit to and from Asia. This is a different role from that played by Memphis International, for example, which is mostly a hub for domestic air cargo being handled by Federal Express. Depending on how a pandemic influenza outbreak starts, which countries are most affected, and over what time frame, the resultant effects on volumes handled through different air freight hubs in the U.S. could vary widely. However, given the data with which the study team conducted the current analysis (domestic shipments only and geographic uniformity in the absentee rates within the U.S.), focusing on differences in the total cargo handled by airport within a given pandemic influenza scenario is not likely to be very useful. However, the general finding that the impacts are roughly linearly proportional to absentee rate, when the absenteeism is spread evenly across the country, is likely to be a useful and reliable observation. 
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Table 2-2: Impact of the absentee rate on the total cargo handled 
at the large airfreight hubs
Of the total tons of cargo in the nominal origin-destination table, the percentages that cannot be moved due to capacity limits are 5 percent, 12 percent, and 25 percent in the baseline, anticipated intervention, and Fear-40 scenarios, respectively. The percentage of total cargo not moved is a little smaller than the percentage reduction in available capacity in the 3 scenarios because the model tries to re-route cargo to make the best use of available capacity. However, the model’s ability to do very much of this for these scenarios is limited because the capacity reductions have been made across the entire route set. The 5 largest origins and destinations for air cargo that cannot be accommodated are Anchorage International (in Anchorage, Alaska), Los Angeles International (in Los Angeles, California), O’Hare International (in Chicago, Illinois), John F. Kennedy International (in New York City, New York), and Newark International (in Newark, New Jersey). All of these airports handle a substantial amount of international air freight. If these terminals can handle the international shipments, but encounter capacity limits on the domestic portion of the overall movement, they may be under substantial pressure to identify ways to divert freight to ground transportation for the domestic portion of the journey to avoid the loss of significant amounts of international traffic. The ability to do that depends on the length of the domestic portion of the movement and the availability of truck transportation. Although this potential diversion is notable, the study team did not analyze it in any detail in this study. 
2.2 Railroads
Railroads have some significant similarities to airlines in use of specially trained crews who are scheduled for a sequence of operations, who cannot readily substitute in different parts of the network, and who are subject to stringent hours-of-service regulations. Significant portions of the national rail system are operating quite near capacity, and substantial absenteeism would be likely to disrupt freight movements in some important corridors. There have been several instances in recent years where “local” bottlenecks in portions of the rail system have had wide ripple effects across the network, as classification yards became clogged, freight cars and locomotives became unavailable in the necessary locations, and shippers’ goods became “stuck” in the system (for example, Machalaba, 2004).
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The study team based this analysis of potential delays in rail shipments resulting from excess absenteeism on the Railroad Network Analysis System (R-NAS) model developed by NISAC for addressing DHS concerns related to the rail industry.
 Figure 2-2 represents the physical rail network used within R-NAS. This network does not include all rail tracks in the U.S. It focuses on the high-volume mainlines that are used for long-distance movement.

Figure 2-2: Railroad Network Analysis System (R-NAS) 
representation of national rail network
The R-NAS model determines the flow of shipments across links of the rail network in a way that recognizes the effects of congestion in the network resulting from limited capacity. As flow over a link increases, the congestion increases and resulting travel time increases. If the ultimate capacity of a link is reached, no additional flow can be accommodated. Figure 2-3 illustrates the general character of these delay functions.
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Figure 2-3: Generic delay function for a rail facility (network link)
This congestion primarily occurs at the large classification yards in the rail network. At these locations, trains are assembled and disassembled and individual freight cars are sorted as they move through the network. Logan presents data based on tracing more than 35,000 individual car movement records in 2004 that indicate the percentage of total in-transit time that freight cars spend in classification yards.
 The graph in Figure 2-4 summarizes these data.
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Figure 2-4: Percentage of total in-transit time spent in rail yards

This analysis of the potential effects of absenteeism in the national rail network focuses on 18 of the largest classification yards operated by the 4 largest Class-I railroads. Figure 2-5 shows the locations of these yards. Table 2-3 lists the yards by their owning railroad. The team chose these 18 yards for analysis because they are large yards that have relatively long average dwell times for cars passing through them. The long dwell times indicate that the yards are operating relatively close to capacity (see Figure 2-3). Each of the yards listed in Table 2-3 classifies an average of more than 1,200 freight cars per day, based on data provided by the railroads in their annual reports. Average dwell time statistics for individual yards are reported by the railroads to the Association of American Railroads (AAR) each week and published online.
 The study team used average dwell times published for February 2007 as the basis for assessing yards that are of greatest importance in the [image: image20.wmf] 
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analysis. 
Figure 2-5: Locations of major rail yards
Table 2-3: Locations and owning railroads for major classification yards

	Owning Railroad
	Location

	Burlington Northern Santa Fe Railway
	Barstow, California

	
	Galesburg, Illinois

	
	Kansas City (Argentine), Kansas

	CSX Transportation
	Cincinnati, Ohio

	
	Indianapolis, Indiana

	
	Nashville, Tennessee

	
	Selkirk, New York

	
	Waycross, Georgia

	Norfolk Southern Railway
	Bellevue, Ohio

	
	Conway, Pennsylvania

	Union Pacific Railroad
	Chicago (Proviso), Illinois

	
	Ft. Worth, Texas

	
	Houston, Texas

	
	North Little Rock, Arkansas

	
	North Platte, Nebraska

	
	Roseville, California

	
	West Colton, California


At each of these major yards, delay functions represent the effects of congestion. These functions are sensitive to the level of labor present in the yard. It is possible that a major influenza outbreak and associated absenteeism would cause some of these facilities to be completely overloaded, causing some freight traffic normally carried by the railroads to stop moving. One of the important elements of the analysis is identifying the point at which such conditions might occur.

2.2.1 Modeling Delay in Rail Classification Yards
Logan summarizes graphically where delays occur in rail yards, based on tracing movements of individual cars in a large study in 2004, as represented in Figure 2-6.
 Of an overall average time of 28.2 hours spent in the yard, 71 percent is delay waiting for a subsequent operational step, with the largest portion of this being delay in the classification “bowl” while cars wait to be assembled into an outbound train. The next largest components are waiting for inbound inspection on arrival and waiting to be classified at the “hump.”
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Figure 2-6: Breakdown of time spent in successive terminal 
operation steps for rail cars

For February 2007, the average delays across all terminals reported by the 4 largest Class-I railroads are as follows:


Burlington Northern Santa Fe


24.9 hours


CSX Transportation



25.3 hours


Norfolk Southern Railway


23.0 hours

Union Pacific Railroad


25.3 hours

These values are slightly lower than the average reported by Logan.
 The study team has constructed the NISAC R-NAS yard delay models to focus on the same sources of delay as identified by Logan,
 but to be calibrated to the more current 2007 data.
The expected dwell time in a yard for a given car is denoted as tij(xij)—the time required to cross a link ij (representing the yard in the rail network), which depends on the volume of cars crossing that link (processed in the yard), xij. This total dwell time is the sum of 3 parts: a constant term that is independent of car volume (representing the actual handling steps in Figure 2-6), a delay prior to classification (representing waiting for inbound inspection and the hump), and a delay waiting for outbound connection. The data in Figure 2-6 indicate the approximate magnitudes of these 3 components are 8.3 hours, 4.9 hours, and 15 hours, respectively. For this analysis, the team calibrated the model to estimated averages of 7 hours, 4 hours, and 14 hours, respectively. The sum of these 3 values is 25 hours, which is consistent with the current reported values from the railroads.

The expected values of these 3 parts are denoted as E(T1), E(T2) and E(T3), respectively, which results in
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Equation 1
In addition to being dependent on car volume passing through the yard, the elements of dwell time are also sensitive to labor availability. Evidence of this sensitivity is provided by the changes in yard dwell time around the Christmas-New Year holidays. Figure 2-7 shows the changes in average dwell time at 3 large classification yards over a 3-week period at the end of 2006 and beginning of 2007. The 3 yards shown are Waycross, Georgia (CSX Transportation), Galesburg, Illinois (Burlington Northern Santa Fe), and Conway, Pennsylvania (Norfolk Southern Railway). These are among the largest yards on their respective railroads. The first week is just prior to Christmas, the second week is the week between Christmas and New Year, and the third week is the first week in January.

The plots show the average dwell time at the yard for each week (as reported by the railroad to the AAR) and the total merchandise car loadings on that railroad during the same week. These car loadings exclude coal, grain, and intermodal traffic, which are generally not reclassified in the yards. The car loading figures do not directly measure the volume of cars through each specific yard because they are system-wide figures for the individual railroad, but the volume of cars processed through each yard should be correlated with total system car loadings.

[image: image22.emf]Rank Code Airport Name City/State

2004 Total 

Cargo 

(tons)

Baseline Total 

Cargo (% 2004 

Total Cargo)

Anticipative 

Total Cargo 

(% 2004 Total 

Cargo)

Fear 40 Total 

Cargo (% 2004 

Total Cargo)

1 MEM Memphis International Memphis, TN 3,659,947     94% 87% 73%

2 ANC Anchorage International Anchorage, AK 2,307,300     94% 86% 72%

3 SDF Louisville International - Standiford Field Louisville, KY 1,786,868     94% 86% 72%

4 LAX Los Angeles International Los Angeles, CA 1,347,611     94% 86% 72%

5 ORD O'Hare Chicago, IL 1,199,970     94% 86% 72%

6 IND Indianapolis International Indianapolis, IN 1,021,712     94% 86% 71%

7 JFK Kennedy International New York, NY 856,915        94% 86% 72%

8 ATL Hartsfield-Jackson Atlanta International Airport Atlanta, GA 747,473        94% 86% 72%

9 OAK Metropolitan Oakland International Oakland, CA 734,545        94% 86% 73%

10 EWR Newark Liberty International Newark, NJ 709,115        94% 86% 72%

11 DFW Dallas/Ft Worth International Dallas/Ft.Worth, TX 680,479        94% 86% 72%

12 ILN Airborne Airpark Wilmington, OH 669,686        94% 86% 72%

13 ONT Ontario International Ontario/San Bernardino, CA 516,467        94% 86% 72%

14 PHL Philadelphia International Philadelphia, PA 489,002        94% 86% 72%

15 SFO San Francisco International San Francisco, CA 438,650        93% 84% 70%

16 HNL Honolulu International Honolulu, HI 407,997        93% 85% 70%

17 MIA Miami International Miami, FL 382,245        94% 86% 71%

18 PHX Sky Harbor International Phoenix, AZ 347,586        94% 86% 72%

19 DEN Denver International Denver, CO 339,914        95% 87% 72%

20 SEA Seattle/Tacoma International Seattle, WA 317,864        93% 85% 74%

21 MSP Minneapolis-St Paul Minneapolis/St. Paul Int, MN 287,270        92% 86% 77%

22 IAH George Bush Intercontinental Houston, TX 268,806        95% 87% 72%

23 BOS Logan International Boston, MA 268,491        92% 86% 71%

24 SLC Salt Lake International Salt Lake City, UT 258,893        91% 85% 69%

25 PDX Portland International Portland, OR 250,924        97% 92% 76%

26 CVG Cincinnati/ Northern Kentucky International Covington, KY 222,171        94% 86% 72%

27 MCO Orlando International Orlando, FL 206,015        93% 86% 71%

28 RFD Greater Rockford Rockford, IL 202,818        94% 86% 72%


Figure 2-7: Changes in carloads and dwell time around the 
Christmas holiday at 3 major yards

In each of these cases, it is clear that the system-wide car loadings in the last week of 2006 fell, as shippers moved fewer shipments during the holiday week. Thus, the volume of cars moving through each of the yards can reasonably be assumed to have decreased as well. However, in each case, the average dwell time for the holiday week increased quite significantly. A reasonable conclusion is that this increase was due to fewer employees being available, as people take vacation and holiday time off during that last week of the year. Lacking data on the number of people actually absent during the last week of 2006 at any of these facilities, the analysis team cannot use the actual magnitudes of changes shown in Figure 2-7 to calibrate models of sensitivity to labor availability, but the figure does provide evidence that such sensitivity is present.
The actual processing steps in car classification within the yard are most directly related to labor availability; therefore, to estimate the effects of absenteeism, the analysis team inflates the estimate of 7 hours in direct proportion to the absentee rate. For example, if the projected absentee rate is 15 percent, the estimated activity time is 7(1.15) = 8.05 hours. In general,
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Equation 2
Where
ß is the proportion of workers absent in a given scenario being analyzed
The team modeled the expected delay prior to classification using a queuing approach, based on the previous work of Turnquist and Daskin.
 Using a bulk-arrival queue, they derived probable bounds on the expected waiting time for classification. The likely lower bound is associated with a situation in which inbound train lengths are constant (that is, there is no variability in the batch size of the arrivals) and service times (for example, at the hump) are deterministic. The likely upper bound represents a situation in which inbound train lengths are geometrically distributed (that is, high variance in batch size) and service times are exponential. The difference between these bounds is a factor of 2 in average waiting time. R-NAS modelers use a delay time that is halfway between the bounds as a plausible approximate model. This leads to the following expression:
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Equation 3
Where


L
=
average inbound train length (# cars)



μ
=
average classification rate (cars/hour)



ρ
=
λL/μ   (traffic intensity)



λ
=
average arrival rate of trains (trains/hour).

The quantity λL represents the average flow rate of cars through the yard (measured in cars per hour). In the network notation, this is xij for the yard link. Thus, the quantity ρ can be regarded as xij/μ or flow normalized as a fraction of capacity.

This study assumes that the average classification rate depends on the labor available, expressed through a multiplier ((ß) whose value is defined by the relationship shown in Figure 2-8. Small proportions of absent workers in a yard create a very modest reduction in the service rate; but, as the proportion increases, the effect is magnified. The model defines the function ((ß) for absentee rates up to 0.3 only because this covers the range to be studied in this analysis. Thus, in equation 3, the average classification rate, μ, is replaced by
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Equation 4
Where 
μ0 is the nominal classification rate of a given yard
This change in μ also affects the computation of ρ for a given arrival rate of trains.

[image: image23.emf]Rank Code Airport Name City and State

Outbound 

Freight 

(tons)

Inbound 

Freight 

(tons)

Total 

Freight 

(tons)

1

MEM Memphis International Memphis, TN 1,887,560 1,772,387

3,659,947

2

ANC Anchorage International Anchorage, AK 1,534,797 772,503

2,307,300

3

SDF Louisville Intl - Standiford Field  Louisville, KY 932,382 854,485

1,786,868

4

LAX Los Angeles International Los Angeles, CA 604,658 742,953

1,347,611

5

ORD Chicago O'Hare Chicago, IL 524,127 675,843

1,199,970

6

IND Indianapolis International Indianapolis, IN 508,685 513,027

1,021,712

7

JFK Kennedy International New York, NY 369,721 487,194

856,915

8

ATL Hartsfield-Jackson Atlanta International Airport Atlanta, GA 361,640 385,833

747,473

9

OAK Metropolitan Oakland International Oakland, CA 375,799 358,746

734,545

10

EWR Newark Liberty International Newark, NJ 355,388 353,727

709,115

11

DFW Dallas/Ft Worth International Dallas/Ft.Worth, TX 316,200 364,279

680,479

12

ILN Airborne Airpark Wilmington, OH 359,845 309,840

669,686

13

ONT Ontario International Ontario/San Bernardino, CA 268,307 248,160

516,467

14

PHL Philadelphia International Philadelphia, PA 242,747 246,254

489,002

15

SFO San Francisco International San Francisco, CA 231,523 207,127

438,650

16

HNL Honolulu International Honolulu, HI 178,984 229,013

407,997

17

MIA Miami International Miami, FL 181,423 200,821

382,245

18

PHX Sky Harbor International Phoenix, AZ 161,374 186,212

347,586

19

DEN Denver International Denver, CO 157,322 182,592

339,914

20

SEA Seattle/Tacoma International Seattle, WA 156,785 161,080

317,864

21

MSP Minneapolis-St Paul Minneapolis/St. Paul Int, MN 143,935 143,336

287,270

22

IAH George Bush Intercontinental Houston, TX 124,960 143,846

268,806

23

BOS Logan International Boston, MA 140,029 128,462

268,491

24

SLC Salt Lake City International Salt Lake City, UT 129,932 128,960

258,893

25

PDX Portland International Portland, OR 107,235 143,689

250,924

26

CVG Cincinnati/ Northern Kentucky International Covington, KY 117,199 104,972

222,171

27

MCO Orlando International Orlando, FL 87,199 118,816

206,015

28 RFD Greater Rockford Rockford, IL 109,440 93,378 202,818


Figure 2-8: Relation of service rate multiplier to absentee rate
A second effect of absenteeism on the classification process is that the average train length is likely to increase. If crews are in short supply, some trains will be cancelled and the ones that run are likely to move more cars in an effort to maintain overall capacity. The study team represented the change in average train length as being proportional to the absentee rate, so that L is given by the following expression:
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Equation 5
Where

L0 is the nominal average train length
For this analysis, the modelers assume L0 = 69 cars, the average train length for the industry as a whole in 2005.
 In the network model computations, the input rate to each yard is computed as number of cars per day (the product (L in equation 3), so the effect of the change in L does not directly affect the computation of ρ.
The expected connection delay while cars wait for their outbound connections is determined by the “effective headway” (that is, the time between potential departures) distribution of the outbound connection, which is represented fairly simply by the distribution shown in Figure 2-9. This distribution assumes that a “normal” connection is to an outbound train that operates once a day. There is a probability (p) that the “effective headway” for a given outbound connection is 48 hours, either because of cancellation of an outbound train or because of capacity limits that preclude a car from making the first available connection. The remaining probability, 1-p, is that there is a “normal” everyday outbound connection that is made.
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Figure 2-9: Probability distribution for “headway” between 
outbound connections
When headways between outbound departures are uncertain, the expected waiting time for a car that arrives at a random point in time can be expressed as
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Equation 6
Where 
E(H) and V(H) are the mean and variance of the headway distribution, respectively
This result was first shown in the context of waiting times of passengers at bus stops by Welding (1957),
 but the same mathematics can be applied to freight cars in a classification yard.

For the headway distribution shown in Figure 2-9, the mean and variance are



[image: image8.wmf](

)

()241

EHp

=+


Equation 7
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Equation 8
Substituting these expressions into equation 6, the expected connection delay is written as
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Equation 9
With increasing absenteeism, more outbound trains are likely to be cancelled and the probability that an inbound car makes its first scheduled connection decreases (that is, p increases). A simple reflection of that is the following relationship:
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Equation 10
The base value of p (0.09), when substituted into equation 9, results in E(T3) = 14 hours. This is the target value after adjusting the value reported by Logan and shown in Figure 2-6.
 At values of ß = 0.1, 0.2, and 0.3, the values of E(T3) increase to 15.8 hours, 17.4 hours, and 18.7 hours, respectively.
Substituting equation 10 into equation 9, the expression for E(T3) can be rewritten as
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Equation 11
The study team used equations 2, 3, and 11 to calibrate overall delay functions for each of the 18 major classification yards in Table 2-2 at nominal conditions (ß = 0). The team based this calibration on reported average terminal dwell times for February 2007 and reported typical daily classification volumes for all but 2 of the yards. For the 2 Norfolk Southern yards, no reported classification volumes were available, and the estimated delay functions are based on nominal capacities of 2,000 cars per day at Conway Yard and 1,500 cars per day at Bellevue Yard, along with the reported average dwell times. Table 2-4 summarizes the results of this calibration.
Table 2-4: Estimated characteristics of major rail yards for model calibration

[image: image25.emf]
Figure 2-10 shows a plot of the estimated average dwell time at the 18 yards versus the reported average dwell time, as an indication of the “fit” of the model. If the model fit the reported data exactly, the points would all lie on a straight line. This is not quite the case, but the correlation between the estimated values and the reported values is quite good.
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Figure 2-10: Estimated versus reported values of average delay in the nominal case (no excess absenteeism)
2.2.2 Baseline Scenario Analysis
In the baseline scenario, absenteeism in the transportation sector would peak at 5.8 percent in the third month after the onset of the pandemic outbreak. Using this 5.8-percent value as ß in equations 2, 4, 5, and 11, analysts estimate that the effective capacity of the rail yards under consideration would be reduced approximately 3 percent. Absenteeism also would result in additional train cancellations and a modest increase in average train length to 73 cars. If the traffic volume on the rail system is unchanged, the effect of the reduction in yard capacity would be to increase the utilization levels of the yards and, hence, to increase the delays. Table 2-5 provides a summary of estimated changes in capacity utilization and average dwell time for cars in the yards.
Table 2-5: Summary of changes for the baseline scenario
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In most of the 18 yards analyzed, the increases in average dwell times are between 4 and 17 hours. The study projects that many of these yards will have average dwell times above 40 hours, and origin-destination times for most shipments could increase by 1–3 days, depending on how many yards a specific shipment must pass through. The system-wide average in 2004 was 2.8 reclassifications per shipment,
 so a typical shipment might see an increase in overall travel time of about 2 days.
The study team directed some special attention at the Burlington Northern Santa Fe yard at Galesburg and the Norfolk Southern yard at Bellevue. Both of these yards have reported average dwell times of 40 hours or more under the current conditions, indicating a high level of congestion. The 3-percent reduction in effective capacity, although relatively minor in the aggregate, could be enough at these 2 locations to cause very serious congestion problems unless the level of traffic through those yards is also reduced. As long as the serious problems are confined to a small number of locations over a relatively limited duration, changes in blocking or other operational tactics at the railroads concerned are likely to be sufficient to avoid large-scale, system-wide problems.

The effects represented in this scenario are significant changes in delays for shipments and a noticeable increase in congestion levels at terminals across the rail system. However, because the overall duration of the event would be limited, this scenario does not create an intolerable level of disruption for the system as a whole.
2.2.3 Anticipated Intervention Scenario Analysis
As shown in Figure 2-1, in the anticipated intervention scenario, absenteeism peaks at 13.6 percent early in the fourth month following onset of the pandemic, and the overall period of significant absenteeism would be more than one and one-half times that of the baseline scenario. At a peak absentee rate of 13.6 percent, the estimated reduction in effective capacity for the major rail yards would be approximately 10 percent, and the effect of train cancellations would increase the average train length to about 78 cars. If the total volume of shipments is unaffected by absenteeism in other industries, the 10-percent reduction in effective yard capacity would be likely to push all 18 of the major yards to a critical situation, as shown in Table 2-6.
Table 2-6: Summary of changes for the anticipated intervention scenario
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Where the capacity utilization exceeds 1.0, the input rate of cars to be processed every day would exceed the capacity of the yard to handle them, and the delays simply would get worse and worse as the days progress. In the terms of the models used here for analysis, there would be no “steady-state” solution at that level of traffic input to the system, and the longer the situation persists, the worse conditions would become.
At the level of absenteeism projected in this scenario, it is very likely that shipping and receiving industries that use rail transportation would be affected, and the level of overall volume being shipped would be likely to drop. This may keep the situation in the rail system from becoming as critical as reflected in Table 2-6, but in this scenario, reasonably widespread problems should be expected as specific locations are unable to handle volumes coming into them over a 6- to 8-week period. There are likely to be persistent “waves” of congestion and disruption across the system as various yards become overly congested and adjustments are made, only to move the problem somewhere else. It is also likely that the railroads will embargo shipments to or from areas that are experiencing the worst problems at specific times during the overall event.
2.2.4 Fear-based Self isolation Scenario Analysis (Fear-40)
In the Fear-40 scenario, the total duration of the event would a little over 90 days (see Figure 2-1) and the peak absentee rate in the transportation sector would be 28.2 percent early in the third month after initiation of the outbreak. In the model calculations, this absentee rate would reduce the effective capacity of the major rail yards by approximately 45 percent. In the absence of shipment volume reductions, this capacity reduction, combined with train cancellations, reduced maintenance, and so forth, would likely cause the system to be completely clogged with shipments that are not moving. Table 2-7 shows that this scenario would increase the demand on the major rail yards by 60–70 percent above their effective capacity.
Table 2-7: Summary of changes for the fear-based 
self isolation (Fear-40) scenario
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Railroad

Reported 

Average 

Daily 

Volume 

(cars)

Nominal 

Capacity 

Utilization

Scenario 

Capacity 

Utilization

Argentine-Kansas City, KS

BNSF

1795

0.92

1.03

Barstow, CA

BNSF

1384

0.94

1.04

Galesburg, IL

BNSF

1653

0.96

1.07

Cincinnati, OH

CSX

1557

0.92

1.02

Indianapolis, IN

CSX

1494

0.93

1.04

Nashville, TN

CSX

1695

0.92

1.02

Selkirk, NY

CSX

1627

0.93

1.04

Waycross, GA

CSX

2276

0.91

1.02

Willard, OH

CSX

1557

0.94

1.05

Bellevue, OH

NS

N/A

0.95

1.06

Conway, PA

NS

N/A

0.91

1.02

Englewood- Houston TX

UP

1500

0.94

1.05

Fort Worth, TX

UP

1300

0.94

1.05

North Platte, NE

UP

2900

0.95

1.06

North Little Rock, AR

UP

1800

0.90

1.00

Proviso, Chicago, IL

UP

1600

0.94

1.05

Roseville, CA

UP

1450

0.91

1.01

W. Colton, CA

UP

1300

0.90

1.00


Of course, the shipping industries very likely would be experiencing similar absentee rates, and as a result, shipment volumes would be substantially decreased. Nevertheless, at the absentee rates projected in the Fear-40 scenario, there likely would be an enormous disruption in the rail system over a period of 2 months or more.
Because the major rail yards considered here are all high-volume facilities that are network focal points, they likely would experience the worst congestion. However, at such a high rate of absenteeism over an extended period, the effects would move beyond these major facilities and be felt system-wide.

2.2.5 Results Assessment 
There are 2 key questions in assessing the validity of the results presented here. First, how will shipment volumes decrease as a result of absentee workers in various sectors of the economy causing production slowdowns, decreased consumption of goods, and so forth? If the shipment volumes from all sectors were reduced proportionally to the reduction in rail system capacity, the level of disruption identified here would not occur. However, the rail system is presently in a “capacity crunch.” Ortiz and others describe the whole national freight system as being “brittle”; that is, small disruptions can produce large consequences.
 Under such conditions, the likely unevenness of shipment pattern would change as influenza affects different geographic areas and/or different industries to varying degrees. These variations in shipping patterns likely would create substantial disruptions in freight transportation generally and among railroads in particular, because there is very little excess capacity to “buffer” the variations across the system.
The second key question relates to the sensitivity of effective capacity in the major rail yards to varying degrees of absenteeism. NISAC modelers postulated a relationship, shown in Figure 2-8, in which absentee rates of less than 10 percent would have less-than-proportional influence on the rate at which classification yards can operate. On the other hand, absentee rates above 20 percent would have much more-than-proportional effects. Each of the 3 scenarios considered in detail in this analysis represent separate segments of the curve postulated in Figure 2-8., In general, the character of the curve describing this relationship is probably reasonable—small numbers of absentee workers would have a minor influence on effective capacity, but the marginal effect would increase disproportionately as more and more workers are absent. However, NISAC analysts have little data on which to make an accurate estimate of the curve in Figure 2-8, and the overall results of the analysis are relatively sensitive to that curve.
The relative differences in capacity impacts for the analyzed scenarios are likely to be quite reliable, but the details of the calculations for individual yards and scenarios could be improved with additional data, most particularly in developing curves specific to individual yards.
2.3 Container Port Operations

Port facilities are labor-intensive operations. In addition to the people who work directly for the port or terminal operators, a large port will have thousands of truck drivers and hundreds of railroad employees who work in the port each day, delivering and picking up containers and other cargo. If there were a substantial level of absenteeism among longshoremen, truck drivers, or railroad workers in the port, the flow of containers would be slowed and the port would quickly become clogged with shipments waiting to be moved.

NISAC's approach to analyzing the impact of substantial levels of absenteeism at container ports was to develop a queuing model to represent the process of loading and unloading containers from ships at specific ports. This model gives only an approximation of the true impact of absenteeism because it is limited to dockside activities. Therefore, it does not consider the effects of reductions in capacity caused by absenteeism in the container yards, absenteeism that reduces the ability to transfer containers to and from rail facilities, or the impact of reductions in the speed with which truck drivers can pick up and deliver containers to the port. Dockside operations are a limiting factor in port performance and, therefore, would represent a critical predictor.

Table 2-8 lists the percentage of total national container traffic (import and export, measured in TEUs) in the U.S. by seaport.
 The 3 largest ports handle about 50 percent of total container traffic. In 2005, the Port of Los Angeles handled about 7.4 million TEUs and the Port of Long Beach handled about 6.7 million TEUs. A TEU is a nominal unit of measure equivalent to a 20-foot by 8-foot by 8-foot shipping container and is the standard unit of traffic measurement in container freight shipments. Currently the most popular shipping container at large seaports actually measures 40 feet by 8 feet by 8 feet. Therefore, 1 of these shipping containers represents 2 TEUs.
Table 2-8. Percentage of U.S. container imports 
and exports handled by port (2005 data)

	U.S. Container Port
	Percentage of Total TEUs (%)

	Los Angeles, CA
	18.8

	Long Beach, CA
	16.9

	New York, NY
	13.1

	Charleston, SC
	5.8

	Savannah, GA
	5.7

	Oakland, CA
	5.3

	Seattle, WA
	5.2

	Norfolk, VA
	5.1

	Remainder of Ports
	24.1


Note: TEU = twenty-foot-equivalent units
This study focuses on the Port of Los Angeles to analyze the impacts of substantial absenteeism caused by pandemic influenza on port performance because it is the largest of the U.S. seaports and has the best available data. The Port of Los Angeles has 8 terminals operated by various terminal companies. Each terminal has vessel berths, gantry cranes for loading and unloading ships, container yard facilities for staging and storing containers, and so forth. Different sets of ocean carriers have agreements with each terminal operator for use of their facilities. Table 2-9 summarizes important characteristics of the Port of Los Angeles terminals.
Table 2-9: Description of the terminals at the Port of Los Angeles

	Terminal Number
	Terminal
	Shipping Lines
	Number of Cranes
	Approximate Number of Vessel Calls in 2005

	1
	West Basin Container Terminal
	China Shipping, Yang Ming, K-Line, Cosco, Hanjin, Sinotrans, Zim
	4
	a

	2
	West Basin Container Terminal
	China Shipping, Yang Ming, K-Line, Cosco, Hanjin, Sinotrans, Zim
	8
	a

	3
	Trans Pacific Container Service Corp.
	Mitsui, China Shipping, Norasia, Compania Sudamerica de Vapores, Zim, Wan Hai, APL, Hyundai Merchant Marine Co., CMA-CGM
	11
	a

	4
	Port of Los Angeles Container Terminal
	N/A
	4
	75

	5
	Yusen Terminal
	NYK, OOCL, Hapag-Lloyd
	10
	111

	6
	Seaside Terminal
	Evergreen, Hatsu Marine Ltd., Italia Marittima
	8
	217

	7
	APL Terminal/Global Gateway South
	APL, Hyundai, MOL, ANZDL, Fresco, HamburgSud, Maersk
	12
	a

	8
	APM Terminals/Pier 400
	Maersk, Horizon
	14
	a


Notes: N/A = not available
a There were 933 total vessel calls among terminals 1, 2, 3, 7, and 8, but because of overlapping usage, data on how  many occurred at each terminal individually are unavailable.
The Port of Long Beach is adjacent to the Port of Los Angeles and has 6 terminals. In total, it has the same number of gantry cranes (71) as Los Angeles.
 Given the similarities in the traffic and terminal capabilities at these 2 adjacent seaports, NISAC focused on the Port of Los Angeles, with the understanding that similar conclusions are valid for the Port of Long Beach.

In general, the rate-limiting step in handling containers at ports is the rate at which the gantry cranes can unload and then reload the vessels. The key measure of capacity for a crane is the number of lifts per hour (LPH) that it can accomplish. NISAC’s focus in this analysis is on the effects of labor absenteeism on the effective capacity of the port, as reflected in the effective capacity of the cranes at dockside. The consequence of reduced effective capacity would be increased delay to the vessels because unloading and reloading takes longer and because the vessels must wait longer for an available berth. This can be modeled using queuing theory, which results in a nonlinear relationship, as indicated generically in Figure 2-11.
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Figure 2-11: Generic relationship between effective crane capacity 
and average ship delay
As the labor absentee rate rises, the ability of the terminal to operate all of its cranes effectively would decline, causing delays in processing the ships at the port. A reasonable way to represent the impact of absenteeism is to scale the LPH by the fraction of the workforce that is not absent. For example, suppose that a crane under normal operating conditions can lift 25 TEUs per hour, but the absentee rate is 20 percent. The modified LPH would be 25(0.8), which equals 20 LPH.

The expected time required to process a ship (that is, berth the ship, unload the inbound containers, load the outbound containers, and have the ship leave the berth) can be estimated based on the total number of inbound and outbound containers, the total number of cranes assigned, the LPH of the cranes, the fraction of the containers that are 40-foot containers versus 20-foot containers, and the amount of time needed to position the ship at the berth and to move the ship from the berth. This relationship is given in equation 12.


Service Time = [(TEUs to lift)/(1+fraction of 40-foot containers)]/
(# cranes assigned*LPH)+ ship positioning time 
Equation 12
A similar formula is used by both Turner and Pachakis and Kiremidjian.
 Vanderveen estimates that for major seaports 60 percent to 80 percent of the containers are 40-foot containers.
 The Port of New York and New Jersey reports that from 2000 to 2005, about 70 percent of their containers were 40 feet.
 While the study team did not find comparable statistics for the Port of Los Angeles, it is reasonable to assume that 70 percent of their containers are 40-foot and 30 percent are 20-foot containers. As illustrated by equation 12, this statistic is important because it takes about the same amount of time to lift 1 20-foot container as to lift 1 40-foot container. The model assumes that the total time required to position the ship at the berth and to move it from the berth afterwards is 3 hours. This is consistent with estimates given by Turner.

The actual service time for a ship may vary from the value given in equation 12 for a variety of reasons (crane breakdowns, crews not ready on time, other equipment problems, and so forth), but the largest source of variation in service times across processing of many vessels is the variation in the number of TEUs to lift for different ships. The study team estimated this variation using data on vessel calls at the Port of Los Angeles for 2005.

Figure 2-12 shows container vessel calls at Los Angeles for each month in 2005, the most recent year for which a full data set was available. Notice the relatively smaller values in the winter months and the peak in October. The general pattern across the year is also reflected in the number of TEUs handled by the port for the same time, as shown in Figure 2-13.
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Figure 2-12: Monthly container vessel calls at Los Angeles in 2005
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Figure 2-13: Monthly twenty-foot-equivalent units (TEUs) 
handled at Los Angeles in 2005
Using size information for the individual vessels in the vessel call data (from the U.S. Department of Transportation [DOT]) and the aggregate number of TEUs handled each month (as reported by the Port), NISAC estimated the variation in TEUs to lift per ship and, from this, the probability distribution for the service times, using equation 12. For a distribution of vessel sizes within some period, the expected service time is denoted by E[S] and the second moment of the distribution by E[S2].

Several previous authors (such as Turner and Pachakis and Kiremidjian
) conclude that the arrival process of ships at seaports can be effectively modeled as a Poisson process where the mean varies by month. NISAC modelers used this approach, focusing on analysis reflecting both an average month (with approximately 111 vessel arrivals) and a peak month (October), as indicated by Figure 2-12.

For a given arrival rate, λ, expressed in vessels per hour, the queuing model formula for the expected vessel time in port is as follows:



[image: image13.wmf](

)

(

)

]

[

])

[

(

)!

1

(

]

[

!

]

[

])

[

(

)!

1

(

2

])

[

](

[

1

0

2

1

2

S

E

S

E

k

k

S

E

n

S

E

S

E

k

k

S

E

S

E

k

n

k

n

k

k

+

ú

û

ù

ê

ë

é

-

-

+

-

-

å

-

=

-

l

l

l

l

l


Equation 13
Where 
k is the number of servers
E[S] is the expected service time 
E[S2] is the second  moment of the service time
To use equation 13 effectively, modelers must specify the number of servers, k, available to a given stream of arrivals. For the Port of Los Angeles, this means that vessel arrivals must be segregated by shipping company (or groups of shipping companies) because the ships of a specific company can only use certain terminals, as indicated in Table 2-9. Also noted in Table 2-9, terminals 4, 5, and 6 can be considered individually because the set of shipping lines using each terminal is different. However, terminals 1, 2, 3, 7, and 8 must be considered together because there is overlap in the shipping lines using those terminals and the shipping lines can generally use more than 1 of those terminals.
Terminal 4 has only 4 cranes, so it is reasonable to assume that they will all be assigned to each ship arrival. This implies that the queuing model for Terminal 4 will only have 1 server with 4 cranes. Terminal 5 has 10 cranes, so it is reasonable to assume that it will have 2 servers with 5 cranes each. Terminal 6 has 8 cranes, so it is reasonable to assume that it will have 2 servers with 4 cranes each. Terminals 1, 2, 3, 7, and 8 were modeled together (7 servers), creating a model with 12 servers across all 5 terminals, with 4 cranes each.

As of 2005, Terminal 6 operated 24 hours per day, but all other terminals operated only 2 shifts, or 16 hours per day. To incorporate the effects of the 16-hour day into the queuing model, the study team estimated the raw service time (continuous) based on equation 12, and added 8 hours to the service time for each increment of 16 hours needed beyond the first 16 hours.
The study team used the vessel movement files available from the Maritime Administration to calibrate queuing models of the Port of Los Angeles.
 That dataset records the day of entrance and exit for each vessel call at every U.S. port. The latest year for which those data are available is 2005. Figure 2-14 shows a histogram for the number of days in port for ships entering the Port of Los Angeles in 2005. This average time from this data is comparable to the expected time-in-system estimate provided by equation 12 and provides a basis for evaluation of the queuing model. However, because the analysts separated the models by terminal (or groups of terminals), they based the evaluation on disaggregated data for the appropriate groups of shipping lines.
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Figure 2-14: Histogram of days in port for container ships in Los Angeles in 2005
NISAC also built separate analyses for an average month during 2005 and for the month of October because that month is the peak period for the port as a whole (although not necessarily for all individual terminals within the port). 

Figure 2-15 presents a comparison of the mean time in port from the vessel movement files to the values predicted by the queuing models for the 4 terminal subsets. In general, there is good agreement between the queuing models and the observed values. The models of terminal 5 have the largest discrepancy. The under-prediction of time in port in Terminal 5 indicates that analysts are over-estimating the capacity of that terminal. However, the overall fit of the queuing models appears to be sufficient to go ahead with analysis of the pandemic influenza scenarios.
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Figure 2-15: Comparison of average time in port (model versus observed) for the 4 terminal queuing models

The model calibration is based on 2005 data because that is the most recent year for which full datasets are available. The study team also knows, however, that TEUs handled at the Port of Los Angeles rose 13 percent from 2005 to 2006. If the study team assumed that the same growth rate would continue into 2007, the total number of TEU’s handled at the port would rise to 9.6 million in 2007. In addition, all terminals at the Port of Los Angeles now operate 24 hours per day. NISAC conducted these analyses using an overall annual demand level of 9.6 million TEUs and 24-hour terminal service operation. 
Figure 2-16 summarizes the predicted average vessel times in port for the varying absentee rates represented in the 3 scenarios of interest: 5.8-percent workforce reduction for the baseline scenario, 13.6-percent workforce reduction for the anticipated intervention scenario, and 28.3-percent workforce reduction for the Fear-40 scenario. Figure 2-16 also shows the average time in port with the current volumes and an absentee rate of 0 for comparison. Because terminals 1, 2, 3, 4, 5, 7, and 8 now operate 24 hours per day, they have 50-percent more capacity than in 2005. The growth rate in traffic from 2005 to 2007 is about 28 percent, so these terminals now have lower delays to vessels than they did in 2005 under the nominal current conditions (0 absentees). These terminals could absorb much of impact of the absenteeism associated with the pandemic influenza scenarios. Delays would certainly increase, especially in the Fear-40 scenario, where total-time-in-port increases by about 40–50 percent; however, if the duration of the event is less than 2 weeks, such delays may be tolerable.
Terminal 6 (the Seaside Terminal, used by Evergreen, Hatsu, and Italia Marittima), however, does not have enough capacity to accommodate the high level of absenteeism associated with the Fear-40 scenario. At the average monthly volume, the average delay in this scenario would increase to 152 hours (approximately 6.3 days). This would create delays comparable to the situation that existed in the fall of 2004. If the influenza event were to occur in the peak month of October, the delays would be intolerable. The model actually computes a value of nearly 1,500 hours (about 63 days), but this value is not shown in Figure 2-16 because no ship owner would tolerate such a wait. It is important to note that under high absentee rates, there is 1 terminal that likely would be severely congested and some vessels from the lines that normally use that terminal would either have to make temporary arrangements with other terminal operators or be diverted to other ports to unload.
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Figure 2-16: Summary of average time in port for the 4 terminals 
under various scenarios

NISAC conducted this analysis based on projected 2007 container volumes at the Port of Los Angeles. Traffic has grown approximately 43 percent since 2000 at that port and is currently growing at about 13 percent per year. If the investment in port capacity keeps pace with the traffic growth, these delay estimates will be valid beyond 2007. However, if it does not, these results may significantly under-estimate the impact of pandemic influenza occurring in later years.

As mentioned earlier, the Port of Long Beach is similar in many respects to the Port of Los Angeles. With a higher proportion of “shared use” terminals, it is somewhat less susceptible to the “single terminal” problem seen in the Los Angeles analysis. The Port of Long Beach is also experiencing rapid traffic growth and is investing to increase capacity. As in Los Angeles, if the capacity investments keep pace with traffic growth, there should be sufficient capacity to weather an influenza outbreak (and associated worker absenteeism) with noticeable, but tolerable increases in delays. However, with such high growth rates for traffic volume, available “buffer” capacity can disappear very rapidly.
The Port of New York and New Jersey in the New York City area has a lower total volume of containers than either the Los Angeles Port or the Long Beach port and a slower growth rate, but it has tighter constraints on expansion and a different set of capacity issues. Anecdotal data (from conversations with port officials) suggest that the capacity-limiting element of the New York/New Jersey port is the container yard, rather than the dockside operations. However, these sources have been unable to provide hard data on which to base an analysis of this issue. Thus, although forced to conclude that the Port of New York and New Jersey is likely to respond to substantial worker absenteeism differently from Los Angeles/Long Beach, the analysis team does not have sufficient information to predict how different the effects will be.
2.3.1 Intermodal Transfers
Beyond the process of unloading and loading containers at the dockside, there is potential concern about the transfer process through which these containers move from the port terminal to truck or rail for delivery across the nation. The severe congestion in Los Angeles/Long Beach that occurred in 2004, for example, had roots in both the rail system and in the port facilities. The inability to move containers through the port and away to their destinations by truck or rail can result from limitations in any step of that overall process.
This analysis focused on the dockside operations because they are typically rate-limiting. Over the last 2 years, the change to 24-hour operations at the dockside in Los Angeles/Long Beach has been accompanied by expansion to 24-hour gate operations on the land side of the terminals to help move containers more effectively into and out of the terminal area. Both Los Angeles and Long Beach have also increased the proportion of dockside rail loading, so that more containers are placed directly on rail cars at the dock and a labor-intensive intermediate handling of the containers is eliminated. These changes help the intermodal transfer capacity keep pace with the unloading/loading capacity at dockside, and the focus on dockside operations remains appropriate. However, during a potential pandemic influenza outbreak, the rate of worker absenteeism could exhibit strong local fluctuations and shift the bottleneck in port operations to the container yard or intermodal transfer. In such an event, the delays might be worse than those forecast above. However, such an event would likely be of short duration. In general, the dockside operations are most likely to be the rate-limiting step in the operations.
3. Conclusions

NISAC focused this analysis on freight transportation services because the demand for freight movements is unlikely to fall very much during a pandemic episode; the basic needs of people for food and a wide variety of other consumer goods will continue, driving movements of all types of materials through the transportation system. Some purchases of consumer durables may be postponed, leading to a slowdown in some parts of related supply chains; however, on the whole, the demand for freight movement is likely to change relatively little. Freight transportation is where the reduction in capacity resulting from workforce absenteeism may create the largest disruptions. The study team analyzed 3 key segments of the freight transportation industry: air freight, railroads, and container port operations.

The team estimated routings and available capacity for air freight using 2004 data. The team scaled down available capacity to approximate the reduction caused by absenteeism stemming from a pandemic influenza outbreak. The large air freight hubs play relatively different roles (some more focused on international shipments and others more on domestic shipments, for example), and this may cause them to respond somewhat differently to reductions in system capacity. Individual carriers may also pursue somewhat different strategies on diverting shipments to trucks. The overall conclusion of the air freight analysis is that the reduction in system capacity is proportional to the absentee rate projected for the 3 scenarios analyzed.

The NISAC analysis of the potential effects of pandemic-induced absenteeism on the national rail network focused on 18 of the largest classification yards operated by the 4 largest Class-I railroads. The study criterion for choosing these 18 yards was to choose large yards that have relatively large average dwell times for cars passing through them. The large dwell times indicate that the yard is operating relatively close to its capacity and may be noticeably affected by absentee workers. 
For the baseline scenario (peak absentee rate of 5.8 percent), there would be significant changes in delays for shipments, and the terminals across the rail system would experience a noticeable increase in congestion levels. Because the peak absenteeism rate would be sufficiently low and the overall duration of the event would be limited (3.5 months), this scenario does not create an intolerable level of disruption for the system as a whole.

At the level of absenteeism projected in the anticipated intervention scenario (13.6-percent peak), it is very likely that shipping and receiving industries that use rail transportation would be affected and that the level of overall volume being shipped would likely drop. This reduction could keep the situation in the rail system from becoming critical, but reasonably widespread problems would be expected as specific locations are unable to handle volumes coming into them over a 6- to 8-week period. There likely would be persistent “waves” of congestion and disruption across the system as various yards become overly congested and adjustments are made, only to move the problem somewhere else. It is also likely that the railroads would embargo shipments to or from areas that are experiencing the worst congestion at specific times during the overall event.

In the Fear-40 scenario, absentee rate in the transportation sector would peak at 28.2 percent in the third month after initiation of the outbreak. In the model calculations, this absentee rate would reduce the effective capacity of the major rail yards by approximately 45 percent. In the absence of shipment volume reductions, this capacity reduction, combined with train cancellations, reduced maintenance, and so forth, likely would cause the system to be completely clogged with shipments that are not moving.
The study team assessed container port impacts due to substantial levels of absenteeism using a queuing model developed to represent dockside operations (the process of loading and unloading containers from ships) at specific ports. This model provides an approximation of the true impact of absenteeism because it does not consider the effects of reductions in capacity caused by absenteeism in the container yards, absenteeism that reduces the ability to transfer containers to and from rail facilities, or the impact of reductions in the speed with which truck drivers can pick up and deliver containers to the port. However, dockside operations are a limiting factor in port performance and represent a critical predictor of port performance. The team focused particular attention on the Port of Los Angeles, both because it is the largest container port in the U.S. and because the best available data are from that port.
Most of the individual terminals in the Port of Los Angeles could withstand the absenteeism associated with the 3 pandemic influenza scenarios. Delays would certainly increase, especially in the Fear-40 scenario, where total time in port would increase by about 40–50 percent; however, if the high absentee rates do not persist for more than 2 weeks, this may be tolerable.

For terminals without enough capacity to accommodate the high level of absenteeism associated with the Fear-40 scenario, delays comparable to the situation that existed in the fall of 2004 could be created. If the influenza event were to occur in the peak month of October, the delays would be intolerable. Such terminals likely would be severely congested and some vessels from the lines that normally use them would either have to make temporary arrangements with other terminal operators or be diverted to other ports to unload.

The Port of Long Beach is similar in many respects to the Port of Los Angeles. It does have a higher proportion of “shared use” terminals and is somewhat less susceptible to the “single terminal” problem seen in the Los Angeles analysis. The Port of Long Beach is also experiencing rapid traffic growth and is investing to increase capacity. As in Los Angeles, if the capacity investments keep pace with traffic growth, there should be sufficient capacity to weather an influenza outbreak (and associated worker absenteeism) with noticeable, but tolerable, increases in delays. However, with such high growth rates for traffic volume, available “buffer” capacity can disappear very rapidly.

The Port of New York and New Jersey in the New York City area has a lower total volume of containers than the Los Angeles/Long Beach ports and a slower growth rate, but it has tighter constraints on expansion and a different set of capacity issues. Anecdotal data (from conversations with port officials) suggest that the capacity-limiting element of the New York/New Jersey port is the container yard, rather than the dockside operations. However, these sources have been unable to provide hard data on which to base an analysis of this issue. Thus, although forced to conclude that the Port of New York and New Jersey is likely to respond to substantial worker absenteeism differently from Los Angeles/Long Beach, the analysis team does not have sufficient information to predict how different the effects will be.
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