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1. Introduction
Three influenza pandemics occurred in the U.S. during the 20th century, with varying degrees of impact depending on the virulence of the influenza. Each pandemic resulted in considerable death: approximately 500,000 died in 1918, 70,000 in 1958, and 34,000 in 1968.
 
Currently, the impacts of a potential future influenza pandemic on the U.S. population and its economy are of significant concern. To analyze the implications of an influenza pandemic on human health, infrastructure services, and the economy, the U.S. Department of Homeland Security (DHS) directed the National Infrastructure Simulation and Analysis Center (NISAC) and the Critical Infrastructure Protection Decision Support System (CIPDSS) project to study this important issue. The purpose of this analysis is to provide information that will support the development of a national implementation plan for pandemic influenza mitigation and response activities. NISAC and the CIPDSS team divided the proposed analysis into 2 phases: Phase 1 is the Potential Impacts of Pandemic Influenza on U.S. Infrastructures, and Phase 2 is the Evaluation of the Effects of Uncertainties on Response Effectiveness and Economic Impacts.
 This report documents the CIPDSS analysis for Phase 1 of the joint analysis.

Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and Argonne National Laboratory (ANL), funded by the Infrastructure/Geophysical Division of the DHS Science and Technology Directorate, collaborated to develop CIPDSS, which is a set of infrastructure simulation models.
 CIPDSS is a risk-informed decision support system that provides insights for making critical infrastructure protection decisions by considering all 17 critical infrastructures and their primary interdependencies (Table 1-1).
Table 1-1: Infrastructure and key asset categories
	Critical Infrastructures

1. Agriculture and Food

2. Water

3. Public Health

4. Emergency Services 

5. Government

6. Defense Industrial Base

7. Information and Telecommunications

8. Energy

9. Transportation

10. Banking and Finance

11. Chemical Industry and Hazardous Materials

12. Postal and Shipping


	Key Asset Categories

13. National Monuments and Icons

14. Nuclear Power Plants

15. Dams

16. Government Facilities

17. Commercial Key Assets


CIPDSS includes consequence models for all critical infrastructures, which are linked via their strongest interdependencies and can be coupled between national and metropolitan geographic scales. A variety of different scenario modules can drive the consequence models. These scenarios can trigger disruptions in one or more infrastructures that may then cascade through the interdependent infrastructure system, depending on the magnitude of the disruption, choice of mitigation or intervention strategies, and robustness of the affected infrastructures. The consequence models are coupled to a configurable decision model that helps decision makers evaluate complex tradeoffs between alternative mitigation and intervention strategies.

Ribonucleic acid (RNA) orthomyxoviruses cause influenza. Only the types A and B influenza viruses are known to cause epidemic human disease, with pandemic disease limited to type A viruses. Type C viruses are limited in that they cause only sporadic cases or small outbreaks. Type A viruses are classified into subtypes based on the specific hemagglutinin (H) and neuraminidase (N) proteins found on the virus’s surface. The H protein enables the virus to enter a cell, where it replicates. The N protein aids the replicated virus in escaping the cell and infecting other cells. Currently, 2 subtypes of A viruses are in worldwide circulation in humans: H3N2 and H1N1. 
The newest influenza strain (H5N1), identified in 1997, is highly pathogenic to poultry and wild birds and has been found to infect and cause significant mortality in humans. While H5N1 is not easily transmissible from human to human and is considered primarily an avian disease, the current H5N1 has shown the ability to infect multiple types of vertebrate hosts, giving this influenza an opportunity to either mutate or reassort into a pandemic form easily transmissible between humans. The number of countries where H5N1 has been identified has increased from 5 to 55 since the highly pathogenic H5N1 was found outside of poultry in wild birds in 2005. Whether a pandemic arises from the current H5N1 influenza or from another strain, now is the time to prepare and determine the best mitigation tactics to save lives and potentially control a pandemic.

The threat of a contagious-disease pandemic to business and critical infrastructure continuity deserves careful consideration. This threat is different from most other threats for the following reasons:

· Worldwide impact: Unlike localized threats, a pandemic has the potential to affect operations nearly simultaneously across North America and around the world. A pandemic will affect employees and the availability of resources and services that the different sectors depend upon. 

· Duration: An influenza pandemic could severely disrupt operations for 6 to 8 weeks. Some level of fear would spread through the population prior to the actual outbreak, and the actual “sickness” period would range from a day to a week for most individuals. 
· Mortality: The assumed mortality rate in this analysis is 2 percent of symptomatic cases worldwide. Even a low-end mortality rate would cause severe disruption for employees who lose family.

This analysis uses a modified susceptible-exposed-infectious-recovered (SEIR) epidemiology model
 to represent the spread of an influenza virus with characteristics similar to that responsible for the 1918 pandemic. Seven intervention scenarios were modeled, representing a variety of potential population response and intervention strategies: 
· Baseline (Section 2.3.1)
· Fear-based self-isolation (Fear-40) (Section 2.3.2)
· Targeted layered containment (TLC) (Section 2.3.3)
· TLC lite (Section 2.3.4) 
· Antiviral treatment and prophylaxis (Section 2.3.5)
· Partially effective vaccine (Section 2.3.6)
· Anticipated intervention (Section 2.3.7)
Note: After this supplemental document was completed, the Centers for Disease Control and Prevention (CDC) changed the designations of the TLC and TLC Lite scenarios to Community Management Guidance (CMG) and Community Management Guidance – Selected Elements (CMS-SE), respectively.

Aggregate human health impacts were calibrated to higher resolution epidemiology results from the NISAC-sponsored analysis. The calibration enabled the use of the integrated CIPDSS SEIR model to drive the coupled infrastructure models and assess the cascading effects of the spread of the disease on each infrastructure sector. This allowed comparison of results from alternative modeling approaches and laid the foundation for the use of CIPDSS models in uncertainty/sensitivity analyses.

The public health and population response impacts of the pandemic result in labor-supply shocks and a demand shock for the national healthcare system. Existing models were modified to represent the impacts of the labor-supply and healthcare shocks, and the combined models were used to estimate human health impacts of an unmitigated pandemic, costs and benefits of selected population responses and intervention strategies, impacts on infrastructure operations, and economic costs.

Because of the potential threat from H5N1, the U.S. is planning and preparing for an influenza pandemic. Understanding the consequences and possible effects of different mitigation strategies can assist in developing potentially effective strategies now to have in place if a pandemic arises. Epidemiological modeling of the disease spread and consequences to the critical infrastructures can be an important tool to assist in this preparation. This report summarizes an intensive modeling endeavor to examine the impacts of a pandemic influenza outbreak on critical infrastructure in the U.S.
The current populations of humans around the world are immunologically naive to the H5N1 influenza strain. This fact, along with other disease characteristics of influenza, must be considered when modeling and predicting the behavior of a pandemic with different mitigation strategies. An immunologically naive population is more susceptible. Antiviral and vaccine strategies may be less effective or may require multiple doses. Inherently, there will be large knowledge gaps in the biology of the disease, data gaps for past pandemic behavior, and unknowns about societal reactions to a pandemic. Each of these will contribute to uncertainty in an epidemiology model of a nationwide pandemic. For this analysis, we used the most current data and resources on past pandemics, National policy plans and guidelines, current vaccine and antiviral breakthroughs, and the biology of the current H5N1 influenza strain with respect to humans. The actual manifestation of a pandemic influenza disease could be more or less infectious and more or less deadly than the assumptions used in this analysis. Continuing analysis will seek to incorporate the uncertainties and various scenario outcomes with respect to mitigation strategies.

The organization of this report is as follows:

· Section 2 summarizes the epidemiology of influenza, current information about the avian influenza strain currently of most concern, and the disease intervention scenarios investigated for this study 
· Section 3 summarizes the models and the technical approach used to complete the analysis 
· Section 4 summarizes key results
· Section 5 summarizes the conclusions of the analysis

2. Pandemic Influenza and Selected Intervention Scenarios

This section provides background information on the characteristics of seasonal and pandemic influenza and intervention strategies. It then provides an overview of the 7 intervention scenarios selected for this analysis. Finally, it discusses some of the key uncertainties in the properties of an emergent pandemic agent.

2.1 Influenza Epidemiology

RNA orthomyxoviruses cause influenza. Only the types “A” and “B” influenza viruses are known to cause epidemic human disease, with pandemic disease limited to type A viruses
 Type A viruses are classified into subtypes based on the specific H and N proteins found on the virus’s surface. To date, 16 types of H and 9 types of N proteins have been identified.
 Currently, 2 subtypes of A viruses are in worldwide circulation in humans: H3N2 and H1N1.
 

Occasionally, a new strain of influenza emerges that is easily transmissible between humans and for which the global human population has little or no underlying immunity. The result is a pandemic, which is the worldwide spread of influenza. In 1997, an H5N1 virus circulating in avian populations and causing avian influenza mutated and became highly pathogenic in birds. Humans that have been in close contact with infected birds have become infected. There is concern that this strain could lead to a new pandemic if it becomes highly transmissible between humans.

2.1.1 Seasonal Influenza

Influenza viruses cause seasonal influenza, or the common “flu,” which is characterized by symptoms such as fever, feeling feverish or chilled, body pain (myalgia), cough, headache, nasal congestion, weakness, loss of appetite, and sore throat.
 Influenza infections result in secondary complications such as pneumonia (bacterial and viral) that underlie health respiratory and cardiovascular disease.

Among infected adults, the incubation period ranges from 1 to 4 days, with an average of 2 days. Among adults who do not develop complications, the illness usually lasts from 3 to 7 days.
 Healthy adults are contagious beginning 1 day before the onset of symptoms and continuing for up to 5 days after becoming ill.

Children are very significant in the spread of influenza because they can shed larger quantities of virus than can healthy adults.
 As with adults, children are contagious before the onset of symptoms and may remain contagious for a much longer duration than healthy adults (10 or more days). Immuno-compromised persons can continue to shed the influenza virus for months after the onset of symptoms.

Each year in the U.S., millions of individuals contract influenza, with annual attack rates (that is, the ratio of total number of individuals that became symptomatic to the population) ranging from 10 percent to 20 percent and sometimes ranging up to 50 percent in specific populations, such as nursing homes or schools.
 The age-specific attack rates typically are the highest among preschool (40 percent) and school-aged (30 percent) children.
 

Influenza accounts for a significant burden on the U.S. healthcare system. Among persons aged 18 to 64, the National Center for Health Statistics’ National Health Interview Survey estimates that influenza was responsible for 22 million visits to a healthcare provider in 1995.
 A new study indicates that among children under 5, influenza accounted for 10 percent to 20 percent of outpatient visits for acute respiratory symptoms during the influenza season. This same study found that influenza accounted for 6 percent to 29 percent of emergency department visits for acute respiratory illness.

Influenza is a major cause of hospitalization among Americans. Thompson and others report that approximately 95,000 persons (the average of 19,000 to 194,000) are hospitalized each year with influenza listed as the primary cause of hospitalization.
 When hospitalizations with any mention of influenza or influenza-related pneumonias are considered, the annual estimate is another 134,000 cases (the average of 31,000 to 272,000). In addition, another 294,000 (in the range of 86,494 to 544,909) hospitalizations for influenza-related respiratory and circulatory diseases were estimated to occur annually in the U.S. Rates of hospitalizations are strongly correlated to age. For pneumonia and influenza listed as the primary reason for hospitalization, rates ranged from 6.8 per 100,000 person-years to 628.6 per 100,000 person-years. The highest rates were observed for persons aged 85+ years; whereas, the lowest rates were observed for persons aged 5 to 49.
 In the U.S., influenza accounts for more hospitalizations among children than any other vaccine-preventable disease. Hospitalization rates for children under the age of 2 often exceeded the rates of adults aged 65+.
 The age-specific median length of stay ranged from 3 to 7 days, and the average length of stay for hospitalizations related to pneumonia and influenza as the primary cause of hospitalization ranged from 4.3 to 8.9 days.
 A crude age adjustment resulted in an average length of stay for all ages of about 8 days. 

In addition to wide-ranging morbidity, a high demand for outpatient medical care, and substantial numbers of hospitalizations, influenza results in an estimated 36,000 deaths annually.
 Not surprisingly, mortality rates for pneumonia and influenza deaths were strongly related to age. The age-specific death rate for pneumonia and influenza deaths was estimated as 22.1 per 100,000 for persons 65+. The lowest estimated death rate for pneumonia and influenza occurred for ages 1 to 49 at 0.2 per 100,000 person-years. 

2.1.2 Pandemic Influenza

In addition to seasonal influenza outbreaks or epidemics, pandemics of influenza can occur. A pandemic is a worldwide occurrence in which most, if not all, people are at risk for infection and illness.
 Past influenza pandemics have spread worldwide in a matter of months. Unlike seasonal influenza viruses, which are strain variants of type A viruses that are already in widespread circulation, pandemic influenza results when a novel influenza virus is introduced into the human population.
 Although influenza mutates often, resulting in the frequent appearance of new variants, much of the population may have some level of preexisting immunity to the seasonal strain variants. For pandemic influenza, the majority of the population has no underlying immunity to the new strain. Although influenza pandemics repeatedly occur in human populations, they do not occur at regular intervals; therefore, their timing cannot be accurately predicted.
 

Human influenza pandemics have occurred 3 times in the 20th century: in 1918, 1957, and 1968.
 The 2 strains responsible for human influenza today, H1N1 and H3N2, were responsible for the 1918 and 1968 pandemics, respectively, when they emerged to become human diseases. Due to the extreme disease characteristics of 1918 influenza, a pandemic strain similar to the 1918 H1N1 was used for the simulated pandemic model in this report.
2.1.2.1 1918: H1N1 Influenza

The 1918 “Spanish Flu” was the fastest spreading and most deadly influenza pandemic in recorded history. During the pandemic of 1918–1919, influenza struck between 20 and 40 percent of the world's population, killing on average of 2 percent of the infected cases. This pandemic was atypical in that it had especially high mortality rates among young adults. The first wave emerged in the U.S. in the spring of 1918; however, researchers now know the pandemic emerged almost simultaneously in Sierra Leone, France, and the U.S. during the early fall of 1918. Troop movements accelerated the spread of the virus during World War I. Within 6 months of the first outbreak, even the most remote regions of the world, where influenza had never been a real threat, had come under attack from the disease. A strain of H1N1 influenza caused the 1918 pandemic, which caused an estimated 675,000 deaths in the U.S.
 and as many as 50 to 100 million fatalities worldwide.
 
2.1.2.2 1957: H2N2 Influenza

The 1957–1958 flu pandemic originated in February 1957 in the Kweichow province of China. The new strain, H2N2, spread from China into the rest of Asia, the Middle East, and Europe, reaching the Americas in June 1957. Worldwide, this pandemic caused more than an estimated 2 million excess deaths.
 This pandemic demonstrated 2 peaks: the first in late October 1957 and the second in February 1958. The pandemic caused an estimated 70,000 excess deaths in the U.S. during 1957. Attack rates in some groups of high school and college students exceeded 70 percent.
 This virus subtype stopped circulating in 1968. 
2.1.2.3 1968: H3N2 Influenza

The 1968 pandemic of H3N2 influenza first appeared in July 1968 in Hong Kong. The mortality from this pandemic appeared to peak in December 1968 through January 1969 in the U.S.
 This pandemic caused more than an estimated 1 million excess deaths worldwide 
 and 36,000 excess deaths in the U.S.
 The H3N2 influenza is still the predominant virus circulating today.

2.1.2.4 H5N1 Avian Influenza

Before 1997, the H5N1 strain of avian influenza virus began circulating in poultry in parts of Asia. At first, H5N1 caused only mild sickness in poultry, with undetected symptoms. In 1997, the virus mutated into a highly pathogenic form, with a 95-percent mortality rate that could kill chickens within 48 hours. 

Historically, human infections with avian influenza viruses have been extremely rare. Most caused only a mild illness followed by a full recovery. H5N1 has been the exception. In the first documented instance of human infection, the virus caused 18 cases of influenza and 6 deaths in Hong Kong in 1997. That outbreak coincided with outbreaks of highly pathogenic H5N1 in poultry on farms and in live markets. Humans can become infected; but, so far, it is known that they must inhale or ingest massive viral doses to do so.
 Although the clinically ill humans have had high death rates (approximately 50 percent), the transmission of the H5N1 virus from human to human is rare.
 The more H5N1 infects humans, the greater the probability that reassortment or mutation will occur and produce a lethal form that is spread readily between humans.

Influenza viruses that infect birds differ fundamentally from those viruses that primarily infect humans. Bird influenza viruses have an affinity for the host’s intestinal tract, and interhost transmission occurs mainly by fecal contamination of shared bodies of water.
 Human influenzas more often infect the respiratory system and are shed in respiratory effluvia for interhost transmission. If, or when, a mutation or reassortment occurs in H5N1 to produce a virus efficient in human-to-human transfer, the new virus likely will not be effective in a transfer between birds. Vaccines produced for the current H5N1 may not be effective against the new virus. Because birds are the current reservoir for H5N1 influenza, global surveillance efforts have begun to monitor and detect H5N1 in domestic and wild-bird populations. However, a pandemic influenza could evolve from other influenza avenues, and this analysis reflects that the evolution of influenza is not known. 

2.2 Prevention and Mitigation 

Disease spread is a dynamic process that is controlled by the number of contacts between susceptible and infected populations and the transmissibility of the disease. The primary strategies for slowing and/or stopping the spread of infectious viral diseases are to stimulate immunity (vaccination), reduce the severity and transmissibility (prophylaxis), and reduce contact rates (social distancing). 

2.2.1 Vaccines for Influenza

The primary defense against acquiring influenza is vaccination. Vaccination for seasonal influenza has been shown to prevent disease, reduce the rates of complications such as pneumonia, and reduce the rates of hospitalizations and deaths. For example, among elderly patients participating in health maintenance organizations (HMOs), vaccination accounted for a 48-percent reduction in the incidence of hospitalization or death.
 As noted earlier, children are significant in the transmission of influenza, and vaccination reduces the spread to their contacts, thereby reducing the spread of the disease in the household and the community.
 Mandatory vaccination of Japanese schoolchildren was associated with an overall reduction in deaths due to influenza and pneumonia. This reduced mortality was especially observed among the elderly and persons with high-risk chronic conditions.
 

For healthy working adults, the number of days of restricted activity or bed rest, lost workdays, and number of healthcare visits are the important burdens. Recent cost-benefit analysis suggests that vaccinating healthy working adults will yield important economic and health rewards.
 In a study of healthy adults, immunization reduced the frequency of upper-respiratory infections by 25 percent. Worker absenteeism due to upper-respiratory infections was reduced by 43 percent; whereas, absenteeism for all reasons was reduced by 36 percent. Visits to healthcare providers were reduced by 44 percent.
 

Currently, the 2 types of vaccines available are the inactivated vaccine (injected) and live-attenuated vaccine (delivered in a nasal spray). The inactivated vaccine is approved for persons over the age of 6 months. Persons who are allergic to eggs should not receive this vaccine. The live-attenuated vaccine is approved only for persons aged 5 to 49 who are not immunocompromised, pregnant, or living with or caring for immunocompromised persons.

Vaccine effectiveness is measured in many ways, such as the reduction in confirmed culture-positive influenza infections, prevention of medically attended acute respiratory illness, prevention of influenza virus illness, prevention of influenza- or pneumonia-associated hospitalizations or deaths, and presence of antibodies to vaccine serotypes or circulating influenza virus subtypes.

Vaccine effectiveness, as measured by the previously listed methods, is related to characteristics of the vaccine recipients and the accuracy of the match between the vaccine strains and the circulating strains. Well-matched vaccine strains are more efficacious than poorly matched strains. Under ideal conditions, healthy adults receiving timely vaccination with a vaccine that is well matched to the current seasonal influenza strain have a 70- to 90-percent reduction in influenza illnesses. 

Healthy people have a better response to the flu vaccine than do immuno-compromised or chronically ill people. Adults have a better response to vaccination than do children or the elderly. Both of these age groups may require more vaccine for a sufficient response.
 For children and for persons not “primed” by past exposure or vaccination, 2 doses are probably required for sufficient response.
 In the event of a pandemic influenza strain, the general population is likely to respond as “not primed.”

During the 2003–2004 influenza season when the vaccine and circulating viruses were not well matched, a study 330 cases and 1,055 controls in persons aged 50 to 64 estimated vaccine effectiveness to be 52 percent among healthy persons and 38 percent among those with one or more high-risk conditions.
 In another study in which the vaccine was poorly matched to the circulating strain, a study among of 29,726 children estimated the efficacy to be 0 percent to 49 percent, depending on whether they received 1 or 2 doses.

The development of reasonable levels of protection against developing influenza has an approximate 2-week lag time. In a recent study, Chodick and others found that although they were on the average older, persons vaccinated earlier in the influenza vaccination season (December–March) had better outcomes and fewer and shorter hospitalizations than those vaccinated later in the season (April–August).
 Nevertheless, because the influenza season is long, the Centers for Disease Control and Prevention (CDC) recommends that influenza vaccinations begin in October and continue throughout the flu season.
 

2.2.2 Pandemic Vaccines

In the event of pandemic influenza, vaccination will be important in controlling the pandemic. However, because of the time required under current vaccine production techniques, vaccines may not be available at the onset. Currently, the time between identification of the candidate vaccine strain and production of the vaccine for distribution to the population is estimated to be approximately 6 months.
 As a result, considerable effort is underway to develop better methods to produce vaccines, such as developing cell-based or generic vaccines. Manufacturers are improving their capacity for vaccine development to decrease the time to distribution and increase the quantity of vaccines. 
In addition, researchers are developing candidate vaccines for the H5N1 strain. The goal of these vaccines is to provide a sufficient immune response using the smallest amount of antigen in a single dose.
 Because the population is immunologically naïve, pandemic vaccines currently under development require 2 doses.
 Current vaccine protocols call for 2 doses (28 days apart) for experimental pandemic vaccines. In clinical trials, desired levels of antibody response have varied from 50 percent to 78 percent depending on the vaccine formulation.

2.2.3 Antiviral Drugs (Prophylaxis and Treatment)

Antiviral drugs are potentially useful in the prophylaxis and treatment of seasonal influenza. In the event of an influenza pandemic, antiviral drugs will play an important role in controlling the pandemic. It is likely that a strain-specific vaccine will not be available at the start of an influenza pandemic; therefore, antiviral drugs may serve as the first line of defense against a pandemic.
 

Two classes of antiviral medications are used to treat or prevent influenza: adamantane derivatives (amantadine and rimantadine) and neuraminidase inhibitors (zanamivir and oseltamivir). 

Although the U.S. Food and Drug Administration (FDA) has approved amantadine and rimantadine for the prevention or treatment of Influenza A,
 the CDC issued guidance in January 2006 that the majority of the strains currently circulating in the U.S. were resistant to the adamantanes. As such, these adamantane derivatives were not recommended for the prevention or treatment of seasonal influenza for the 2005–2006 influenza season.
 Current information on the H5N1 type A suggests that the virus currently circulating is not susceptible to the adamantanes.
 
The neuraminidase inhibitors, zanamivir (Relenza) and oseltamivir (Tamiflu), block the active site of the influenza viral enzyme neuraminidase and reduce the number of viruses released from the infected cell. As of March 2006, the FDA has approved both Relenza and Tamiflu for both the treatment and prevention of types A and B.
 When used within 48 hours of illness onset, both drugs reduce the duration of influenza symptoms by approximately 1 day, as compared with a placebo.
 For both drugs, the recommended duration of treatment is 5 days. For prophylaxis, the recommended duration of use is 10 days. Dosage levels are age-specific and body size-specific.
 

The U.S. stores a limited supply of influenza antiviral medications in the Strategic National Stockpile (SNS) for emergencies. By the end of September 2006, the federal government planned to have 20 million courses of antiviral drugs stockpiled, with an additional 24 million courses purchased by the end of September 2007 and 80 million total doses purchased by the end of September 2008. In addition to the federal purchases, the federal government is subsidizing state antiviral purchases, which may have added up to 31 million additional courses of antiviral drugs by the end of September 2006.
 

2.2.4 Social Distancing

High infectiousness and the number of contacts people have on a daily basis are the two most important influences on the transmission of infectious disease. Zones of high infectious contact are often centered on children and teenagers within a community’s social network.
 Targeting this zone can protect the community at large. Schools can be closed, events cancelled, and buildings closed to increase social distancing within a community. These measures are sometimes called “focused measures to increase social distance.” Depending on the situation, examples of cancellations and building closures might include canceling public events such as concerts, sports events, movies, and plays and closing recreational facilities such as community swimming pools, youth clubs, and gymnasiums. 
2.3 Intervention Scenarios

A set of 7 intervention scenarios was developed to represent existing mitigation plans. These scenarios provide a broad characterization of possible intervention strategies using different implementations of government and population-scale mitigation strategies. Disease progression and transmission events for all scenarios occur as described in the baseline scenario.

2.3.1 Baseline Scenario

The baseline pandemic influenza scenario was constructed based on the “National Strategy for Pandemic Influenza”
 and on several key literature sources.
 The baseline scenario, representing a 1918-like influenza in the absence of interventions, is described as follows:
· The baseline clinical attack rate is 30 percent of the population becoming symptomatic. (Note: The clinical attack rate is the number of symptomatic cases divided by the population.)
· Students (age 5 through18) should have a higher attack rate due to school, different behaviors, disease progression, and virus shedding. The scenario first specifies the 30-percent clinical overall attack rate and an attack rate among students of 40 percent. The attack rate among adults or workers is slightly less than 30 percent.
· The fraction of infections that are symptomatic is 0.667

· The mean of the distributions of disease-stage sojourn times are
· Asymptomatic, non-contagious (1.5 days)

· Asymptomatic, contagious (0.5 days)

· Symptomatic, fully contagious (maximum viral shedding) (2 days)

· Symptomatic, moderately contagious (2–2.1 days)

· Convalescence (non-contagious, but absent from work) (7 days)

· Mortality is 2 percent of symptomatic cases, independent of age

· The fraction of symptomatics staying home from work or school is

· 50 percent for adults

· 75 percent for students

· 80 percent for preschool-age children
· Every household with one or more sick child under age 12 has an adult or teenage household member staying home as caretaker

· There is no transmission between infected people and medical personnel in hospitals

2.3.2 Fear-based Self-isolation (Fear-40)

In the baseline scenario described above, an age-dependent fraction of people self-isolated because of the severity of the illness. In this scenario, the team examined the effects of an additional group of people (infected or not) that remain home because of fear. The National Strategy for Pandemic Influenza—Implementation Plan uses a scenario where, maximally, 40 percent of the labor force will be absent from work. This absence will have the critical effect of reducing the disease spread outside of households. This absence also is expected to have a potentially catastrophic effect on critical infrastructures where the number of personnel may fall below a given threshold of functionality for certain industries and services because of absenteeism. 

This scenario is implemented by having no fear-based isolation until day 57 of a pandemic, when about 5 percent of the population is symptomatic in the baseline scenario. The fear-based absenteeism then increases linearly with time until a maximum of 40 percent is reached (near day 70); the absenteeism then drops linearly until no more fear-based isolation occurs, near day 82.
2.3.3 Targeted Layered Containment (TLC)
The TLC intervention strategy (developed by the Homeland Security Council) is implemented in this scenario. This strategy is an integrated protocol that consists of a set of interventions that is initiated at the start of the pandemic, with additional mitigations beginning when 0.1 percent of the population is symptomatic. 

At the start of the pandemic, 60 percent of the symptomatic cases are diagnosed and isolated at home; the remaining 40 percent are subclinical and continue to attend school, go to work, and so forth. Therapeutic antiviral treatment is administered to the diagnosed cases. Antiviral drugs are not limiting. Antiviral prophylaxis is administered to 100 percent of identified household contacts of diagnosed cases. These household contacts are then quarantined, with 30-percent compliance assumed.

When 0.1 percent of the population becomes symptomatic, an additional set of interventions come into play. All schools are closed, 30 percent of children are kept at home, and generic social distancing occurs (for example, 3-foot minimum distance, no handshaking, and frequent hand-washing), all of which decrease nonhousehold transmissions by 50 percent. All symptomatic individuals are sent home from work. None of the interventions are ever lifted (that is, the schools never reopen).

2.3.4 Targeted Layered Containment (TLC) Lite

This modified TLC scenario provides a more minimal set of the mitigations. As described in the full TLC scenario, all mitigations initiated at the onset of the pandemic are retained here. However, when 0.1 percent of the population is symptomatic, the schools are not closed and no children are kept at home, although 50 percent of nonhousehold transmissions are reduced by generic social distancing. Symptomatic individuals are not sent home from work.

2.3.5 Antiviral Treatment and Prophylaxis

In this scenario, all persons diagnosed with influenza will receive antiviral therapeutic treatment. Contact tracing will be performed for 95 percent of these index cases, and antiviral prophylaxis will be administered to their household contacts. This intervention is antiviral-supply limited. A supply sufficient to treat 6.7 percent of the population is assumed, based on the CDC estimate that 20 million treatment courses of antiviral drugs were stored in the SNS by the end of September 2006 and 80 million courses will be stored by the end of September 2008. 

2.3.6 Partially Effective Vaccine

In this scenario, a vaccine that is poorly matched to the circulating pandemic strain is used, and 40 percent of vaccinated individuals become immune after a sufficient lag time. The remaining 60 percent become infected after exposure to an infectious individual, but have a milder illness and are less infectious relative to unvaccinated individuals. This scenario uses a vaccine protocol of 2 doses, 28 days apart. A 14-day lag time is assumed before immunity is fully developed. The logistics of vaccination are considered with a rate of 10-percent random delivery to the population each week. All vaccine doses are delivered by day 72, and 5 percent of the population does not get vaccinated. 

2.3.7 Anticipated Intervention Strategy

In this scenario, reasonable mitigations are used during a pandemic. Vaccines that are well matched to the circulating pandemic strain(s) become available 5 months after the index case. This scenario is consistent with the estimate given by Govorkova and others,
 which is that manufacturers could generate a vaccine 2 to 4 months after the start of the pandemic, using reverse genetics techniques. The time spectrum for large-scale production capacity is unclear for this technology. These vaccines are distributed at a rate of 5 percent of the population per week. Antiviral drugs are administered to diagnosed symptomatic cases (50 percent of adults, 75 percent of students, and 80 percent of preschool-age children) and their household contacts until the supply runs out. Diagnosed symptomatic people self-isolate at home. The initial stockpile stores antiviral treatment courses for 6.7 percent of the population (21.7 million), although prophylaxis use of antiviral drugs may use up to 4 courses. 

Once 0.1 percent of the population is symptomatic, the following interventions/effects come on line: a smaller level of self-isolation will occur, linearly increasing until a maximum of 15 percent of the population is reached after approximately 53 days; a 10-percent reduction in transmission due to social distancing measures will occur (such as hand-washing, minimum interpersonal distances, and masks and assuming 85-percent compliance); 20 percent of the schools will be closed; and, after 5 months, no more fear-based isolation occurs and social distancing ceases. This scenario coincides with the distribution of the strain-specific vaccine.

2.4 Uncertainty in the Epidemiological Properties of an Emergent Influenza Pandemic Agent 

It is difficult to predict the etiological properties of an emerging pathogen. The emergence of a novel disease requires both its introduction into human populations and its subsequent spread and maintenance within the population. As demonstrated by our experiences with severe acute respiratory syndrome (SARS) and human immunodeficiency virus (HIV), a novel pathogen can circulate for years in wildlife animal reservoirs before crossing the species barrier. The first few index cases that would be caused by zoonotic (animal-to-human) outbreaks have a high probability of being overlooked or misdiagnosed. A lack of effective surveillance often exists in the relevant wildlife reservoirs. Agricultural animals serve as better sentinels than wildlife animals because monitoring for disease is more frequent; however, in developing countries, effective control through culling, quarantine, and biosecurity measures is often lacking. These inadequacies can result in ample opportunities for the pathogen to enter and adapt to human populations and to cause the pandemic spread of infection through efficient human-to-human transmission. 

H5N1 is currently an avian virus that is poorly adapted to humans. This strain of influenza focuses the infection deep in the lungs and provokes a violent innate immune response and severe inflammation in a majority of fatal H5N1 cases. As the virus adapts to humans, the foci of respiratory infection move further up into the trachea and nasal tract. This process leads to higher likelihoods of human-to-human transmission and perhaps a less extreme immune response, which will, in turn, lead to lower mortality rates.

The methods by which a novel influenza strain with pandemic capability can emerge will generate an intrinsic amount of uncertainty into the parameters used in epidemiological modeling (such as the infectivity given contact, disease progression residence times such as incubation and infectious periods, and the age-dependent mortality rate). The most significant parameter that will determine how devastating a new pandemic will be is its transmissibility between humans. This parameter is encapsulated in the basic reproductive number R0 (which is defined as the number of secondary cases that are generated from an index case). If R0 < 1, the disease would burn out and the number of cases could increase linearly for a short time and then exponentially decline to zero. If R0 >1, pandemic spread would become possible and the number of cases would increase exponentially with time.
 

For H5N1, the current situation is that R0 is far below 1. Ecological factors such as host density and proximity to animal reservoirs will cause the transmission to increase. The current situation in Southeast Asia and Indonesia, in particular, is cause for concern. The poultry/human contact coupling is large because of backyard, subsistence poultry operations. Poor biosecurity measures and delays in culling H5N1 infected poultry have led to repeated instances of human infection from poultry. In turn, a subset of these instances has resulted in limited human-to-human transmission chains. Each of these isolated events provides the opportunity for strains to adapt to humans through adaptive evolution. This adaptation was demonstrated by a suspected 3-generation, H5N1, human-to-human transmission chain that occurred in Indonesia in May 2006, where viral isolates from successive generations differed by as many 25 mutations. This chain provides clear evidence that H5N1 is capable of evolving highly genetically variant quasi-species within human hosts, thus giving the virus opportunities to adapt. 

3. Model Overviews
[image: image1.jpg]The technical approach used to analyze the effectiveness of alternative scenarios of pandemic influenza progression and intervention and to assess the impacts of these scenarios on infrastructure operations and the economy was to couple a set of submodels that represent infectious disease spread and intervention: population, travel, labor, and infrastructure operations as shown in Figure 
3-1. The population, travel between regions, and infectious disease models interact to introduce the pandemic flu strain into the population and spread the disease across the nation. The population developing symptoms and needing treatment place a demand on the public health sector. The use of various intervention strategies, such as vaccination, affects the spread of the disease and alters the impacts on the public health system and on the overall population. The population model also tracks which members of the ill population are also members of the workforce and estimates absenteeism due to illness, care for ill family members, or other reasons. Labor requirements for infrastructure operations are represented in the labor operations model. Absenteeism and mortality also affect the functioning of the economy. 


Note: The more critical models are highlighted and described below. 
Figure 3-1: Major elements of the Critical Infrastructure Protection Decision Support System models used in the pandemic influenza impacts analysis
Disease model parameters were selected to match those used in higher resolution epidemiology models described elsewhere. Elements of the major submodels used in this analysis are described in the following sections.
3.1 Infectious Disease Model 

The infectious disease model is a modified SEIR model using an extended set of stages and demographic groupings; an integrated model for vaccination, quarantine, and isolation; and demographic- and stage-dependent behavior. As a variant on the SEIR model, this implementation represents the populations as well mixed, with exponentially distributed residence times in each stage (characterized with a nominal residence time). However, the use of additional stages and demographic groupings is designed to add diversity where it can be useful in capturing key differences among subpopulations for disease spread and response.

The stages are represented generically so that the model can be used for a large number of infectious agents by adjusting the input parameters. For the pandemic influenza analysis, the stages and their residence times are shown in Figure 3-2. 
 SHAPE  \* MERGEFORMAT 



Figure 3-2: Infectious disease model stages
The basic reproductive number R0 is the average number of people infected by a typically infectious individual in an otherwise susceptible population. If the basic reproductive number is greater than 1, the disease has the potential to spread. If it is less than 1, the disease will die out after only a few generations. The next influenza pandemic will start when a novel strain of influenza evolves with R0 > 1 in humans. The parameters that affect R0 include the ease of transmission of a disease and the contact rates among the populations. The CIPDSS infectious disease model can use R0 as an input into the model or it can calculate R0 as an output of the model. To calibrate the disease progression to higher resolution models used in the broader pandemic influenza analysis, R0 was used as an input and allowed to vary slightly around a value of 2.2. This number corresponds to past pandemics in the last century. 
Government response in the model, in the form of quarantine and vaccination programs, is initiated after recognition of the first cases in the public health system. The model represents the mitigation strategies for each of the 7 scenarios discussed above. Mitigation options include vaccines (targeted vaccination, mass vaccination, or a combination), antiviral drugs, and isolation and quarantine. Vaccination can be biased toward particular subpopulations to model priority vaccinations of children or healthcare personnel. Allowances can be made for segments of the population who either refuse vaccination or cannot tolerate vaccination. Schools are not included in the generic infectious disease model; therefore, school closing was modeled by including age-group-dependence for R0, thus allowing age-specific control of the transmission and infections of school-age children.

The model also responds to investments in better hospital care, isolation, and antiviral treatments, which can affect fatality and recovery rates in the population. The model keeps track of the state of the population in terms of immunity, health status, unavailability (sick and/or in quarantine), and fatalities. Unavailability and fatalities are passed to the population and infrastructure models, whose effects can then feed back into the infection model. Examples of this behavior include sickness and fatalities leading to reductions in healthcare staff, which, in turn, can raise fatality rates in the infection model due to poorer and less timely care.
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The model is arrayed to represent the spread of disease in each of 10 regions. For this analysis, the regions are chosen to be the 10 Federal Emergency Management Agency (FEMA) regions (Figure 
3-3).

Note: Guam, Puerto Rico, and the Virgin Islands are not included in this analysis.

Figure 3-3: Division of the U.S. into 10 Federal Emergency 
Management Agency regions
3.2 Travel Model

The regional travel model calculates how many contagious people are currently visiting another region. The fraction of each region’s contagious people who are currently traveling in another region is input into the epidemiological model, which spreads the disease across regions. The pandemic influenza simulations did not have a single outbreak point, but the contagious travel model ensures that the pandemic continues to be spread across regions as a national pandemic, instead of having 10 separately modeled regional pandemics. Travel restrictions that lower travel rates can also be implemented with this model.

3.3 Population Model

The population model keeps track of the number of people in different health statuses for each region. It drives the visitation rates for the public health model in 3 categories: normal afflictions, pandemic influenza afflictions, and “worried well” afflictions. (Worried well people are those who think they might have the pandemic flu, but who do not.) The population model also outputs the fractional labor availability for each infrastructure category. In addition to normal, pandemic influenza, and worried well-afflicted people, it also takes into account the number of quarantined and self-isolating people. Parents of infected children that stay home from work to care for them can be tracked by the model. The epidemiological model tracks emergency responders separately, so the labor availability for emergency responders can be different than for other infrastructures. Infrastructures other than emergency services have essentially the same level and time history for labor availability.
3.4  Public Health Model 

The base public health model for this analysis represents treatment of patients by physicians in their offices and clinics, emergency medical services (EMSs), emergency rooms (ERs), and hospitals. Regional variations are represented by dividing the U.S. into large regions. For the purposes of this analysis, the 10 FEMA regions are used for the regional breakdown (see Figure 3-3). Within each region, average values are used for patient treatment capacities, number of hospital beds, and so forth. Three types of patients are tracked in the model: normal patients (numbers based on historical data), patients who have the pandemic flu (denoted “special” within the model), and worried well patients. If the numbers of patients increase substantially over normal conditions, backlogs and long waits result, causing a reduction in the quality of care Also, if significant numbers of healthcare workers are sick or in isolation, the capacity to treat patients is reduced, further overloading the healthcare system. In a situation like this, it is possible that additional healthcare workers would be brought in from other locations, the armed services, retirees, volunteers, and so forth to try to relieve the overloading, but the ability to add healthcare workers is not included in the model at present. It is worth noting, however, that the usual methods of bringing in additional healthcare workers might not work well in a pandemic because the entire country (and possibly the whole world) is affected.
3.4.1 Normal Care

The ongoing rates of medical treatment under normal conditions are based on data for year 2003 from the “National Hospital Ambulatory Medical Care Survey: 2003 Emergency Department Summary”;
 Health, United States, 2005;
 and “National Hospital Discharge Survey: 2003 Annual Summary.”
 Key data are summarized in Table 3-1. Visit rates are given per year in the table, but the model uses units of hours. Weekdays and weekends are not differentiated in the model, so annual totals were divided by the number of hours in a year to get the hourly values used by the model. The numbers listed in the table are all national averages. The last 2 numbers (number of hospital beds and hospital occupancy rate) are available for each state in Health, United States, 2005 and were averaged over FEMA regions for input to the model. The hospital occupancy rate is not a model parameter, so the average length of stay was varied by FEMA region to produce the right occupancy rates.

Table 3-1: Summary of medical care in year 2003 

	Quantity
	Value

	Rate of visits to physicians’ offices and hospital outpatient departments
	3.5 visits per year per person

	Rate of visits to hospital emergency rooms (ERs)
	0.40 visit per year per person

	Rate of admissions to community hospitals
	0.12 visit per year per person

	Percentage of ER patients arriving by ambulance
	14%

	Percentage of ER patients requiring hospital admission
	14%

	Percentage of ER visits dead on arrival or dying in the ER
	0.3%

	Percentage of hospital inpatients dying
	2.3%

	Average time spent in ER
	3.2 hours

	Average hospital length of stay
	5.7 days (rounded to 135 hours)

	Number of staffed community hospital beds
	0.0028 beds per person

	Occupancy rate for community hospital beds
	66%


The demand for “normal” care continues even during the simulated influenza pandemic, but a number of adjustments are made in the model:

· When there is a long waiting time for visits, up to 20 percent of the patients who would have gone to a physician’s office are assumed to go to a hospital ER because of an urgent problem. Up to 40 percent of the patients who would have gone to a physician’s office are assumed to cancel if there is a long waiting time for visits.

· When hospital beds are full, nonemergency patients are not admitted to hospitals, but the patients who would have been admitted wait and are admitted later when the hospital crowding subsides
· When there are more emergency patients than hospitals can hold, temporary facilities are set up to handle the overflow
· When demand exceeds normal capacity for treatment, the time it takes to treat a patient goes up and quality of care goes down
Figure 3-4 is a flow diagram illustrating “normal” emergency care in the model. Several of the fractions are unknown, but they have been chosen to be consistent with the data in Table 3-1. For example, a 75-percent/25-percent split between emergency patients going directly to an ER versus being treated in the field by EMSs, coupled with the assumption that half of the patients treated by EMSs are then taken to an ER by ambulance, results in approximately 14 percent of patients arriving at the ER by ambulance, as shown in Table 3-1. A mortality rate of 0.22 percent for both EMS and ER treatment combines to give a total mortality rate of 0.3 percent, as shown in Table 3-1.
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Notes: ER = emergency room, EMS = emergency medical service
Figure 3-4: Flow diagram for normal emergency care in the public health model 

3.4.2 Treatment of Pandemic Flu Patients
People becoming ill with the pandemic flu are added to the normal load on the healthcare system. The rates at which people get sick and recover or die from the pandemic flu are calculated by the epidemiological model, which is discussed briefly in Section 3.1. As people get sick, they enter the healthcare system, as illustrated in Figure 3-5. The fractional splits in the model are based on a combination of “normal” values and values suggested by the planning assumptions for the severe scenario in the HHS [U.S. Department of Health and Human Services] Pandemic Influenza Plan.
 The HHS plan suggests that half of people with pandemic flu symptoms would seek outpatient medical care, about 11 percent would be hospitalized, and approximately 2 percent would die in the severe scenario. The fractions in Figure 3-5 have been chosen to duplicate the 11-percent hospitalization fraction and the 2-percent mortality fraction. (The fraction seeking medical care was taken to be 60 percent rather than 50 percent because it is unclear whether the fraction hospitalized in the HHS plan is a subset or a separate fraction of patients seeking outpatient medical care.)  The fractions of emergency patients going to ERs and EMSs are taken to be the same as for normal emergency care (Figure 3-4) in the absence of any other information. The fraction going to hospital includes patients sent to temporary care facilities when hospitals are full. The fractions that determine the flow through the healthcare system are all uncertain and are candidates for variation in [image: image26.emf]Emergency
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Figure 3-5: Flow diagram for pandemic flu patients in the public health model

The time spent in ER is taken to be the same for pandemic patients as for “normal” patients, but the time in hospital is longer. From Thompson and others,
 the historical average length of stay in hospital for primary pneumonia and influenza hospitalizations is approximately 8 days (rounded to 195 hours in the model). It is unknown how appropriate this value is for pandemic influenza. In a pandemic, hospital stays could potentially be longer (because people get sicker and take longer to recover) or shorter (because they die more quickly). 
3.4.3 Worried Well

The number of worried well people is highly uncertain, but could be large enough to cause a significant additional load on physician’s offices and ERs. For the analyses discussed here, the number of worried well people is assumed to be 20 percent larger than the number of people who have pandemic flu symptoms (that is, the number of worried well people is 1.2 times the number of pandemic flu symptomatics). The rate of worried well people has been much higher than this for many past incidents; for example, there were 5 times as many worried well people as those actually afflicted after the Sarin attack in Tokyo.
 The effect of different rates of worried well people will be considered in the sensitivity and uncertainty analyses. Note, however, that because nearly a third of the population is assumed to become ill in the influenza pandemic being studied (for the baseline scenario), the worried well multiplier probably cannot be higher than about 2.
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The flow of worried well people through the healthcare system is simpler than for normal or pandemic-flu patients because, by definition, worried well people are not seriously ill but only afraid they might be. Therefore, it is assumed that none of them is treated by an EMS, none of them is admitted to the hospital, and none of them die. The simplified patient flow is illustrated in Figure 
3-6. The split of 70 percent/30 percent for going to a physician’s office versus going to an ER is speculative and will be considered for variation in sensitivity and uncertainty analyses.

Note: ER = emergency room
Figure 3-6: Flow diagram for worried well patients in the public health model
3.5 Simulating Impacts of Labor Availability on Infrastructure Operations 

Pandemic influenza could cause significant increases in absenteeism, either due the illness itself or to behavioral responses such as fear-based decisions to stay at home. As part of an overall examination of policies and strategies to preserve critical infrastructure operations, it is important to understand how reductions in the availability of labor can affect infrastructure operations.

Several different job functions are in each of the infrastructure operations. A reduction in force will have a different impact on facility or system operations, depending on the job function. In addition, operations managers can use several strategies, either singly or in combination, to respond to or alleviate labor-supply shortages. These include authorizing overtime or extending shift lengths, cross-training staff, hiring temporary or permanent staff, postponing voluntary leave, deferring noncritical planned activities, and sharing staff across geographic regions.
 If these measures are insufficient, operations managers might be forced to shut down facilities with insufficient workforce. In some cases, government regulations might be relaxed temporarily to allow longer work hours.

The extent to which a reduction in labor availability can be managed depends on the extent to which these strategies can be implemented and the length of time over which they can be sustained. For example, extending the length of shifts can alleviate a shortfall in labor, but if the shifts are long and must be used for an extended period of time, the workers involved in the shifts will become fatigued and will be less effective in executing operations. Similarly, the influx of a new, relatively inexperienced workforce can also decrease efficiency if training or rework is required.

The relationship between demand for infrastructure services and operating capacity also needs to be considered. The overall impact of a disruption depends on whether the infrastructure is able to satisfy actual demand. In some infrastructures, demand varies seasonally and excess capacity is available during the off-season. Excess capacity or significant inventories can help alleviate a short-term disruption. In addition, the event triggering the shortfall in labor availability may lead to large shifts in consumer demand. It is the adjusted demand that the infrastructure must try to meet; this may be higher or lower than normal demand.

Modeling is helpful at 2 levels in the analysis of labor unavailability. First, while the benefits of individual labor management strategies are intuitively clear, a quantitative accounting is necessary to assess the cumulative impact of multiple strategies. To accomplish this accounting, the project team developed a workforce operations model to calculate the loss in process capacity at a single infrastructure facility, such as a power plant, or a group of infrastructure facilities, such as power plants in a region that are owned by a single utility, that could share workers. Second, a reduction of capacity of one infrastructure could affect another infrastructure. The project team developed the capability to embed incidences of the workforce operations model into the CIPDSS national infrastructure model to simulate these cascading impacts. 

The project team used 3 steps to use these 2 modeling approaches to estimate the impacts of labor shortages on the operation of critical infrastructures (limited to energy infrastructures for the present discussion). First, the team identified those labor functions within each infrastructure sector that were both important and could be well-represented at the resolution of the CIPDSS national infrastructure model. Criteria used to identify these labor functions varied by infrastructure sector, but followed some general trends. Typically, repair and maintenance functions were not included in the analysis because it was assumed that performing these functions at a greatly reduced level would not significantly reduce the flow of critical goods and services over several weeks of labor shortages. Also, functions that require only a small number of workers (that is, hundreds of workers nationally) could be important but could not be well represented at the scale of the national model. The second step was to use models and analysis to estimate the impacts of labor shortages to the labor functions identified in step 1 on the output of individual infrastructure sectors. For example, a second-step activity was to evaluate how shortages of operators at power plants could decrease capacity to generate electricity. The third step was to specifically represent labor dependencies in the national infrastructure model for those infrastructures that showed impacts of labor shortages in the second step. This final step was intended to allow analysis of how labor shortages in one infrastructure could cascade into another. 
3.5.1 Workforce Operations Model

The workforce operations model, or portions of it, can be used as a stand-alone representation of impacts of labor shortages in an individual infrastructure sector, or multiple incidences of it can be embedded within the CIPDSS national infrastructure model to represent impacts in a linked set of infrastructures. The fraction of workers that is not available, as a function of time, is input to the workforce operations model. The fraction of process capacity that is lost due to labor shortages is output. If this model is used to represent a single facility, the facility can remain in operation at or below its normal capacity or, if necessary, shut down. If the model is used to represent a number of facilities, aggregate capacity can decrease continuously or in a step fashion if individual facilities begin to shut down.

The assumption that it is difficult or impossible, even for facility managers, to accurately estimate the aggregate decline in production capacity due to loss of a given fraction of workers drove development of this model. This model attempts to break an infrastructure process into smaller critical components for which specific labor requirements can be specified. The model’s job is to re-combine the labor impacts on these smaller component tasks to estimate the aggregate decrease in capacity. Models constructed in this way will facilitate interactions with industry experts to refine and improve the models.

Estimating lost process capacity requires specifying the critical labor functions to keep essential infrastructure processes operating as well as the types and numbers of critical workers to staff these critical processes. In addition, the model must account for common labor-use strategies that can be used to mitigate shortages. In the workforce operations model, these strategies include scheduling available workers to work longer hours, delaying nonessential work such as long-term maintenance, and sharing workers between facilities. Accumulation of worker fatigue is tracked so that simulated declines in process capacity occur as needed. Maximum work hours can be specified if required to maintain safe work conditions.

Parameters of this model typically represent specific segments in infrastructure supply chains, such as production, storage, and transportation. For example, to represent a fuel-supply chain, one incidence of the model would be used to represent labor dependencies for each of crude oil production, crude refining, and transmission of refined products in pipelines.

Simulated workers are classified into 3 categories: operators, production workers, and repair and maintenance personnel. Operators are defined as those workers that must be present for a process to run, but process capacity does not scale with the number of operators present. Operators might include, for example, control-room operators at a power plant or flight attendants on an airline (by rule, a plane cannot fly without them). In contrast, process capacity is assumed to scale with the number of production workers present. Examples include food-processing workers and truck drivers. Production capacity does not depend on the presence of repair and maintenance workers; instead, the fraction of the physical plant that is broken down increases if availability of these workers is limited. Simulated process capacity may decrease as a function of broken-down equipment, as is appropriate for a given infrastructure.

As is the case with all models, there is a limited range of application. It is not appropriate to apply this model to cases where the number of critical workers is small, that is, where there are tens or hundreds of workers nationally. In those cases, it seems reasonable that the importance of these workers would be recognized and specific business continuity plans would be in place to ensure that a sufficient number of workers are available. Unrealistically severe impacts would result from assuming the normal pool of such workers in a simulation. However, it is important to identify these classes of workers, confirm that sufficient plans are in place, and recognize that simulation results using the workforce operations model do not include the possible impacts of shortages of these workers.

Workers may be shared among facilities if such sharing is consistent with the assumed business continuity plan of the simulated infrastructure sector. Each facility is assumed to have the same number of available workers and the same minimum labor requirements. If the aggregate number of workers falls below the number required to keep all the facilities operating, one or more facility will shut down. Workers from closed facilities are assumed to be available to be dispatched to the remaining facilities. An influx of workers to an operating facility could result in fewer work hours per worker and, consequently, a decrease in fatigue level.

Applying the workforce operations model requires a careful selection of an aggregation strategy. Specifically, the number of facilities represented by each incidence of the model must be selected to be consistent with the degree to which workers can be shared between facilities. Model parameter values can be specified to represent any number of facilities, including just one. The choice to represent just one facility means that it is assumed that each facility would act independently and not share workers under any conditions. As an example of a different case, it might be assumed that a power utility would share workers among all of the natural-gas-fueled generating stations that it owns to maximize capacity. In this case, the number of facilities simulated would be equal to the number owned by the utility.

Applying this model to any of the infrastructures requires estimating a number of parameters, including the effects of workforce availability on the process rate or repair rate, fatigue, and minimal staffing levels. These data generally are not available for each infrastructure, but additional interactions with industry experts will help refine the parameter estimates. However, the results of this model are qualitatively valuable, and sensitivity studies of uncertain parameters will help to identify those areas where additional data are required. Parameter estimates and model assumptions are documented in the following sections for each of the infrastructure sectors to which this model was applied.

3.5.2 Coupling the Workforce Operations Model and the National Model

The CIPDSS national infrastructure interdependency model calculates the production and flow of materials (such as fuel), the availability of services (such as electricity), and the state of markets for infrastructure commodities and services. The capacity of each flow of material is constrained by a number of factors such as pipeline capacity for fuel shipments, fuel for transportation vehicles, and coal for power generation. The workforce operations model is inserted, where appropriate, as an additional constraint on flow capacity.

The aggregation strategy described in the previous section is related to how well the computed process capacity scales to larger geographical regions. This scaling consideration is important when the workforce operations model is embedded in the CIPDSS national infrastructure model, which aggregates infrastructures over large areas such as National Electric Reliability Council (NERC) regions and Petroleum Administration for Defense Districts (PADDs). The process capacity calculated for one group of facilities can be applied to any larger simulated region if it can be assumed that the grouping represents a fundamental group of facilities with respect to labor sharing. For example, if power generators within a NERC region are owned by one utility or can operate at 80 percent of normal capacity, then it is assumed that the aggregate capacity of the entire NERC region is 80 percent. A number of assumptions are implicit in this formulation. Specifically, it is assumed that all facilities have the same capacity and number of workers, that all utilities have the same number of facilities, and that all facilities within the NERC are affected by a pandemic to the same extent and at the same time. Clearly these assumptions are not correct; however, tentatively, this approach of representing the average facility, facility grouping, and pandemic impact is sufficient to simulate the first order impact of labor shortages. This approach may have to be modified if future sensitivity analyses show that using a more realistic distribution of facility properties would result in a significantly different result.

3.6  Modeling Absenteeism Impacts in Specific Infrastructures

Substantial changes to existing infrastructure models were required to represent the impacts of labor availability. In particular, significant research was required to model and establish parameters for labor inputs to infrastructure operations. The team identified key questions for infrastructure owners and operators, but was not able to fully engage them in the relatively short time of this study. As a result, implementation of model enhancements, including labor impacts, was prioritized and staged as discussed below. 

· Public health and emergency services are severely affected because of an increased demand for services as well as the additional likelihood of exposure of healthcare workers. For example, in one scenario, 8–11 percent of the population in the represented age groups eventually became symptomatic, while 14 percent of healthcare responders became symptomatic. As a result, healthcare suffered from both a supply shock and a demand shock. Modifications to the public health model were a top priority and were completed.

· Energy is one of the most interconnected infrastructures (that is, all other infrastructures rely on it to some extent), and it also has important subsector interdependencies (such as the use of natural gas for electric power generation). Implementing labor elements in the energy subsectors—electric power, natural gas, and petroleum—was a high priority and was completed.

· Telecommunications is another of the most interconnected infrastructures. However, a detailed assessment of impacts on the telecommunications sector was handled elsewhere. Initial results from those models indicated minimal impacts on telecommunication network operations, so implementation of labor impacts on telecommunications was given a lower priority and was not done.

· Transportation is a highly connected infrastructure and is labor intensive. Initial assessments of potential impacts to the transportation sector were made, but detailed analysis was deferred to better assess potential labor shortages and demand shocks. 

· The chemical and defense industrial base will be affected similarly to other manufacturing sectors. Potential impacts are best addressed in the economic analysis reported elsewhere. Impacts to the industrial demand sector are indicative of potential impacts to these sectors.

· Water is highly automated and the water required to sustain basic necessities (consumption and hygiene) at the residential level is much less than total water usage. NISAC was evaluating impacts to the water sector; therefore, implementation was given a lower priority pending the outcome of the detailed results.

The following sections discuss the application of the labor model to 3 energy subsectors (electric power, natural gas, and petroleum).

3.6.1  Electric Power Model Overview

At a national scale, electric power can be represented as 2 major processes: generation and transmission. Electric power distribution, another major process in the energy infrastructure, is a local process and is simulated in the metropolitan model, which was not used in this analysis. 
The NERC regions
 are used as the level of geographic resolution for the national electric power model. The NERC regions are shown in Figure 3-7 and identified in Table 3-2.
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Figure 3-7: National Electric Reliability Council regions

Table 3-2: Identification of the National Electric Reliability Council regions

	Designation
	Definition

	NPCC
	Northeast Power Coordinating Council

	MAAC
	Mid-Atlantic Area Council

	ECAR
	East Central Area Reliability Coordination Agreement

	SERC
	Southeastern Electric Reliability Council

	FRCC
	Florida Reliability Coordination Council

	MAPP
	Mid-Continent Area Power Pool

	SPP
	Southwest Power Pool

	ERCOT
	Electric Reliability Council of Texas

	WECC
	Western Electricity Coordinating Council

	MAIN
	Mid-America Interconnected Network


Electric power generation capacity is aggregated by fuel type and by NERC region. Capacity is brought online or taken offline based on demand. The decision about which type of generation to bring online and at what level is determined by an estimated unit price (for example, dollars per kilowatt-hour [$/KWH]) for each fuel type and the complexity of bringing plants of each type online or offline (nuclear power plants are always online). 

Demand for electric power is drawn from other infrastructure models and the economic sector demand models that represent demand for infrastructure services from the broader economy. These models are described briefly in Section 3.7. Demand for electric power varies seasonally. Seasonal demand is based on historical data.
 Demand from other infrastructures or from the sector demand models may be modified based on availability of key inputs such as infrastructure services and labor. This adjustment is handled in other models and is described elsewhere.

Each NERC region can import and export excess electric power to neighboring regions depending upon local demand and price. Transmission line capacity between regions is treated as a single, aggregate transmission line with adjustable capacity. The availability of power within each NERC region is distributed uniformly.

The models include electric power generation dependencies on the availability of fuels (such as natural gas or petroleum distillates) and telecommunications systems (for Supervisory Control and Data Acquisition [SCADA]). The aggregate pipeline capacity limits the delivery of natural gas at the generators and local storage facilities. 

3.6.2   Natural Gas Model Overview

At a national scale, the natural gas system is modeled as 2 major processes: production/acquisition and storage. Local availability and distribution are modeled in a metropolitan scale model that was not used in this analysis.

The natural gas regions used in the model are geographical standards because the Energy Information Administration (EIA) does not have regionalization such as the level of geographic resolution for the national electric power model. The natural gas regions, Northeast, Southeast, Midwest, Central, Southeast and Western, are shown in Figure 3-8.
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Figure 3-8: Natural gas regions
Demand for natural gas is a combination of demand from electricity generators and end-use consumers in other sectors, such as residential and commercial. The demand from electricity generators is a constant rate, while the demand from other end-users oscillates over the simulated year. The demand from the other end-users peaks during the winter months when natural gas is used to heat homes and businesses. The gas acquisition system operates at steady state; to meet seasonal variation in demand, storage is alternately filled during off-peak months and drained during the peak winter months.

The acquisition system is represented by regional production and importation, with a regional natural gas market moderating transfer among the natural gas regions. The natural gas pipeline system is not explicitly captured in the model except as a limit for transfer among regions. Because of this implicit representation of the natural gas pipelines, the model does not capture any behavior of the local natural gas distribution system. Nevertheless, the model represents the basic phenomenon of the physical system using the stored natural gas as the balancing factor between supply and demand.

The regional national gas market creates interesting dynamics within the model because price influences demand and pipeline capacity limits constrain the ability to meet peak demands. Storage within the region and the release of natural gas from that storage to meet the peak demands can dampen the price spikes and provide a buffer for fuel shortages due to pipeline capacity constraints or losses. 
3.6.3 National Petroleum Model Overview

The petroleum supply is a nationwide infrastructure with a major portion located in the Gulf Coast region. Petroleum refining is dependent upon crude oil imports as well as domestic production. Currently, the U.S. imports 66 percent of the crude oil processed within the States. Domestic refining and importing finished products meets the demand for refined petroleum products. There are a number of products produced when crude is refined, but the major products are gasoline, distillate (diesel), jet fuel, and residual fuel. 

The PADDs are used as the geographical resolution of the national petroleum model (see Figure 
3-9).
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Figure 3-9: Map of the Petroleum Administration for Defense Districts

Crude oil imports and domestic production are modeled at the PADD level. Demand for crude oil comes from the refineries that are also modeled in aggregate at the PADD level. Crude oil transfer rates among PADDs are limited by the aggregate crude oil pipeline capacity. 
Refined products are imported and produced domestically. The import rates for each PADD are constrained by capacity limits for the pipeline, tanker, rail, and road transport processes. 
The price of domestic crude oil relative to imported crude oil and the capacity limits on import rates drives the demand for domestic crude oil production. Increased demand for domestic crude cannot be met instantaneously; there is a time lag imposed for increasing production rates. Crude oil in storage at the import terminals, in pipelines, and at the refineries can help offset disruptions to imports or domestic production. 
The demand sectors (commercial, residential, agricultural, industrial, government, and transportation), electric power generation, and fuel distribution drive the demand for refined products. Demand is influenced by fuel price and the availability of other infrastructure services. Disruptions to the fuel supply at the demand-sector level can cause hoarding behaviors and further exacerbate the shortage, reinforcing the hoarding behavior. Fuel storage at the distributor level can provide a buffer for pipeline and other fuel transportation disruptions. 
3.7 National Demand Models

Demand for infrastructure services arises from 6 models aggregated around sector classifications of users and customers. Infrastructures fail to the extent that demand cannot be met, and the inability of one or more infrastructures to meet the demand can lead to a degradation of activity in other sectors. This degradation can reduce that sector’s output of goods and services, which can, in turn, impair the ability of firms that use those goods and services to do business. In the national model, the possible effects of these economic interdependencies are captured by means of simple and abstracted functional connections among normalized indicators of sector activity.

The structure of the economic models is feedback-rich because of the interdependency of all the sectors through input-output relationships. The relative ability to obtain diverse input factors imposes a constraint on the activity that the sectors can achieve, relative to some nominal activity that would be possible with unimpaired access to input factors. The current activity of a sector influences its relative performance, which is closely related to how much output a sector produces. The relative performance of a sector affects output, which feeds back to influence the activity of users of the sector’s output.

The distinction between activity and performance is introduced to reflect the economic distinction between fixed and variable costs. The demand for inputs to a sector either scales with output (variable cost) or is incurred regardless of the quantity produced across some time horizon (fixed cost). For example, temporary constraints on the availability of a specialized input to a manufacturing process may stop output altogether, even though inputs of energy and labor would still be required. Conversely, the household sector’s output of labor might be only slightly curtailed by reductions in availability of power and fuel over the short- to mid-term. The connection between activity and performance is modeled as a simple power law, with the power of the dependence representing the entire production process of the sector. This power parameter is a crude characterization of the production processes in each sector that are not explicitly modeled.

3.8 Economic Impacts Model 

A dollar value for economic impact is calculated in the CIPDSS model to estimate the magnitude of a possible pandemic influenza. For CIPDSS, the main figure in this estimate for the pandemic flu study is the lost gross domestic product (GDP).

Lost GDP is a measure of lost output. The input values are directly derived from the 2002 GDP data for state and industry, which are available from the Bureau of Economic Analysis (BEA). Specifically, the CIPDSS model calculates the lost GDP by multiplying the total value of the GDP per day, by state and industry, by the fraction of workers in that state and industry not working on any given day. The fraction of unavailable workers is derived in the CIPDSS model from population estimates of sick, dead, and self-isolation workers (described briefly in Section 3.2). This unavailable-worker fraction directly determines the derived economic losses.

The summed GDP for all states is equal to the total GDP for the nation. For this reason, the lost-value-added calculation can be considered to be an estimate for the losses to the U.S. economy over the time studied.
 However, the following caveats apply: 
· Although the events may cause structural changes to the economy, those changes are not evaluated in the economics model or in the rest of the CIPDSS infrastructure models (most of these changes will take more than a year to emerge)
· The ability to change business processes and, for example, substitute inputs is limited during the scenario and generally is not modeled. This ability may decrease the actual GDP losses
The economic impacts estimated in this analysis stem from reductions in output due to reduced workforce participation attributable to the pandemic. One calculation not included in these results is the agricultural costs due to losses in stocks of poultry in the case of an avian form of the influenza. This study did not calculate potential losses in this or other areas, partially because the human costs of a pandemic influenza would far outweigh agricultural costs.

3.9 Calibration Process and Results

For this pandemic influenza analysis, CIPDSS calibrated the infectious disease model to both the selected model inputs, such as disease characteristics, and the results of the Epidemiological Simulation System (EpiSimS) analysis. Calibration of model inputs included transmission characteristics, disease stage residence times, and a 2-percent overall case mortality rate. Calibration of derived-model outputs sought to match not only endpoint variables of EpiSimS, such as total number of symptomatic cases, but also the entire epidemiological curve for most output variables of interest. Figure 3-10 shows an example calibration for total symptomatic cases between EpiSimS and CIPDSS for the baseline scenario. 
Notes: CIPDSS = Critical Infrastructure Protection Decision Support System; EpiSimS = Epidemiological Simulation System; M = million
Figure 3-10: Example calibration for total symptomatic cases of 
influenza for the baseline scenario 
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Validating the integrity of a model rests, in part, on comparing model behavior to time-series data of the calibration model or real-world data. When a model is structurally complete and simulates properly, calibration of the model can proceed to fit the model to these observed data, in this case EpiSimS simulations. Dynamic models are often very sensitive to the values of constant parameters, so care should be taken to choose inputs appropriately. If there is the need to calibrate parameters so the model behavior matches observed data (EpiSimS), many combinations of different parameter values may achieve credible results. To assist in refining this process, calibration methodology was used to standardize the process of matching the model curve (CIPDSS) and the reference data (EpiSimS). Using the EpiSimS data series for each scenario and specifying which CIPDSS input parameters could be varied and the corresponding value range, the calibration process adjusts parameters to get the best match between model behavior and a set of reference data. This is a robust methodology that is partially automated by CIPDSS. Both the cumulative symptomatic cases and the fraction of workers unavailable were used to guide the calibration process. 

The first step was to determine the base disease parameters from the baseline (Case 1) EpiSimS run. This process established the disease parameters; for example, R0, disease stage times, and SEIR model parameters that would remain fixed for the other scenarios (Cases 2 through 7).

Prior to starting the calibration process, goodness-of-fit criteria were developed. Because the 2 epidemiological models have different structures and assumptions, it was deemed prudent to define beforehand what would be assessed as a good fit versus a poor fit. The following defines the fit criteria based on the time series metric:

Max Err(c) = max {|EpiSimS(c,t) - CIPDSS(c,t)|},  
Equation 1

Where: c = case number and t = time                                                     

If 0.000 < Max Err ≤ 0.025, then the fit is Excellent
If 0.025 < Max Err ≤ 0.050, then the fit is Very Good
If 0.050 < Max Err ≤ 0.075, then the fit is Good
If 0.075 < Max Err ≤ 0.100, then the fit is Fair
Else, the fit is Poor
After the calibration process, the output data for both CIPDSS and EpiSimS were normalized to [0,1] and statistics on the errors were calculated (|EpiSimS(t) - CIPDSS(t)|) for each scenario, including the goodness-of-fit measure. The average error is the average of the measured errors at each point in the time series. The standard deviation of the error is a measure of the spread of error values and ranges from a high of 0.037 for Case 4 to 0.005 for Case 2 (Table 3-3). 

Table 3-3: Calibration error statistics for each scenario case 
	
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7

	Average error 
	0.0070
	0.0042
	0.0230
	0.0375
	0.0077
	0.0159
	0.0137

	Standard deviation
	0.0065
	0.0051
	0.0184
	0.0320
	0.0100
	0.0268
	0.0099

	Maximum error 
	0.0239
	0.0207
	0.0627
	0.0975
	0.0353
	0.0898
	0.0366

	Fit
	Excellent
	Excellent
	Good
	Fair
	Very Good
	Fair
	Very Good


CIPDSS calibration results are shown in Figures 3-11, 3-12, and 3-13. A Fair fit was made for Cases 4 and 6. The lack of fit in Case 6 is due to a time shift in the curves of approximately 3 days, where the CIPDSS results occur first. This time shift was not considered significant with respect to infrastructure effects. The Fair fit for Case 4 is due to the rapidity of the disease response in EpiSimS, which is difficult for the CIPDSS SEIR model to track. The best fit was for CIPDSS to lead EpiSimS results up to about day 92 and then trail EpiSimS until the results converged around day 184. The variance in the results did not make an appreciable difference on the overall infrastructure consequences for this case and the calibration fit was considered adequate. The remaining cases had Good to Excellent fit.
Similarly, Figures 3-14, 3-15, and 3-16 show the calibration between CIPDSS and EpiSimS for absenteeism (fraction of workers unavailable).
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Notes: CIPDSS = Critical Infrastructure Protection Decision Support System; EpiSimS = Epidemiological Simulation System; M = million 
Figure 3-11: Critical Infrastructure Protection Decision Support System calibration to EpiSimS for total cumulative symptomatic cases for the baseline; the fear-based, self-isolation (Fear-40); and the antiviral treatment and prophylaxis scenarios
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Notes: CIPDSS = Critical Infrastructure Protection Decision Support System; EpiSimS = Epidemiological Simulation System; M = million

Figure 3-12: Critical Infrastructure Protection Decision Support System calibration to EpiSimS for total cumulative symptomatic cases for the targeted layered containment (TLC) and the anticipated intervention strategy scenarios
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Notes: CIPDSS = Critical Infrastructure Protection Decision Support System; EpiSimS = Epidemiological Simulation System; M = million
Figure 3-13: Critical Infrastructure Protection Decision Support System calibration to EpiSimS for total cumulative symptomatic cases for the targeted layered containment (TLC) lite and partially effective vaccine scenarios
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Note: EpiSimS = Epidemiological Simulation System 
Figure 3-14: Calibration results for absenteeism for the baseline; fear-based, self-isolation; and antiviral treatment and prophylaxis scenarios
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Note: EpiSimS = Epidemiological Simulation System 
Figure 3-15: Calibration results for absenteeism for the targeted layered containment (TLC) and anticipated intervention scenarios
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Notes: EpiSimS did not calculate the fraction of workers unavailable for the partially effective vaccine scenario. 
EpiSimS = Epidemiological Simulation System 

Figure 3-16: Calibration results for absenteeism for the targeted layer containment lite and partially effective vaccine scenarios 

Table 3-4 shows parameter values resulting from the calibration for the 7 cases analyzed. Additional analyses will be conducted to further quantify the uncertainty of these analyses.

Table 3-4: Variable inputs for each scenario case for calibration process
	Model

Parameters


	Case 1

Baseline


	Case 2

Fear-based, Self-isolation (Fear-40)
	Case 3

TLC


	Case 4

TLC Lite
	Case 5

Antiviral
	Case 6

Partially effective vaccine
	Case 7

Anticipated Intervention

	Social distancing (masks)
	None
	None
	Yes
	Yes
	Yes
	None
	Yes

	Self quarantine
	None
	Yes
	Yes
	None
	Yes
	None
	Yes

	Worried well (parent to kid ratio)
	0.75
	4
	1
	0.75
	0.75
	None
	0.75

	Vaccinations
	None
	None
	Targeted
	Targeted
	Targeted
	Mass
	Mass

	Average contacts per case
	20
	20
	10
	13.8
	2
	20
	20

	Antiviral drugs
	None
	None
	Yes unlimited
	Yes unlimited
	Yes limited
	None
	Yes

limited


Table 3-4: Variable inputs for each scenario case for calibration process (continued)

	Model

Parameters


	Case 1

Baseline


	Case 2

Fear-based, Self-isolation (Fear-40)
	Case 3

TLC


	Case 4

TLC Lite
	Case 5

Antiviral
	Case 6

Partially effective vaccine
	Case 7

Anticipated Intervention

	Contact effectiveness

(fraction of contacts identified for prophylaxis)
	0.75
	0.75
	0.10
	0.081
	0
	0.75
	0.5


Notes: n/a = not applicable; TLC = targeted layered containment
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4. Results


4.1  Epidemiology Results 

Influenza was modeled as having a noncontagious incubation stage, a pre-symptomatic but moderately contagious stage, followed by an infectious symptomatic stage. The average incubation time used was 1.9 days. Cumulative illnesses from influenza varied from 1.5 million to 75 million among the 7 intervention scenarios (Figure 4-1). 
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Notes: TLC = targeted layered containment; R.Pp = regional population
Figure 4-1: Cumulative influenza illnesses for each scenario
The impacts modeled by CIPDSS are mostly concerned with the worker absentee rates, which can greatly affect continuity of operations at our Nation’s critical infrastructures and can cause the deepest economic impacts. For the scenario that assumes 40 percent of people self-isolate, even though the self-isolating behavior reduces the pandemic severity, the absentee rate is significantly increased. Where the baseline incident scenario gives a total of 2.69 absentee-days per worker, the additional self-isolating behavior in the Fear-40 scenario results in a total of 7.24 absentee-days per worker. 
The most effective mitigation strategy was the TLC scenario. The TLC scenario assumed that unlimited antiviral drugs are available for therapeutic treatment of those people that are symptomatic and prophylactic treatment of household members of diagnosed cases. A prophylactic course lasts 10 days. It is effective starting with the first dose and remains effective only for the duration of the course. In the TLC scenario, 95 percent of household members of diagnosed cases receive antiviral prophylaxis to prevent them from getting the flu or to reduce the severity. Likewise, the TLC strategy lowers the attack rate (the fraction of the population that becomes symptomatic) significantly below the estimated 20- to 30-percent attack rates for a pandemic outbreak (Figure 
4-2). 
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Notes: TLC = targeted layered containment

Figure 4-2: Cumulative attack rate for each scenario
4.2 Public Health Results

In the baseline and other scenarios, the public health sector is heavily overloaded due to huge demand for care as large numbers of people fall ill from the pandemic. In addition, many more people think they might have the pandemic flu because of having other diseases with flu-like symptoms or simply because of fear (worried well). Furthermore, the ability of the healthcare system to provide care can decline significantly at the same time as the demand for care is increasing, because healthcare providers can also contract the disease or avoid work out of fear of contracting the disease. In fact, healthcare providers tend to be exposed to diseases more than other people and can have a higher sickness rate than the rest of the population if adequate precautions are not taken. In the baseline scenario for this study, the peak absentee fraction due to pandemic flu is approximately 8.8 percent for healthcare providers, compared to 6.5 percent for the rest of the workforce. As noted in Section 3.4, the possibility of bringing in additional healthcare workers to help compensate for this loss was not included in the analysis described here, but it will be considered later in the study.

Overloading of the healthcare system is expected to occur at all levels, from physicians’ offices to emergency services to hospital care. According to the planning assumptions for the severe scenario in the HHS Pandemic Influenza Plan,
 half of the people who become ill with the pandemic flu would be expected to seek outpatient medical care and 11 percent would need to be hospitalized. The high demand for hospital services is illustrated in Figure 4-3, which shows the simulated overall national hospital occupancy rate (ratio of hospital inpatients to available staffed beds) for the 7 study scenarios. In the baseline scenario, the Fear-40 scenario, the antiviral scenario, and the partially effective vaccine scenario, hospitals become fully occupied and stay fully occupied for a much longer time than the pandemic lasts, as hospitals catch up with normal care that was delayed during the pandemic. Hospital crowding is relieved a little sooner in the Fear-40 scenario than in the baseline scenario and a little sooner still in the partially effective vaccine scenario, because somewhat fewer people get sick. The antiviral scenario is similar to the baseline scenario except that the use of antiviral drugs delays the pandemic for about a month. In contrast, the anticipated intervention and TLC strategies are effective in limiting the spread of the disease and so the healthcare system does not get overwhelmed in those scenarios. The TLC Lite scenario is in-between, with the hospitals being much more crowded than usual, but not completely full.
Note: TLC = targeted layered containment
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Figure 4-3: Simulated national hospital occupancy rate

In the 4 scenarios with extreme healthcare overloading, there is not enough hospital capacity to accommodate all the people who get seriously ill. As a result, it is expected that many patients would be transferred to large temporary facilities for palliative care. The model simulations indicate that hospitals would handle about 4 to 5 million pandemic patients in those scenarios, and there would be a need for temporary facilities for an additional 1 to 3 million patients. Some summary statistics for the scenarios are given in Table 3.5.

Table 4-1: Summary of healthcare simulations
	
	Baseline
	Fear-based Self-isolation (Fear-40)
	TLC
	TLC Lite
	Antiviral Drugs
	Partial Vaccine
	Anticipated Intervention

	Number  Illnesses
	74 M
	61 M
	1.2 M
	28 M
	69 M
	39 M
	2.6 M

	Number Hospitalized
	8.1 M
	6.6 M
	140,000
	3.0 M
	7.6 M
	4.2 M
	280,000

	Number  Deaths
	1.5 M
	1.2 M
	25,000
	550,000
	1.4 M
	780,000
	52,000

	Peak Death Rate (per hour)
	1,700
	1,500
	16
	340
	1,400
	930
	32

	Day of Peak Death Rate
	69
	66
	61
	81
	105
	63
	70

	Cost of Healthcare
	$81 B
	$68 B
	$1.7 B
	$35 B
	$50 B
	$79 B
	$9.0 B


Notes: B = billion; M = million; TLC = targeted layered containment
The costs listed in Table 4-1 include estimates of the costs of ambulatory care (that is, visits to physicians’ offices and clinics), hospitalization, and vaccines and antiviral drugs (if any). The costs are based on the estimates of Meltzer and others,
 excluding the value of time lost from work (which is included separately as part of economic impact) and converted from 1995 dollars to 2005 dollars using the consumer price index inflation for medical care (a factor of 1.47).

Two other issues are worth noting. First, there is a significant amount of variability in normal hospital occupancy. From Health, United States, 2005,
 the U.S. average occupancy rate was 66 percent in 2003, but the occupancy rate ranged from 53 percent to 81 percent for different states. The simulations for this study divided the U.S. into the 10 FEMA regions, and the average 2003 occupancy rate for those regions ranged from 59 percent to 77 percent. In areas where the hospital occupancy rate is higher to start with, the hospitals will fill up faster and remain crowded longer and more patients will have to be shifted to temporary facilities. In the TLC Lite scenario, the simulation results show hospitals reaching full capacity in some of the regions, but not in others. Urban hospitals are generally more crowded than rural hospitals under normal conditions, and many urban hospitals might be overloaded even in the scenarios that do not show overcrowding for the U.S. as a whole. In addition to setting up temporary facilities as discussed above, it is assumed that patients would be shifted from urban to rural hospitals to take advantage of the space available there. Second, as healthcare staff is overwhelmed, the quality of treatment declines. In particular, studies have found significant increases in mortality rate when care is delayed; for example, when administration of antibiotics is delayed by more than 6 hours for patients with acute bacterial meningitis, the mortality rate increases by a factor of 8.
 A study of overcrowding in emergency departments found a 34-percent increase in mortality at times when the departments are overcrowded.
 An increase in mortality when the healthcare system is overloaded was not included in the model simulations because it was not clear whether the 2-percent mortality rate assumed for pandemic flu already included a contribution from degraded healthcare. This effect will be considered in the sensitivity and uncertainty analyses.

4.3 Absenteeism

The primary mechanism for a pandemic to affect the supply of infrastructure services is through absenteeism and mortality and the resulting potential shortages in labor. Representative results for the total fraction of workers unavailable nationally are given in Figure 4-4. Results have a similar shape for the larger sub-regions (for example, FEMA regions, NERC regions, and natural gas regions) that characterize the spatial resolution of this model. The Fear-40 scenario has the largest peak absenteeism rate. The anticipated intervention strategy has a peak about half the size of the Fear-40 scenario, but is wider so that absenteeism is sustained over a longer time. These results are comparable to those derived by extrapolating the agent-based epidemiological results discussed in the Pandemic Influenza Impact Analysis Report, “Simulation of Disease Spread and Intervention Effectiveness.”
Note: TLC = targeted layered containment
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Figure 4-4: Total fraction of workers unavailable for each scenario
4.4 Infrastructure Impacts Analysis

The analysis and results for assessing the impacts of labor shortages on the energy infrastructure are presented in the following sections. The initial infrastructure-specific analyses indicate that major disruptions are not expected. As a result, interdependency effects will not be observed. The interdependency model will play an important role in examining uncertainty of key assumptions about labor and timing of a potential pandemic with respect to seasonal variation across infrastructures.

4.4.1 Electric Power

A simplified aggregate model of the U.S. electrical power sector was constructed to perform the initial assessment of electric power sector impacts. This corresponds to the first 2 steps of the methodology described in Section 3.5 Results of this model were used to inform the application of the national CIPDSS models. 
While distribution companies employ large numbers of people, crews mainly work on the planned replacement of equipment such as poles and conductors. If half of the crews were to disappear, power supply would not likely be interrupted. Instead, the company would forego planned replacements for the duration of the labor shortage. As this equipment is generally in working condition, delaying replacement for a few weeks would not likely affect power delivery. Transmission companies are similar to distribution companies in that they operate in normal times without need for repair. Therefore, a temporary labor shortage would probably not lead to transmission interruptions. Of course, restoring power after a storm is a special case that requires that crews be allocated away from planned replacements and to repairs. For this analysis, the project team concentrated on normal operations and did not consider this case. In short, it is not necessary to model the impact of labor shortages in the transmission and distribution sectors; therefore, that modeling has not been done.

The generation subsector was split into 4 main categories: coal, nuclear, natural gas, and other. Data were used from the 2004 Electric Power Annual on the number and average capacity of coal, nuclear, and natural gas plants.
  

Nuclear and coal-fired power plants are generally base-load plants, meaning that they will be dispatched at all times. These plants are expensive to build, but have low variable operating costs. Natural gas-fired power plants, in contrast, are relatively inexpensive to build but have high variable operating costs and are, therefore, generally dispatched to make up the difference between customer demand and power supplied by nuclear and coal-fired plants. Therefore, this model first dispatches all nuclear and coal-fired plants that are available and then dispatches natural gas-fired plants, as necessary, to meet demand.

Other power plants include hydro, other renewables, and fuel-oil. Because all of these types of plants combined made up only about 12 percent of the total generation in 2004 and over half of that amount was generated by hydro plants (which have very low labor requirements), the project team simplified the system by modeling the “other” power plants as serving base load at a constant rate.
According to the EIA’s 2004 Electric Power Annual,
 retail sales in the U.S. were 3,716,700 billion kilowatt hours (kWh) in 2004. This annual retail demand was converted to an average weekly demand and then modified according to the time of year to reproduce the seasonality of demand. Demand seasonality was calculated based on EIA data, found electronically in the “2004 EIA-906/920 Monthly Time Series File.”
 The following graph (Figure 4-5) displays the resultant power consumption profile by week of the year.



Notes: EP = electric power; GWh/wk = gigawatt hours per week
Figure 4-5: Seasonal variation in retail power consumption
The graph in Figure 4-5 is jagged in places. This is because monthly data were used to create the graph, and extrapolation was necessary to convert the data to weekly values. This demand profile is used for all runs of the model. The retail demand was increased by the average amount of losses that occur in the distribution and transmission systems (also calculated from EIA data) to yield the desired volume of power generation required to meet demand.

It is important to note that for the purpose of this analysis, demand is not influenced by the pandemic or mitigation measures. In reality, it is likely that the pandemic would have an impact on demand. Power demand likely would decrease as factories close, because people at home watching television consume much less electricity than do large operating factories. This demand decrease would decrease stress on the power sector and, thus, reduce the probability of loss of load. By ignoring the potential demand loss, this analysis makes a conservative estimate of the demand that will lead to an underestimation of the reserve capacity.   

4.4.1.1 Modeling Labor Constraints

The only labor constraint modeled in this analysis is that of the plant operators. Operators are the most critical link in the labor chain at power plants because no plant can operate without constant supervision, there are relatively few operators at each plant, and the high degree of experience and training needed to be an operator means that it is not easy to find substitutes.

While repair work is important, most repairs in power plants are preventive maintenance. If this were to slow down or halt for a few weeks, there would likely be no discernable impact. Repair of failed equipment probably would not suffer, as plant management would ensure that this work took place instead of preventive maintenance. Months of delays in preventative maintenance would be required to affect power production.

The project team made the following assumptions regarding labor constraints:
· Both nuclear and coal-fired plants must have 2 operators on duty at all times and natural gas-fired plants must have 1 operator on duty. Because of the complexity of their operations and the ramifications of an error, 2 operators are warranted for nuclear plants; and 2 are required for coal-fired plants because many coal plants are old and not well-automated. Natural gas-fired plants, especially those driven by natural gas turbines, generally are highly automated; therefore, 1 control room operator should be sufficient. 
· As the standard workweek is 40 hours, to constantly keep an operator on duty (7 days * 24 hours = 168 hours per week) requires 4.2 operators per position. Five operators will be employed for each operator position, for vacation and sick leave to be taken into account. This staffing level provides some cushion for unexpected absences.

· Plants are sufficiently different that operators of one type of plant are unable to operate a different type of plant. At the same time, plants of the same type are sufficiently similar that operators are freely exchangeable between them. Moreover, the initial quantity of operators is the most that is possible during the simulation. The fact that a plant may have several nonoperators sufficiently trained to act as operators in an emergency is not taken into account.

· Plants shut down when they do not have enough operators. Plants that close release their operators, who are then immediately allocated to work at other plants. Also, power plants will equally “share the pain” of not having a full contingent of operators; that is, plants will not hoard operators, but instead agree to share them such that each operational plant has roughly the same number of operators. 

· When workers recover and come back to the workforce, they would first be allocated to closed plants until all closed plants are operational. At that time, all power plants would have the minimum number of operators. After reopening the closed plants, additional recovered workers would be evenly distributed to all power plants.

Three different constraints on operator workweeks were tested:
1. Operators would be allowed to work a maximum of a 48-hour workweek

2. Operators would be allowed to work a maximum of a 42-hour workweek

3. Operators would be allowed to work a maximum of a 34-hour workweek
The third constraint is equivalent to requiring that all operators must be present for the plant to remain operational. This scenario, which can also be called the “full operator contingent case,” is in one way overly pessimistic; few plants would shut down with the loss of only 1 of their operators. In another way, however, it is overly optimistic; it assumes that operators from a closed power plant would instantaneously be deployed to other power plants, operators would be evenly distributed among remaining operating plants, and recovered operators would be first allocated to closed plants to bring them on line before being allocated to operating power plants. All of the scenarios are biased by these assumptions.
The lack of data from industry in this area makes sensitivity analysis necessary to place bounds on the problem; however, even with sensitivity analysis, the mix of optimistic and pessimistic assumptions in the scenarios, without being able to say which effect dominates, reduces confidence in the results. Only the elicitation of relevant data from industry can solve this problem.

4.4.1.2 Model Results

The model simulates over a 52-week period, which represents a calendar year. Thus, the simulation begins on January 1 (starting at 0), and ends on December 31 (ending at 52). The modelers examined 3 scenarios: baseline, fear response with peak absenteeism of 28 percent, and fear response with peak absenteeism of 44 percent, with sensitivity testing done on each scenario. The 28-percent peak absenteeism rate corresponds to the national aggregate absenteeism rate for the Fear-40 scenario. The 44-percent peak absenteeism rate corresponds to localized peak rates for the same scenario. These scenarios will be further examined with the pandemic peaking in spring, when electric power demand is at a trough, and in summer, when demand is at a peak.

Spring: Baseline Scenario

In this scenario, a maximum of about 6 percent of workers would be unable to work at the peak of the pandemic. The following graph (Figure 4-6) depicts the fraction of labor available throughout the year in this model run, where 1 equals 100-percent labor availability, 0.9 equals 90-percent labor availability, and so forth.

Figure 4-6: Labor availability for the spring baseline scenario
Graphs for the 3 main types of power plants for each of the maximum workweek scenarios follow (Figures 4-7, 4-8, and 4-9). The full contingent scenario causes some of the nuclear power and coal-fired generation plants to close.
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Figure 4-7: Nuclear generation for alternative overtime assumptions, 
spring baseline scenario
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Figure 4-8: Coal-fired generation for alternative overtime assumptions, 
spring baseline scenario 
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Figure 4-9: Natural gas generation for alternative overtime assumptions, 
spring baseline scenario
Natural gas-fired plants are used as peaking plants; they provide the reserve capacity. As can be seen in Figure 4-9, natural gas-fired plants are used more in the case requiring a full operator contingent to make up for the loss of coal and nuclear generation due to plant shutdowns.

As can be seen in Figure 4-10, even in the case requiring a full contingent of operators, there is no difference between the amount of power desired and the amount actually consumed, meaning that there is no loss of load.
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Figure 4-10: Comparison of supply and demand for electric power consumption, spring baseline scenario
Finally, looking at the reserve margin in Figure 4-11, it is only slightly degraded during the crisis (roughly weeks 12 through 16). It seems unlikely that loss of load would take place (for example, the California Independent System Operator would not institute rolling outages until the reserve margin drops to 1.5 percent).

Figure 4-11: Reserve margin for alternative overtime assumptions, 
spring baseline scenario
Spring: Fear-40 Scenario—28-Percent Peak Absenteeism

In this scenario, about 28 percent of workers are absent from work at its peak. This corresponds to a nationwide pandemic and takes into account different disease transmission rates in urban areas and the countryside. This scenario also takes into account workers who are well, but do not go to work for fear of falling ill. Figure 4-12 displays a graph of the fraction of workers available over time in this scenario.

Notes: dmnl = dimensionless
Figure 4-12: Labor availability for 28-percent peak absenteeism, spring scenario 

Following are graphs of the 3 main types of generation under 3 different maximum workweek constraints (Figures 4-13, 4-14, and 4-15).
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Figure 4-13. Nuclear power generation for alternative overtime scenarios, 28-percent peak absenteeism, spring scenario
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Figure 4-14: Coal-fired generation capacity for alternative overtime assumptions, 
28-percent peak absenteeism, spring scenario
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Figure 4-15: Natural gas-fired generation capacity for alternative overtime assumptions, 28-percent peak absenteeism, spring scenario
The following graph (Figure 4-16) shows the ratio of actual to desired power consumption under the 3 maximum workweek constraints.
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Figure 4-16: Comparison of supply and historical demand for electric power, 
28-percent peak absenteeism, spring scenario
The fact that this ratio is 1.0 at all times for each of the 3 conditions tells us that the power sector was able to fully meet demand in each case.

The graphs in Figures 4-17 and 4-18 focus on the source of generation.
[image: image11.emf]Generation Source

40,000

30,000

20,000

10,000

0

0481216202428323640444852

Time (Week)

Nuclear EP generation : WorriedWell-48hrMaxGWh/wk

"Coal-fired EP generation" : WorriedWell-48hrMaxGWh/wk

"NG-fired EP generation" : WorriedWell-48hrMaxGWh/wk


Notes: EP = electric power; GWh/wk = gigawatt hours per week; NG = natural gas
Figure 4-17: Use of generation based on different fuel types to serve load, 28-percent peak absenteeism, spring scenario
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Figure 4-18: Use of generation based on different fuel types to serve load if full operator contingents are required, 28-percent peak absenteeism, spring scenario
Another way to look at power grid stability is to calculate the generation reserve margin. The reserve margin is simply the surplus generating capacity available, expressed as a percentage of total capacity. Figure 4-19 displays the graph of reserve margin for each of the 3 cases; Figure 4-20 displays a graph of cumulative reserve margin.
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Figure 4-19: Reserve margin for the spring outbreak and alternative overtime assumptions, 28-percent peak absenteeism, spring scenario
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Figure 4-20: Cumulative average reserve margin for the spring outbreak and alternative overtime assumptions, 28-percent peak absenteeism, spring scenario
Lower reserve margins mean that the system is less able to respond to sudden, unexpected changes in demand (such as air conditioning load during a heat wave) or unexpected failures of components of the power system (such as transmission line failure or a forced generation plant outage). The lower the reserve margin, the higher the probability is of an outage when such an unexpected event occurs.

Spring: Fear-40 Scenario—44-Percent Peak Absenteeism

This is, by far, the most severe of the scenarios examined here, with a peak absenteeism of around 44 percent. This corresponds to a pandemic in an urban area and takes into account estimates of the fraction of well people that would stay at home for fear of contracting the illness. Figure 4-21 displays the fraction of labor available in this scenario.
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Figure 4-21: Labor availability for 44-percent peak absenteeism 
scenario, spring scenario
The graph in Figure 4-22 shows the one case in which the generators were not able to meet demand under this scenario: the case of requiring a full contingent of operators. This means that if demand were not quickly reduced, there would be a loss of load.
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Figure 4-22: Comparison of supply and demand for electric power for peak 
44-percent absenteeism and alternative overtime assumptions, spring scenario
The graph in Figure 4-23 shows the generation mix in the full contingent case, which was chosen because it led to a loss of load. Coal-fired generation is cut in half and nuclear generation reduced by one-third at the height of the pandemic. Natural gas-fired generation increases to compensate, but the operator shortage closes enough natural gas power plants at the height of the pandemic that these plants cannot fully compensate for the loss of the coal-fired and nuclear generation.
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Figure 4-23: Use of generation based on alternative fuel types, spring outbreak and full contingent, 44-percent peak absenteeism, spring scenario 
Summer: Baseline Scenario
Running the same baseline scenario, but shifting it out such that the pandemic peaks in about week 28 (roughly when there is peak demand for electrical power), reveals that there is no disruption even assuming a plant must have a full contingent of operators, as shown in Figure 4-24.
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Figure 4-24: Comparison of supply and demand for electric power, 
summer baseline scenario
Figure 4-25 shows that there was only a small disruption in coal-fired and nuclear power generation in this scenario.
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Figure 4-25: Use of generation based on different fuel types, 
summer baseline scenario
Summer: Fear-40 Scenario—28-Percent Peak Absenteeism

Figure 4-26 shows that there is no shortage of generation when plants place a 42-hour cap on the amount of time their operators can work each week. However, when a full contingent of operators is required, there is a shortage.
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Figure 4-26: Comparison of supply and demand for electric power, summer 28-percent absenteeism scenario
Figure 4-27 shows that not only do coal-fired and nuclear plants shut down in large numbers, but absenteeism also curtails the ability of natural gas-fired plants to replace that lost generation.
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Figure 4-27: Use of generation based on different fuel types, 28-percent peak absenteeism, summer scenario
Summer: Fear-40 Scenario—44-Percent Peak Absenteeism

Even assuming the greatest flexibility in operator workweeks envisioned in this study (limiting the operator workweek to 48 hours maximum), it is unlikely that generation can meet normal demand, assuming a 44 percent peak absenteeism in the summer (Figure 4-28).
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Figure 4-28: Comparison of supply and demand, 44-percent 
absenteeism, summer scenario

Figure 4-29 shows how natural-gas fired generation attempts to make up for shortfalls in nuclear and coal-fired generation, but at the peak of the pandemic, is unable to do so because of staff shortages.
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Figure 4-29: Use of generation based on different fuel types, 44-percent peak absenteeism, summer scenario
4.5 Results Summary
Three scenarios were studied for the pandemic: a baseline scenario, a fear response scenario with a maximum absenteeism of 28 percent, and a fear response scenario with a maximum absenteeism of 44 percent. Three cases were run for each scenario: setting a cap of a 48-hour operator workweek, setting a cap of a 42-hour operator workweek, and requiring a full contingent so that stations must shut down if they cannot maintain the initial number of operators. 
These scenarios were examined with the pandemic peaking in spring as well as peaking in summer. These seasons were chosen because electric power demand is at an annual minimum in spring and at an annual maximum in summer.

In spring, only the fear response scenario with a 44-percent maximum absenteeism under the full operator contingent case resulted in a loss of load. In summer, the fear response scenario with a 
28-percent maximum absenteeism under the full operator contingent case caused a loss of load. Even under the most relaxed constraint (a 48-hour maximum operator workweek), the fear response scenario with 44-percent maximum absenteeism caused a loss of load in summer.

One assumption used was clearly optimistic: power plants that must close will immediately send all operators that are able to work to other plants that need them; this assumption increases the robustness of the power sector. On the other hand, assumptions were made that were pessimistic in 3 main ways:

· The 44-percent peak absenteeism case assumes that a country-wide pandemic would have the same severity in a rural area as in an urban area   

· The full operator contingent case means that if even 1 operator is absent, the plant cannot operate

· Demand was held constant in this exercise. In reality, it is likely that the pandemic would have an impact on demand. Power demand would decrease as factories close, because people at home watching television consume much less electricity than do large factories in operation. This demand decrease would decrease stress on the power sector and thus reduce the probability of loss of load.

Under the parameters and assumptions used in the model, the power system (in aggregate, as studied here) seems largely resilient to the levels of worker absenteeism projected in these scenarios. Because there are usually a large number of idle natural gas-fired power plants and because even an idle plant must employ operators, natural gas-fired power plants are generally able to step in to make up lost generation from other types of generation where necessary.

Moreover, the seasonality of demand for electric power means that the timing of the pandemic is important. Demand for power in spring is at a low point, which means the power grid has the greatest capacity to dispatch natural gas-fired generators to make up for possible shortfalls in coal-fired and nuclear plants. If the pandemic were to peak in the summer, the power grid would not have as much idle capacity and the risk of losing load would be considerably higher.

The main goal of this study was to outline a methodology for evaluating the impact of sudden labor force absenteeism on the power sector. The lack of data from industry on the ability to share resources (operators between plants and workers within plants) and on workweek constraints for plant operators, coupled with the uncertainty in the disease characteristics and response to the disease, means that determinations as to whether a pandemic would or would not be likely to cause a power outage cannot be made with confidence.
4.5.1 Natural Gas

Absenteeism likely will not have a significant impact on the U.S. natural gas infrastructure, even under the most severe pandemic scenario examined. The primary reason the natural gas infrastructure should not be affected is that, with the exception of new well-drilling operations and repair at local distribution companies, natural gas production, transmission, and storage is not a labor-intensive industry. Production wells produce gas on their own from high gas pressure in the well itself; therefore, 1 operator can monitor many production wells. Transmission pipeline compressor stations and storage fields are operated remotely with little or no onsite personnel; therefore, 1 operator can monitor many compressor stations or wells in a storage field.

New well-drilling operations are important in that they compensate for declining production in old wells; however, a reduction in new well drilling over a few weeks or months will have very little impact on current supplies. Variations in weather would almost certainly play a larger role in determining how tight the market is for natural gas.

As for local distribution companies, the network operates based on the pressure of gas in the feeding transmission pipelines; therefore, few personnel are needed for operations. The majority of personnel are involved in capital repairs or replacement of old distribution pipes and equipment (that are still in good working order) as well as repairs of system failures. During the period of the pandemic, local distribution companies would almost certainly curtail capital repairs and focus on continuing to address failures. Over a period of a few weeks to months, this curtailment should not lead to noticeable deterioration of the distribution system.

There is, however, one area that needs more attention. Natural gas processing plants perform the key function of bringing gas from the well and purifying it to the quality necessary for pipeline transmission. Consultation with industry experts would be useful in determining how these plants operate with higher than normal absenteeism.

4.5.2 Petroleum

To analyze how the petroleum products infrastructure might respond to pandemic influenza, the system response might be modeled or real-life events might be used to inform the analysis.

In the case of the petroleum product infrastructure, a real-life case study offers a unique example of how the infrastructure responds to disruptions: the 2005 hurricane season, which wrought unprecedented damage on the nation’s petroleum product infrastructure.

Hurricanes Katrina and Rita caused 3 main types of disruption to the U.S. petroleum infrastructure: 

· The disruption of offshore oil production

· The disruption of refinery capacity

· The disruption of petroleum product pipelines that transport refined product from refineries to regional distribution centers

Together, these 3 disruptions led to the observed effects of the hurricanes on the U.S. petroleum infrastructure: a significant increase in the price of petroleum products nationwide lasting over several months and price spikes in certain East Coast areas (such as Atlanta) that were the result of near shortages in those areas. The former was due primarily to the refinery capacity disruptions that were gradually alleviated over several months, whereas the latter was due to the disruption of petroleum product pipelines. Pandemic influenza may disrupt refineries, but it is unlikely to disrupt either offshore oil production or petroleum product pipelines. 
Offshore oil production disruption is unlikely, because the reason production was disrupted during the hurricane season was the shutdown of offshore oil platforms in advance of the storm. Platforms were shut down due to the threat of oil spills from either platform or undersea pipeline damage. Damage to those platforms and undersea pipelines had to be repaired before production could resume. Pandemic influenza poses no such physical threat to offshore oil production assets. Even if oil platform crew members were to be infected, most platforms could continue production while being controlled remotely, which companies would likely be willing to do given that there would be no physical threat to the production assets and no threat of oil spills.

Petroleum product pipeline disruption is also unlikely, because the reasons production was disrupted during the hurricane season were shutdowns due to pumping stations losing electrical power (as happened to the Colonial and Explorer product pipelines in the aftermaths of both Hurricanes Katrina and Rita) and shutdowns in advance of the hurricane in order to allow for an orderly shutdown and startup and an evacuation of personnel (which was the decision the Explorer pipeline made in advance of Hurricane Rita’s landfall). Clearly, in the case of pandemic influenza, there would be no threat of physical damage and no reason to shut down pipelines and evacuate personnel as a protective measure. Analysis does not project that power outages would be likely in the case of pandemic influenza; therefore, pipelines likely would not be disrupted by pumping stations losing power. Moreover, if there were the threat of a blackout, this would likely be caused by absenteeism at power plants and would progress as the pandemic progressed, which we believe would give product pipeline companies enough time to foresee the need for backup generators and to put them in place before a blackout occurred.

As for refineries, around the time of Hurricane Rita’s landfall, over 25 percent of the nation’s refinery capacity was shut down. Refineries are the most susceptible link in the petroleum product infrastructure chain to pandemic influenza, because multiple facilities require the active involvement of a large number of workers as opposed to
· Production, where wells produce with no need for human presence and many are monitored by a small number of operators 
· Pipeline transport, where a pipeline covering over a thousand miles is monitored by a handful of people in a single control room 
At the same time, in no industry analyzed did analysts project anything approaching an instantaneous loss of 25 percent of the nation’s capacity during an influenza pandemic. Moreover, due to refinery damage in the aftermath of both Hurricanes Katrina and Rita, it took several months to get all the lost capacity back on line. It is unlikely that pandemic influenza would lead to such a protracted loss of refinery capacity, because no physical damage would be done, and no pandemic scenario examined foresaw the pandemic lasting more than a few weeks. The level of refinery capacity reductions seen in the 2005 hurricane season are worse than in any credible pandemic influenza scenario.

The 2005 hurricane season impacts were worse than the likely impacts of pandemic influenza in the magnitude and duration of refinery capacity disruption and in the extent of the disruption across the petroleum products infrastructure. Therefore, it is reasonable to claim that the 2005 hurricane season impacts represent a pessimistic upper bound on the disruptions that pandemic influenza might cause to the petroleum products infrastructure.

Overall, the U.S. weathered the 2005 hurricane season impacts to the petroleum products infrastructure quite well. Prices of refined products increased and remained high for several months due to the protracted loss of refinery capacity; however, there were no shortages of refined product. The increased price for refined product stimulated refineries to get back on line as quickly as possible and stimulated overseas suppliers to export more refined product to the U.S. Increased prices also led consumers to reduce elective travel. There were a few areas on the East Coast that came close to running out of refined product, such as Atlanta, but those were a result of product pipeline disruptions, which this study does not project with a pandemic influenza scenario.

In conclusion, the U.S. could cope with the effects of pandemic influenza on the petroleum products infrastructure at least as well as it coped with the impacts of the 2005 hurricane season on that infrastructure. As the petroleum products infrastructure was resilient in the face of the 2005 hurricane season, it will be equally or more resilient in the face of pandemic influenza. 

4.5.3  Economics Results

Figure 4-30 shows the lost GDP results from the CIPDSS model for all of the pandemic influenza simulations performed. These values represent the loss in GDP over a period of 1 year. As mentioned previously, the main impact on the GDP is absenteeism in the workforce (either due to death, sickness, or self-isolation). Although the number of deaths in the baseline case is higher than in any other case, the cases with the largest initial economic impact are the Fear-40 scenario (Case 2) and the anticipated intervention scenario (Case 7). These cases have much larger impacts because of the extra workforce absenteeism (see Section 4.3 for graphs of absenteeism). 

Notes: AV = antiviral; NISAC = National Infrastructure Simulation and Analysis Center; PV = partially effective vaccine; TLC = target layer containment
Figure 4-30: Total lost gross domestic product for each scenario
A loss of $300 billion
 (the approximate value of loss in the Fear-40 case) represents a 2.3-percent loss of GDP.
  In the baseline, the losses are just over $100 billion. This result corresponds to a loss of <1 percent of the GDP. These baseline results also correspond with several other pandemic influenza studies.

Results of the other cases follow closely to absenteeism and death rates. That is, cases with very little to no self-isolation have much lower GDP losses than those with high rates. For example, the partially effective vaccine case (Case 6) has a loss of approximately $60 billion (<1 percent of GDP), most of which is due to sickness and death (that is, no self-isolation). Self-isolation was simulated in the anticipated intervention case (Case 7), and results from this are much higher at $260 billion (2 percent of GDP).

These results are comparable in general magnitude to the first-year results found by NISAC using a different economic modeling framework from Regional Economic Models, Inc. (REMI).
 Almost all of these cases lie within the ranges of GDP percent losses generated from the REMI modeling. Furthermore, both models provide the same rank ordering of all the scenarios based on year 1 lost GDP. The TLC Lite scenario has the lowest economic impacts in the first year according to both NISAC and CIPDSS estimates; this reduction over baseline is due to a reduction in the number of ill workers, which reduces workplace absenteeism, and a reduction in death, which reduces the losses to U.S. economic capacity. 
The project team conducted this analysis without considering the costs of formulation, implementation, or enforcement of the actions that implicitly comprise the scenarios. The cost is likely directly related to the number of public policy actions involved with the scenario. For example, the anticipated intervention strategy calls for school closures, quarantine, and 150-day vaccine development, all of which are likely to be costly.

5. Conclusions

The project team used a modified SEIR epidemiology model in this analysis to represent the spread of a 1918-like influenza virus in the U.S.
 In conjunction with NISAC, the team modeled 7 intervention scenarios, representing a variety of potential population response and intervention strategies. The team then calibrated aggregate human-health impacts to higher resolution epidemiology results from the NISAC-sponsored analysis. 

The public health and population response impacts of the pandemic would result in labor-supply shocks and, additionally, provide a demand shock for the national healthcare system. The project team modified existing models to represent the impacts of the labor-supply and healthcare shocks, and used the combined models to estimate human health impacts of an unmitigated pandemic, costs and benefits of selected population responses and intervention strategies, impacts on infrastructure operations, and economic costs.

The 7 scenarios evaluated were

· Baseline: Unmitigated pandemic with disease characteristics similar to the 1918 pandemic influenza virus

· Fear-40: The baseline scenario with the addition of a large Fear-40 response resulting in up to 40-percent peak absenteeism

· TLC: A mixed intervention strategy that includes antiviral drugs, school closures, liberal leave, and general social distancing
· TLC Lite: A mixed intervention strategy similar to TLC but not including school closures or liberal leave
· Antiviral treatment and prophylaxis
· Partially effective vaccine

· Anticipated Intervention: A mixed intervention that includes antiviral drugs, target school closures, a 15-percent self-isolation response, and development of a vaccine over a 5-month period
From the perspective of human health impacts, the most effective mitigation strategy was the TLC scenario. The TLC scenario assumed that 
· Unlimited antiviral drugs would be available for therapeutic treatment of those that are symptomatic and prophylactic treatment of household members of diagnosed cases
· A prophylactic course would last 10 days, would be effective starting with the first dose, and would remain effective only for the duration of the course
· 95 percent of household members of diagnosed cases would receive antiviral prophylaxis to prevent them from getting the flu or to reduce the severity  
The TLC strategy lowered the attack rate significantly below the estimated 20- to 30-percent attack rates for a pandemic outbreak 

In the baseline scenario and some of the other scenarios, the public health sector would be heavily overloaded due to huge demand for care as large numbers of people fall ill from the pandemic and many additional people think they might have the pandemic flu because of having other diseases with flu-like symptoms or simply because of fear (worried well). Furthermore, the healthcare system’s ability to provide care could decline significantly at the same time as the demand for care increases, because healthcare providers also could contract the disease or avoid work out of fear of contracting the disease. 
The healthcare system likely would be overloaded at all levels, from physicians’ offices to emergency services to hospital care. In the baseline scenario; the Fear-40 scenario; the antiviral scenario; and the partially effective vaccine scenario, hospitals would become fully occupied and stay full for a much longer time than the pandemic itself lasts, as hospitals catch up with normal care that was delayed during the pandemic. Hospital crowding would be relieved a little sooner in the “40-percent fear” scenario than in the baseline scenario and a little sooner still in the partially effective vaccine scenario, because somewhat fewer people would get sick. The antiviral scenario is similar to the baseline scenario except that the use of antiviral drugs would delay the pandemic for about a month. In contrast, the anticipated intervention strategy and TLC strategies would be effective in limiting the spread of the disease and so the healthcare system would not get overwhelmed in those scenarios. The TLC Lite scenario is in-between, with the hospitals being much more crowded than usual, but not completely full. These results correspond very well with an independently conducted NISAC-sponsored analysis, which increases confidence in the overall result.

Analysis of labor impacts on the energy sectors indicated that significant disruptions in infrastructure services would not be expected, although these sectors are potentially more vulnerable to other disruptions because of reductions in repair personnel. Electric power generation could be affected if the timing of the pandemic was such that the pandemic peak was near the peak of electric power consumption (summer). Electric power consumption is lower in the winter, when seasonal flu peaks. Under winter/spring power consumption assumptions, electric power generation capacity would be adequate. This result corresponded well with an independently conducted NISAC-sponsored analysis. As a result of the minimal infrastructure impacts, interdependency effects would not be a factor in the analysis. Analysis of labor impacts depends on several key assumptions about the extent to which overtime and sharing of resources between facilities can be used to mitigate labor disruptions. It is very important to examine uncertainties in these assumptions.

The aggregate CIPDSS models consistently demonstrated the ability to either calibrate to higher resolution models (epidemiology) or to correspond to higher resolution assessments. This provides the foundation for the further use of CIPDSS models in uncertainty/sensitivity analyses.
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For the cases of operators being allowed to work a maximum 48- or 42-hour workweek, no nuclear plants shut down. For the case of requiring a full contingent of operators, some plants do shut down.



Again, when coal-fired plant operators are restricted to a maximum 48- or 42-hour workweek, there are no coal-fired plant shutdowns. Only in the case of requiring a full contingent of operators are there some shutdowns.



For natural gas-fired plants, the level of generation is the same for the 48- and 42-hour workweek cases and is slightly higher from about week 12 to week 16 in the case requiring a full contingent of operators.



Here, the blue line is on top of the red line at all points.



For nuclear power generation, there is no decrease in generation under the 48-hour operator constraint, a small decrease for the 42-hour operator constraint, and a dramatic decrease when a full contingent of operators is required at each plant.



















For coal-fired power generation, there is no interruption in generation under the 48-hour operator constraint, some interruption under the 42-hour constraint, and significant disruption when a full contingent of operators is required.



Around week 14, natural gas-fired power plants are dispatched to compensate for the closure of nuclear and coal-fired plants under both the full contingent constraint and under the 42-hour constraint (but to a lesser degree). Natural gas generation is used at the normal rate under the 48-hour constraint. 





In the case that operators are constrained to work a maximum of a 48-hour week, generation is unconstrained. Coal and nuclear are dispatched as base-load, and natural gas is dispatched to meet changing demand.



In the case that full contingents of operators are required, both coal-fired and nuclear generation is reduced. Natural gas generators, however, are able to increase production to offset the reduced coal and nuclear generation.



The reserve margin is typically high in times of low demand, such as mid-April (around week 14).

With highly constrained generation (as in the full contingent case), reserve margin drops dangerously low, but not below 1.5 percent, the level at which rolling outages would be initiated under normal staffing conditions. It is not clear that this would be threshold if the ISOs are short-staffed





Reserve margin data are typically given on a yearly basis. 

The first 2 cases show a roughly 21 percent reserve margin for the year, which matches EIA data for 2004. The full contingent case yields a reserve margin for the year of about 19 percent.
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