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Abstract 

Reliable operation of complicated interdependent 
infrastructures, (including transportation, electric 
power, oil, gas, telecommunications and 
emergency services) is vital to developed 
economies.  This paper develops a method to 
estimate the “time to recover” from a disruption in 
such interdependent infrastructures.  It also 
develops a mathematical model and solution 
procedure to optimize investments in 
interconnected infrastructures to achieve 
improvements in “time to recover” subject to a 
budget constraint.  These methods are illustrated 
on an example gas-electric infrastructure network. 

 

1. Introduction 

    Rinaldi et al. [1] describe infrastructures as 
complex adaptive systems (CASs) and create a 
conceptual framework for addressing infrastructure 
interdependencies. They identify six dimensions 
that can be used to describe infrastructure 
interdependencies, and apply this framework to 
analyze the role other infrastructures play in 
supporting the operation of the electric power 
_____________________ 
1  Sandia is a multiprogram laboratory operated by 
Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy's 
National Nuclear Security Administration under 
contract DE-AC04-94AL85000. 

system   They observe the need for more research 
to consider infrastructure interdependencies, 
development of metrics to describe the 
performance of infrastructures, and creation of 
models for designing and operating these systems.  
    Two leading approaches for reliability analysis 
in interdependent infrastructures are agent-based 
simulation and input-output analysis. The core idea 
behind the development of agent-based simulations 
for this application is that individual components 
and subsystems can be represented as agents and 
by letting them evolve and interact, emergent 
behaviors (i.e. interdependencies) can be identified 
(e.g. [2], [3], [4] and [5]).  Agent-based simulation 
is also being used to investigate the markets for 
electric power and natural gas (e.g. [6], [7], [8], 
and [9]).  The emphasis in market-level models is 
on trading behavior of economic agents in these 
industries. 
     Input-output analysis has traditionally been used 
to model the interactions of sectors of the economy 
and forecast the effects of changes in one part of 
the economy on performance in other sectors.  
Haimes and Jiang [10]  suggest that the same 
modeling paradigm may be useful to model the 
interactions and interdependencies within and 
across infrastructures.  Whereas much of the agent 
based simulation for reliability analysis contains 
very detailed system representation, input-output 
modeling is likely to be very aggregate.  
    A third type of analysis is based on network 
models. Nozick et al. [11] develop a mathematical 
representation for interconnected infrastructures 
based on a network representation (graphs of nodes 
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and arcs).  The arcs represent components or 
subsystems in an infrastructure or the connections 
between infrastructures.  The arcs have capacities 
and these capacities may be uncertain and evolve 
over time. 
    Changes in arc capacity over time include both 
random failures (that reduce arc capacity) and 
repair actions of uncertain duration (that restore 
capacity). The capability of one component or 
subsystem may be correlated with the performance 
of several other components or subsystems.   
    In this paper we extend the mathematical 
framework in Nozick et al. [11] in two significant 
dimensions.  First, we allow for storage within 
these systems.  This analysis emphasizes the 
effective use of storage as a mechanism to improve 
service reliability.  Second, we develop a 
mathematical formulation and solution procedure 
for investment planning to achieve improvements 
in “time to recover” from disruptions.   
    The next section describes the illustrative 
example we will use to illustrate the modeling 
tools.   This example is a modification of that used 
in Nozick et al. [11].  The third section describes 
the analysis developed to estimate the key transient 
performance metric, “time to recover”.  The fourth 
section develops the formulation and solution 
procedure to optimize system performance with 
respect to this measure subject to a budget 
constraint.  The fifth section gives conclusions and 
directions for future research. 
 
2. Illustrative Example  
 
    We represent interconnected infrastructures 
through the use of networks (graphs of nodes and 
arcs).  The arcs represent components or 
subsystems in an infrastructure or the connection 
between infrastructures.  The arcs have capacities 
and these capacities may be uncertain and evolve 
over time.  Further, the capability of one 
component or subsystem may be correlated with 
the performance of several other components or 
subsystems.  Correlations stem from a number of 
causes. For instance, links in similar geographic 
locations are likely to suffer similar fates, either as 
a result of contamination from one infrastructure to 
another or because they fall victim to the same 
event.  Also, the topology of some networks 
implies that when certain links experience 
diminished capacity all downstream links 
encounter the same or more severe difficulties. 
    Nodes and links can also represent the 
information infrastructure. The state of the 
information system links affects the capacity of the 

links they support.  For example, when the 
signaling system in the telephone system 
experiences difficulties, calls may be dropped, 
reducing capacity in the circuit switched network. 
    We define states on a link corresponding to 
different capacity levels, and use Markov and 
semi-Markov processes to represent state 
transitions over time.  Use of Markov and semi-
Markov processes to model evolving system and 
component conditions is consistent with several 
previous models (e.g., [12], [13]). 
    To illustrate these ideas, consider a small 
example of two interconnected infrastructures – a 
natural gas distribution network and an electricity 
generation/distribution network. The gas 
distribution network is supported by a supervisory 
control and data acquisition (SCADA) system. 
    There is a tank in the network which is used to 
store extra gas in a period for use in future periods. 
The key idea here is to use the tank for protecting 
the network against disruption. 
    The combined gas and electric network is shown 
in Figure 1. It contains two separate suppliers, 
labeled S1 and S2. The gas that enters the 
distribution network from supplier S1 enters via 
node DS1. The gas from node DS1 can either be 
used in a period or stored in the tank, ST, if there is 
sufficient space in the tank for the additional gas.  
The gas entering the tank in a period can supply the 
network for the next period and thereafter (until it 
is consumed). Similarly, the gas that enters the 
distribution network from supplier S2 enters via 
node DS2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An example network for 
interdependent gas and electric infrastructures 
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    There are four distinct demands for gas served 
by this network, two of which are electric power 
generation stations (E1 and E2). Either generating 
station can serve the electric load at L2 but only 
one of the generators can serve the electric load at 
L1.  By separating the generating facilities into two 
nodes and a connecting arc (e.g., E1 and G1) we 
can represent a “node failure” (partial or complete 
loss of a generator) as a capacity loss on the 
connecting arc. Values of demands for gas and 
electricity (per period) are noted at nodes D1, D2, 
L1 and L2. The numbers alongside links in the 
network represent the nominal capacities of those 
links.  
    In joining these two networks together, we have 
also created a transformation of the “commodity” 
flowing through the network at the E1 and E2 
nodes, where gas is transformed into electricity. 
For this example, we will assume that this 
transformation occurs with a constant coefficient 
(e.g., 100 cu. ft. of natural gas produces 1 MWh of 
electricity). However, the efficiency of the 
conversion could also be represented as uncertain.   
    SCADA equipment monitors volumes, 
pressures, and temperatures as well as the status of 
pipeline facilities.  It can be used to remotely start 
and stop compressors, thereby changing flow 
volumes. A SCADA system controls the flow of 
gas in links a→b, b→c, c→d and d→e. We will 
assume (for the purposes of this example) that the 
SCADA has two core subsystems.  One subsystem 
supports links a→b and b→c and the second 
supports c→d and d→e. In this example, we 
assume that the SCADA system always has access 
to the necessary electric power, but the structure 
described here can be generalized to the case where 
that may not be true. 
    Changes in link capacity over time may include 
both random failures (that reduce arc capacity) and 
repair actions of uncertain duration (that restore 
capacity).     We will define states on a link 
corresponding to different capacity levels, and use 
Markov process to represent state transitions over 
time.  Figure 1 gives the capacities on links that are 
considered to be deterministic. Figure 2 defines the 
stochastic processes for those links that are treated 
as having uncertain capacity.  For example, link 
S1→DS1 can have a capacity of 90, 95, 100 or 105. 
The evolution of capacities on all links is assumed 
to be a Markov process.   
    The condition of each of the two SCADA 
subsystems is represented by a binary random 
variable where 0 indicates diminished condition 
and 1 indicates fully functional. Since links a→b 
and b→c are controlled by a single SCADA 

subsystem, changes in their capacity determined by 
the condition of the SCADA system occur 
together, creating a correlation between them. This 
is also the case for links c→d and d→e.   Since the 
capacities on links a→b, b→c, c→d and d→e are 
affected by the condition of the SCADA system, 
the state definitions depend on the condition of the 
relevant SCADA subsystem.  For example, if the 
portion of the SCADA system that provides 
support to links a→b and b→c is in diminished 
condition the highest capacity state is 250 on link 
a→b instead of 300. 
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=→ 99.001.0

9.01.0
11 GEP

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=→

94.005.0005.0005.0
98.001.0005.0005.0
5.015.03.005.0
91.003.003.003.0

11 DSSP ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=→

99.0005.0005.0
495.05.0005.0

1.04.05.0

22 DSSP

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=→

99.0005.0005.0
7.02.01.0
7.01.02.0

22 GEP

 

Figure 2 – Parameters for the uncertain links 

 

    This example has been created to be small 
enough to make it easy to understand but complex 
enough to contain illustrations of the types of 
relationships that would be found in much larger 
real networks. 
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3. Estimating the “time to recover”  
 
    There is considerable debate over how to assess 
the performance for infrastructure systems.  Some 
studies focus on steady-state performance and 
others focus on performance when the system is 
operating in a degraded state.  Nozick et al. [11] 
focus on the probability distribution for the product 
delivered to each of the customers in steady state.  
Xu et al. [14] considers multiple measures 
including the average time to restore power to all 
customers, and the time required to restore power 
to either 90% or 95% of customers, when 
determining the order to repair components of an 
electric power transmission system after an 
earthquake.  In a transportation context, Sun et al. 
[15] use the probability distribution for “network 
capacity” which is defined as the total volume 
which can be accommodated across all customers 
when all facilities are operating “normally” and 
when some facilities are in “degraded” condition.  
    After an event there is great incentive to restore 
services as quickly as possible.  Dahlhamer et al. 
[16], through a study of financial losses in the 
Northridge earthquake, found that business’ loss 
increases dramatically when an electric power 
outage lasts longer than 24 hours. In this paper we 
focus on “the time to recover” from a disruption.  
For this illustrative analysis we concentrate on the 
following two core questions: 
 

1. If the capacity on each link (as understood 
through the associated stochastic process) is as 
low as possible, on average how long does it 
take the system to “recover” and therefore be 
capable of satisfying all demands?   
2. If the capacity on each link (as understood 
through the associated stochastic process) is as 
low as possible, what is the probability that it 
will take at least a pre-defined number of 
periods for the system to “recover” and satisfy 
all demands (e.g. at least 6 periods)? 

 
The general problem of which our example is an 
instance can be described as follows. Consider an 
infinite horizon generalized network flow problem 
with the node set N and the arc set A. Denote 

 as the capacity of arc  in period . 

Let  and , where 
E is the state space for the capacity on all links in 
period t. Assume that C is a discrete time Markov 
process with initial state distribution 

( jict , )

)

( ) Aji ∈, t
( )( ) EjicC tt ∈= , { } ∞∈= ECC t

( )( Exx ∈= :μμ  and transition matrix 
. Let D be the demands at 

each demand node in each period. The 
performance measure defined on the Markov Chain 
under the probability distributions μ and P is 

( )( EyxyxPP ∈= ,:, )

( ) ( )( )TP CChE ,,0, Kμα =  for some suitable 

function  defined on the Markov chain C, where 
T is a stopping time.  

h

    Observe that this formulation includes our two 
cases. Recall that the first case is the average time 
when the network first meets all demands and the 
other is the probability that the time when the 
network first meets all demands is at least  
periods. To see how these two performance 
measures fit within the formulation, let  be the 
vector of link capacities in the network in time 
period t and let S be the set of all feasible link 
flows. Let F be the subset of S that corresponds to 
flows that do not meet demands at the demand 
nodes. Let T be the first time when the flows meet 
all demands, i.e., 

0T

tC

{ }FSCtT t −∈= :min . The 
stopping time T represents the “recovery time” of 
the system from the disruption. 
    In the first case, let ( ) TCCh T =,,0 K . Then 

( ) ( )( )TP CChE ,,0, Kμα =  is the average time 
when the network first meets all demands. For the 
second case, if T0 is a constant, let 
( ) ( )00 ,, TTICCh T ≥=K . I is an indicator 

function, i.e., ( ) 10 =≥ TTI  if  and 0 
otherwise. Then 

0TT ≥

( ) ( )( )TP CChE ,,0, Kμα =  is the pro-
bability that the first time when the network meets 
demands is at least T0 periods. 
    The performance measure can be estimated by 
using simulation as follows: 

1. Choose a sample size  n
2. Simulate the Markov chain C up to time period 

T based on the probability measures (μ, P). 
3. Calculate ( )TCCh ,,0 K  
4. Repeat steps 2 and 3  times and obtain the 

average and standard deviation of the 
performance measure. 

n

 
Steps 2 and 3 in the algorithm can be specified for 
the two performance measures as follows: 
 

a. Let i=1; for each link assume the capacity has 
just reached the lowest feasible state.  

b. Identify the capacity on each link, and solve a 
generalized flow problem to determine the 
demand satisfied at each location, assuming 
all demands are equally important.   

c.  If all demands are satisfied stop.  i is an 
observation of the number of periods 
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required to recover.  If all demands are not 
satisfied, let i=i+1 and go to b. 

d. If the performance measure is based on the 
average “time to recover,” then  let 

. If the performance measure 
is based on the probability that the “time to 
recover” is at least T

( iCCh T =,,0 K )

)
0 periods, then 

 if  and 
 otherwise. 

( 1,,0 =TCCh K 0Ti ≥
( ) 0,,0 =TCCh K

 
    The simulation procedure to estimate the 
performance measure can be implemented by using 
the importance sampling technique.  The core idea 
behind using importance sampling in this 
application is to select alternative transition 
matrices that are computationally advantageous, 
and then “correct” the results using the relative 
likelihood of seeing the observations under the 
original parameters. 
    Figure 3 shows the performance of the 
illustrative network in steady-state. There is a 
probability of approximately 0.89 that all demand 
is satisfied if no tank is present. The standard 
deviation of the estimate is 0.3. The steady-state 
probability of meeting all demand increases to 0.91 
if a tank with a capacity of 20,000 cu ft is 
available, and to approximately 0.94 if the tank 
capacity is increased to 160,000 cu ft.  
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Figure 3 – Impact of tank capacity on  the 

probability of satisfying all 
demands in steady-state 

 
    The steady-state demand in these experiments is 
270,000 cu ft. per period, and the average per-
period deliveries in steady-state increase from 

259,000 cu ft. with no tank to approximately 
265,000 cu ft. as the tank capacity increases. Thus,  
even with no storage tank, most of the demand is 
being met. As the storage capacity increases, the 
net increase in delivery capacity is not large, but 
the reliability of the system improves.   
    Figure 4 illustrates the impact of the tank on the 
probability that it will take at least six periods for 
all the demands to be satisfied. If no tank is 
available, the chance it will require at least 6 
periods to satisfy all demands is 0.6. The 
coefficient of variation in this estimate is about 
2.9%. That is, there is about 40% of chance that at 
least one customer does not receive the entire 
product they have requested within 5 periods. The 
existence of the tank reduces the probability it will 
take at least 6 periods to about 20%. The 
coefficient of variation in this estimate is about 
7.8%.  Again the capacity of the tank plays an 
important role in the ability of the system to satisfy 
demands quickly after a disruption. 
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Figure 4 – Impact of tank capacity on the 
probability that at least six 

periods are required to satisfy all demands 
 
 
4. Optimizing the “time to recover” 
 

    Investment opportunities that can improve 
performance can be represented in the Markov 
models as changes in the transition matrices. For 
example, we could improve the reliability of a 
piece of equipment, and represent this 
improvement as reduced probabilities of entering 
failure states in the Markov model for its capacity. 
This alternative transition matrix for a link in the 
network will have an overall effect on the 
performance of the system as a whole, and this 
effect can be evaluated via simulation. The 
substitution of the new transition matrix for the old 
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also implies a cost for making the improvement. 
The investment optimization problem is then to 
choose what investments (changes to specific 
transition matrices) to make so as to have the 
greatest effect on improving system performance, 
subject to budget constraints on the total cost 
incurred. 
    This optimization problem is straightforward to 
represent mathematically, but it is quite 
complicated to solve directly, in part because the 
evaluation of the benefits for any specific 
combination of investments requires doing a 
simulation. In a general mathematical sense, if both 
the initial distribution and transition matrix for the 
Markov chain  depend on a 
parameter 

( 0: ≥= tCC t )
θ , the initial distribution and transition 

matrix can be written as   
and  for 

( ) ( )( Exx ∈= :,θμθμ )
( ) ( )( )EyxyxPP ∈= ,:,, θθ Θ∈θ . 

Suppose that the performance measure 
 is a function of ( )  only. 

Note that our performance measures in this paper 
satisfy this form. Then the performance measure is 

( TCCh ,,0 K )

))

TCC ,,0 K

( ) ( ) ( )( ) (( TP CChE ,,0, Kθθμθα =  and the decision 

problem is to choose Θ∈θ  that minimizes 
( )θα . 

    Solving the optimization problem requires 
evaluation of the performance measure ( )θα  for 
different values of θ. This is difficult because 
( )θα  does not have an analytic form for most 

complex systems. One way to overcome this 
difficulty is to approximate the function based on a 
sample mean. Let ( )θα n  be the sample mean with 
sample size n . The approximated problem is to 
choose Θ∈nθ  that minimizes ( )θα n . Suppose 

that  minimizes *
nθ ( )θα n  subject to Θ∈nθ  and 

 minimizes *θ ( )θα  subject to Θ∈θ . Under 

some conditions,  as  (see 

[17]). Thus,  for large  under some 

conditions. In this paper, we use  to 

approximate  in our optimization problem. 

** θθ →n ∞→n
** θθ ≈n n

*
nθ

*θ
    An effective way to estimate the sample mean is 
to use the importance sampling technique. That is, 
if we choose an initial distribution ( )xν  and a 
transition matrix  such 

that 

( )( EyxyxQQ ∈= ,:, )
( ) 0>xν  whenever ( ) 0, >θμ x  and 

( ) 0, >yxQ  whenever ( ) 0,, >θyxP  for all 
Θ∈θ , then the performance measure can be 

written as follows: 
( ) ( ) ( ) ( )( )TTQ CChCCLE ,,,,, 00, KK θθα ν=    (1) 

where ( )θ,,,0 TCCL K  is the likelihood function. 

    If the evaluation of function  for the given 
sample path 

h
( ),,~,~

10 KCC  is “expensive,” the 
transformation is a very efficient way to create the 
sample mean function ( )θα n . This is because 

function  only needs to be evaluated based on the 
sample path generated by the probability 
distribution 

h

( )Q,ν . That is, it is not necessary to 
evaluate function h  for the sample paths generated 
by the probability measure dependent on each 
parameter θ value.  In our case, this is important 
because estimating the “time to recover” in a given 
simulation sample requires solving a network flow 
problem in each period for given link capacities.  
This can be computationally intensive. 
   The next question is how to find the minimum 

 in the optimization problem. This can be very 

difficult if the feasible set 

*
nθ

Θ  is a large discrete set. 
In this paper, we develop a Genetic Algorithm 
(GA) heuristic to find a solution for the investment 
optimization.  
       The string used in the GA to solve the 
optimization has one entry for each link, 
representing the amount of investment on that link. 
We use one point crossover with 5% probability of 
mutation, simple ranking selection, 20 individuals 
in a generation, and 30 generations.  We evaluate 
the fitness of an individual using simulation with 
importance sampling.   
      To illustrate the information that can come 
from this type of analysis, assume that investments 
can be made to improve the reliability of the 
delivery of gas from both suppliers, the reliability 
of the SCADA system, the gas transmission lines 
as well as the generators. For simplicity, assume 
that all the investments conform to the following 
pattern as to changes in the stochastic processes.       
Suppose that for $100K invested on a link, the 
transition probability to enter the lowest state 
decreases by 80%. The amount of the decrease is 
then added evenly to the remainder of the transition 
probabilities to the other states. 

For example, consider Link S1→DS1.  The 
new transition matrix for an investment of 100K 
would then be as follows (rows may not sum to 1 
as a result of the number of significant figures 
displayed). 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=→

94.0051.0006.0001.0
98.0011.0006.0001.0
513.0163.0313.001.0
918.0038.0038.0006.0

11 DSSP  

 
    For a second investment increment, the 
probability of transitions from any state to the 
second lowest state can be reduced.  For a third 
investment increment, the probability of transitions 
from any state to the third lowest state can also be 
reduced, etc. For each successive improvement, we 
assume the cost is $150K, $200K, $250K, $300K, 
$350K, and $400K respectively. For example, for 
an additional $150K invested in a link, the 
transition probability to the second lowest capacity 
state decreases by 80%. This reduction is then 
assumed to be distributed evenly to transitions to 
higher states. 

Illustrating the investment of an additional 
$150K on the link from S1→DS1 would result in 
the following transition matrix (rows may not sum 
to 1 as a result of the number of significant figures 
displayed).   

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=→

944.0054.0001.0001.0
984.0014.0001.0001.0
639.0289.0063.001.0
933.0053.00076.0006.0

11 DSSP

 
    The investments on a link must be done in order.  
For example, to ensure that the link ES1→S1 has 
the previous transition matrix, $250K must be 
invested.   
     This scheme has been used to create an 
illustration of the methods.  In the experiments in 
this paper the percent reduction used is 20% rather 
than the 80% illustrated in the examples above.  In 
practice each potential investment on a link could 
map to a unique transition matrix that would be 
used in the optimization. 
     Figure 5 illustrates the impact of investment on 
“the mean time to recover” if there is no tank 
available. If the investment is $100K, the estimated 
mean time to recover drops to about 5.7 periods. 
The recommended investment is to improve the 
performance of SCADA. This is because SCADA 
controls links a b, b→c, c  d and d→e. 
The improvement of the performance of the 
SCADA system would lead to the improvement of 
the performance of all of these links.  
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Figure 5 – Relationship between budget and 
average number of periods to recover 

 
    Figure 6 illustrates the impact of investments on 
the mean time to recover, given the tank capacities 
are 20,000 cu ft. and 80,000 cu ft., respectively and 
a budget of $100K. Unlike the case where there is 
no the tank, the recommended investments are 
focused on improving the performance of link 
S1 DS1 because the tank receives gas via DS1. 
The improvement in link S1→DS1 allows for 
more gas to be available to be stored in the tank 
and therefore used to aid in the recovery.  

→
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Figure 6 – Relationship between tank capacity 
and the mean number of periods required to 

recover (for an investment of $100K) 
 

    Figure 7 illustrates the probability that at least 
six periods are needed to recover given the tank 
capacities are 20,000 cu ft. and 80,000 cu ft., 
respectively when the budget is $100K.  The 
existence of the tank reduces the probability of 
long recovery times quite dramatically. 
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Figure 7 – Relationship between the tank 

capacity and the probability that six or more 
periods are required to recover (for an 

investment of $100K) 
 

5. Conclusions 
 
This paper focuses on representing interdependent 
infrastructure networks using network flow models 
and Markov models.  The network flow models are 
used to represent the flow of commodities through 
the system and the storage of products within the 
system, whereas the Markov models are used to 
represent the evolution in the capacity of the links 
over time.  The Markov-based approach allows 
analysis of both transient and steady-state estimates 
of service quality. It also enables representation of 
correlations (both spatial and temporal) between 
the conditions of network links, as well as the 
effect of the uncertain condition of the supporting 
information infrastructure (e.g., SCADA systems) 
on the performance of the controlled physical 
system. A gas-electric network example has 
illustrated the structure of the analysis approach. 
    In this framework, investments that would 
improve the performance of selected system 
components are represented as changes in the 
stochastic processes governing link capacities. 
These changes can include changes in the state-
space and the transition matrices. A discrete 
optimization problem has been formulated and 
solved using a genetic algorithm to find the set of 
investments that should be chosen to optimize a 
performance measure subject to a budget 
constraint. This has also been illustrated using a 
gas-electric network example.  
    The modeling framework described here 
suggests several important areas for further re-
search.  Our current analysis treats the demand at 
each location as fixed over time which is not 

typical of these types of systems.  Hence, an 
important extension to this framework is the 
development of metrics to characterize the 
performance of systems with demands that vary 
over time under both steady-state and transient 
conditions.   
    In the example developed in this paper there is a 
single tank and its connection to the gas network is 
fixed.  Further, the capacity of the tank itself is 
fixed.  Storage can serve as an effective hedge 
against uncertainty. However, how much storage to 
provide and where to place it within the system is 
an important question.  Hence an important 
extension of this analysis is to consider the 
optimization of storage size and location within the 
system. 
    Finally, the model structure is clearly dependent 
on having good estimates of parameters (transition 
matrices, etc.), and these estimates have to be 
constructed from empirical data. Because the 
infrastructure systems of interest are typically 
highly reliable, there may be relatively little data 
on transitions to some potentially “interesting” 
states that are very rarely entered. This is an 
important empirical issue for making the approach 
really useful in practice. 
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