
SAND REPORT
SAND2005-0263
Unlimited Release
Printed February 2005

NISAC Agent-Based Laboratory for
Economics (N-ABLE): Overview of
Agent and Simulation Architectures

Eric D. Eidson and Mark A. Ehlen

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of
Energy under Contract DE-AC04-94AL85000

Approved for public release; further dissemination unlimited.

 2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 3

SAND2005-0263
Unlimited Release

Printed February 2005

NISAC Agent-Based Laboratory for
Economics (N-ABLE): Overview of
Agent and Simulation Architectures

Eric D. Eidson and Mark A. Ehlen

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-1138

Abstract

The NISAC Agent Based Laboratory for Economics (N-ABLE™) is an agent-
based micro-simulation tool that models complex interdependencies between
economic and infrastructure sectors. The agent and simulation architectures
have been designed so that large data-driven simulations can be developed
quickly and conducted on Sandia's massively parallel computing clusters. This
report documents the agent architecture for running large-scale simulations, the
economic agent classes that allow for creating microeconomic entities of
varying resolution, and the simulation environment that allows for automated
large-scale simulation.

This page is intentionally blank

4

1 Introduction

1.1 Background

The National Infrastructure Simulation and Analysis Center (NISAC) analyzes the impacts of in-
frastructure disruptions and interdependencies on regional and national economic security. Funded
through the Department of Homeland Security, NISAC is developing and applying a wide range of
tools that model urban, regional, and national infrastructure dynamics.

One of these tools, the NISAC Agent-Based Laboratory for Economics (N-ABLE), is an agent-
based microsimulation tool that models complex interdependencies between economic and infras-
tructure sectors. N-ABLE agents are relatively small pieces of computer code that model economic
agents such as:

• firms using material inputs, labor, capital, electric power, telecommunications, transportation,
and banking to produce and sell products;

• households shopping for and purchasing products;

• electric power companies producing and selling power;

• buyers and sellers in electric power spot markets;

• telecommunications firms that process phone calls and data transmissions;

• financial traders in stock and commodity exchanges;

• transportation firms selling and providing shipping services;

• manufacturing firms that manage production and distribution supply chains; and

• banks processing checks for customers.

N-ABLE, and agent models in general, have proven to be very useful in designing, implementing,
and analyzing models of complex economic systems, in which small actions by a limited number
of individuals (firms, households, government agencies) cause economy-wide, “emergent” behavior.
Each agent individually acts out simple rules; groups of these agents interact randomly with each
other. The results can be very complex economic market, economic production, and infrastructure
dynamics. In this sense, agent-based models are a natural fit for modelling economies where the
simple act of a consumer purchasing a good is, on its own, insignificant, but the collective demand
pull of many consumers purchasing many goods drives an entire economy in complex and non-
intuitive ways.

Agent-based economic models can characterize complex market dynamics that are otherwise
difficult to analyze mathematically, say, with traditional closed-form calculus solutions. For exam-
ple, N-ABLE makes Adam Smith’s “invisible hand” quite visible: N-ABLE consumers purchase
goods by shopping among vendors of the good, looking for low prices. When a consumer is quoted
a price, he determines whether he could save more by continuing to shop (at some personal cost).
Firms are then driven to compete on prices, driving efficiencies in the market and economy as a

5

Figure 1: Components in N-ABLE Software Suite

whole.1 By modelling agents in their simple consumer role – making decisions on what to buy and
when – N-ABLE simulations can model complex real-world market dynamics.

N-ABLE is influenced greatly by the ten years of Sandia work in agent-based economic models.
In 1993, Aspen was first developed to analyze economic growth, financial markets, and monetary
policy (Sprigg and Ehlen[13], Pryor et al[11], Basu et al[4], Basu and Pryor[3]). Through later re-
search, Aspen was completely recast in C++, dividing the core agent functionality into (1) AgentLib
classes,2 which provide fundamental services such as agent creation, messaging, and event process-
ing; and (2) Aspen classes, which build economic firms and markets from the AgentLib classes.
This Aspen model was then applied to electric power markets (Barton et al[1]). More recently, the
N-ABLE economic classes, built from scratch from the AgentLib classes, add infrastructure such as
water or electric power utility systems, transportation, and telecommunications network (Barton et
al[2]) capabilities. To date, N-ABLE has been applied successfully to analytical studies of electric
power demand-management policies, large industrial supply chains, hazardous chemical transport
networks, and regional economies.3 Looking forward, N-ABLE can now model well the economic
impacts of disruptions to and interdependencies between infrastructures that are primary to the
U.S. economy.

As illustrated by Figure 1, N-ABLE is actually a suite of programs that collectively provide
the ability to model and simulate, including building a specifications file that represents a model
of an economy and infrastructures that support it (through the client user interface), starting a
simulation or a set of, say, Monte Carlo simulations (through the SimRunner), broadcasting real-
time data to multiple viewers and users (through the SimStreamer), and storing output data in a
portable XML format. Data gathering, simulation creation, and external simulation control operate
from an Windows user interface; simulation, data archiving and real-time data streaming occur in
a Unix environment.4 Communications between platforms use SOAP and socket protocols. By

1Adam Smith noted specifically of sellers, and economic agents in general, “by directing that industry in such a
manner as its produce may be of the greatest value, he intends only his own gain, and is in this, as in many other
cases, lead by an invisible hand to promote an end which was no part of his intention.” (Smith[12])

2At that time the AgentLib classes were called “AspenLib.” The name has been changed to remove any spurious
correlation between this N-ABLE work and other ongoing, separate Aspen work.

3See http://n-able.sandia.gov for current status of these and other studies.
4This Unix requirement (e.g., Linux, FreeBSD) is due to some highly customized and tuned code that handles

the heaviest processing by the SimStreamer and SimRunner; future extensions to real-time network models will, for
performance reasons, likely involve Linux-based pipes or other speed tools. The internal N-ABLE simulation engine,
however, can still be compiled in, say, Windows, simulations can be started at the command line using manual input
file submission, and simulation results can be viewed in the “*.SNAPS” output data file. That is, the SimRunner
and SimStreamer are not required to run N-ABLE; they serve to provide real-time viewing and collaboration, both

6

operating the simulations primarily in Linux, N-ABLE can leverage well one of the benefits of
the underlying AgentLib classes: the ability to run both on local single-processor (PC) or remote
massively parallel machines, depending on the size of the simulation.

1.2 Purpose and Scope

The purpose of this report is to give a detailed overview of the N-ABLE model’s object structure,
mechanics, and supporting functionality, so that those running N-ABLE simulations or working
with the N-ABLE code itself better understand how the model works. The report describes in
detail the AgentLib and N-ABLE object classes used to construct N-ABLE simulations. The
report focuses primarily on the model portion of the N-ABLE suite, specifically the computer code
architectures used to model the agents. Throughout the report, we use the term “N-ABLE” to
refer to the modelling program itself and not to the applications that prepare and submit the inputs
(client user interface, SimRunner) and serve up and visualize the outputs (SimStreamer, client use
interface).

Section 2 describes the computing issues that motivate the particular architecture of the AgentLib
classes. Section 3 describes the AgentLib library, including fundamental base-class agent types, how
agents are generated, how they are given “turns” to do their tasks, and how they organize their data
for “snapshotting” to output files. (The AgentLib library is designed to be stand-alone, that is,
to generate agent models other than N-ABLE.) Section 4 then describes how the AgentLib classes
are used to make N-ABLE models and simulations. Section 5 outlines some examples of N-ABLE
agents, and Section 6 some example simulations. Finally, Section 7 displays the N-ABLE v1.1 client
user interface and how it is used to help users make, run, and review the output of simulations.

Throughout the document, we use the strict convention that a capitalized object, such as
“Seller,” denotes a class within either AgentLib or N-ABLE, while an uncapitalized object(“seller”)
denotes the object in abstract.

2 Motivations for Agent Framework

The AgentLib set of classes, or AgentLib framework, was developed to support rapid development
of agent-based models that can run on a variety of hardware platforms – from desktop PCs to the
massively parallel multiprocessor machines available at Sandia National Laboratories. To make
this possible, the framework must offer a number of basic capabilities, including: populating an
agent simulation, running and controlling the simulation, and gathering the output data. The
framework must also provide advanced capabilities, such as the distributing of agents in one sim-
ulation across processors in parallel computing environments and coordinating their interactions.
Moreover, this framework must work correctly on and consistently across a range of hardware and
software platforms.

The AgentLib classes meet these criteria through the following properties and capabilities:

• they are written in a portable, widely used C++ programming language;5

• they can generate arbitrary models of agents and other objects, using data input files;

of which are strong benefits in the analytical environment of DHS.
5AgentLib is based on a portable subset of standard C++, ISO/IEC 14882:1998(E).

7

Figure 2: AgentLib Classes

• they serialize objects (such as agents) and move them between processors;

• they coordinate parallel processors so that simulation results are deterministic, i.e., the results
don’t depend on unpredictable and uncontrollable factors within the hardware and operating
system;6 and

• they generate and store results in a portable XML format.

By gathering all the mundane details of generic agent functionality in the AgentLib framework,
N-ABLE programmers can concentrate on implementing within N-ABLE highly specific economic
functionality.

3 AgentLib Classes

The AgentLib framework consists of the set of classes shown in Figure 2. The Model class, which
has overall simulation control, uses the ModelGen and ObjGen classes to instantiate a simulation’s
model and agents. Simulations use agents created from the Agent abstract class and identified
through their AgentID or ObjectID information. The agents schedule tasks and messages to each
other using the Event, Task, and Message classes, and are distributed across multiple computer
processors using the Transfer classes. Output data is created with the Snapshot class. Each of the
primary and supporting AgentLib classes is described in turn.

3.1 Model Class

The Model class is the primary AgentLib class for initiating a simulation, maintaining control during
simulation, and exiting. During a simulation, the Model acts as the central “go-to” place where,
particularly in multiprocessor systems, agents and other objects can access global, simulation-level
functions and data, such as the Model Calendar and global Random Number Generator.

Agent actions are scheduled on the Model’s Calendar as events. As the Model moves its sim-
ulation clock forward it reads which events are to occur at that particular point in time and then

6Specifically, simulations that use the same random number seed, same number of processors, and same input file
will generate the same output results.

8

invokes them. To create and schedule actions, each AgentLib agent, like a real person, plans his
day down to the individual action,7 and then as a way of remembering to carry out the task, puts
the tasks on the Model Calendar, in the form of Events that it will perform. As a day progresses,
each agent is reminded as to the next thing it must do and then it does it. Sometimes in the
process of doing one thing, it realizes something else must be done, or is told by another agent to
do something, and thus schedules it on the Calendar as well.

The Model class ensures that the sequence of events in simulations are repeatable: simulations
based on the same input data, same number of processors, and same random number seed will
produce the same results. This is particularly important in simulations where small, local pertur-
bations can cause system-wide changes in economic dynamics. For example, consider a simulation
in which two agents approach the same car dealership in the same time period, each with events
ready to purchase what turns out to be only one remaining car. The result – which agent actually
gets the car – depends on which event the Model executes first. If two events from two agents are
scheduled to occur at the same time, the order in which they occur is determined by the random
number seed, the interactions between processors, the priority queue, and other factors. If the
overall simulation results are to be deterministic and repeatable, the Model must always cause the
events to occur in the same order. In contrast, if the results could be different every time, important
types of sensitivity analysis could not be performed.

3.2 Model Generation (ModelGen) and Object Generation (ObjGen)

To create agents for a simulation, the Model class uses the Model Generation (ModelGen) class to
read the input data file that lists the number and types of agents to be created. To do this, the
ModelGen class invokes from Object Generation (ObjGen) portions within each of the agent classes
an object generator function, which first specifies the type of data needed to generate an instance
of this agent and, second, actually uses the specified data to generate an instance of the agent.
From the perspective of an AgentLib agent class itself, say AgentX, AgentX’s ObjGen prepares the
ModelGen so that it can know to possibly encounter an AgentX data type in the inputs file and if
so, then know how to create an AgentX-based agent.

Chronologically, at runtime the Model activates the ModelGen to read the input file. Before
actually reading the input file, the ModelGen first uses the TypeReg classes (described below) to
find the object types associated with and required by all ObjGens. As the input file is read, its
component tags tell the ModelGen the quantity and characteristics of each agent; the ModelGen
then looks up the ObjGen associated with the agent and instantiates one or more of these agents
in memory. The ModelGen then fills each agent ObjGen with the specifications data found in the
file. Once the entire specifications file is read, the ModelGen uses the ObjGens to generate objects
(e.g., agents) which are passed back to the Model, which then executes the simulation.

3.3 Agent, AgentID, and ObjectID Classes

All agents in an AgentLib-based simulation are based on the AgentLib Agent class, an abstract
class (i.e., it cannot be used directly) that has the necessary properties and functions to identify
itself and others (with AgentIDs) schedule tasks, and send messages.

7While AgentLib treats actual time as arbitrary, N-ABLE uses the minute unit of time as the smallest time
resolution. For example, N-ABLE electric power infrastructure providers and users produce and consume power on
a minute-by-minute basis.

9

An N-ABLE or other AgentLib-based simulation must be able to uniquely identify each of its
agents and objects, for example, so that it can deliver a message from Agent 1 to Agent 2. In
general, in single-processor systems a C++ pointer is sufficient to uniquely identify an object, since
all objects reside in the same address space – that is, all the memory that can be “addressed” by the
processor – and no two objects occupy the same addressable slot in memory. However, a program
running on parallel or multi-processor hardware has access to potentially N address spaces for N
processors. Since a C++ pointer can only refer to one address space, an agent residing in one
processor cannot “see” agents in other processors.

The AgentLib uses two classes, AgentID and ObjectID, to uniquely identify all objects in a
simulation, regardless of the address space in which they reside. AgentIDs are given to all agents
(and only to agents), while ObjectIDs are given to any other object that needs a unique identifier
in all address spaces.8

3.4 Event, Task, and Message Classes

AgentLib Events are actions taken by N-ABLE agents and other objects to schedule an action
on the Model Calendar. The Event class provides the necessary functionality for creating and
managing all simulation events, including prioritizing, scheduling, and invocation.9

Every event listed on the Model Calendar is an instance of some class derived directly or
indirectly from the Event class. AgentLib provides two primary sub-classes of Event: Task and
Message. AgentLib agents start their activities with a Task Event (e.g., “review stock of supplies”);
in the course of performing the Task, the agent sends a Message (e.g., “order new supplies”, or
”schedule future review stock of supplies”). These Messages are processed by the Calendar and
their responses sent, whereby these responses are processed, and so on. The list of types of all
Event class events and their relative priorities are shown in Table 1.

As illustrated in Figure 3, The Model Calendar processes events by first accepting them from
agents and objects. At the beginning of each time period, the Calendar then sorts the events
according to the relative priorities specified in Table 1. The Calendar then processes each event in
order.10

8In particular cases, however, a collection of AgentLib objects do reside in the same address space or processor. For
example, the fundamental EconomicAgent (discussed in the N-ABLE Classes section below) keeps all of its internal
objects (e.g., buyers, sellers, production, accountant) in the same address space; C++ pointers are therefore sufficient
for the EconomicAgent to access them.

9This AgentLib Event class preserves some of the terminology and behavioral model of the original Aspen event
code, but invokes an event-driven model more contemporary with object-oriented programming. Compared with
Aspen, the AgentLib Message Event is a Message-delivery Event – “sending a Message” is scheduling its delivery
on the Model calendar, which then delivers the message at the scheduled time. Aspen did not use an event-driven
framework for scheduling events; instead, the time line was divided into large time steps (i.e., each day was one time
step), and each time step was divided into stages. The first stage was the task stage in which all agents performed
their daily tasks; the agents sent messages to one another. The next stage was the first message stage; agents would
receive messages sent during the task stage and could send responses. Next, the second message stage was performed,
and so on until all agents had processed all messages and had sent no new responses. Further, on parallel hardware,
the Model class uses an implicit staging system, which, like Aspen, buffers all Messages sent during one “round.”

10Like Aspen, AgentLib’s Event class yields deterministic results on parallel hardware with relatively low commu-
nications overhead per time step, but is more flexible, particularly with agents that work on different time scales
(e.g., some N-ABLE agents do something every minute, while others do something once a month).

10

Figure 3: Model Calendar

Calendar Events

(Highest to Lowest Priority)

PauseEvent

ProgressEvent

ObituaryEvent

SnapshotEvent

TaskEvent1

...

TaskEventN

MessageEvent1

...

MessageEventN

Table 1: Types of Calendar Events, In Descending Order of Priorities

11

3.5 Bulletin Board Class (BBoard)

AgentLib provides a bulletin board class, BBoard, so that agents have structured means of finding
each other (such as a buyer finding a seller in a particular market). The BBoard class is essentially
a listing or directory of the AgentIDs of simulation agents; it allows agents to be categorized or
stratified by economic market, social class, or physical location, thereby providing a wide range of
contexts for agent interactions.

Centralized information, such as a bulletin board, that is part of an AgentLib-based multi-
processor simulation could be maintained one of two ways: either in the Model object itself, or as a
distributed agent. To remain highly flexible in the number and type of bulletin boards that can be
instantiated in AgentLib-based simulations, the BBoard class derives from the Agent class, which,
as an agent, can be transferred (via the Transfer classes described below) across processor nodes,
and receive and send Messages.

As an example of its use, the N-ABLE Market class inherits from BBoard class to provide
markets of buyers and sellers who need each others’ services. At simulation start, each buyer and
seller sends a message to the Market/BBoard/Agent object to add it to the directory of agents.
As Sellers modify their prices, they send Messages to the BBoard object to update their listed
price. Buyer agents looking for a Seller of the product will request the listing of Sellers and their
prices and then contact a Seller using its listed AgentID. As another example, N-ABLE also uses
the BBoard-based SocialNetwork class and a Socializer agent to create social, i.e., non-market,
networks of agents.

3.6 Snapshot Class

Agent simulations generally produce a lot of output data — either there are few agents with a lot of
detail, or tens of thousands of agents with medium detail. Data production and archival must then
be highly structured and flexible. AgentLib provides a Snapshot class designed to export agent and
other object data in a flexible and portable XML document format. N-ABLE simulations, as an
example, stream this data to a local file and to a separate SimStreamer application which serves
this data to any and all N-ABLE client user interfaces. While the Snapshot class is internally
relatively complex, use of the Snapshot system as easy as supplying the required registration in the
N-ABLE programming code.

As illustrated in Figure 4, the Model Calendar makes periodic calls to agents for them to “pose”
for snapshot-data output; each agent also can immediately tell internal subagents and objects to
pose as well (only those data members that the agent has registered for posing are included in the
Snapshot).

Because some of these objects are complex sub-objects in their own right (such as list of purchase
records), each sub-object has its own Snapshot registration. In a beneficial sense, such registration
of complex types for Snapshots can be arbitrarily deep. At the bottom of a registration chain is
the registration of some numerical type (e.g., the selling price of a good) suitable for display on a
graph.

This design is possible (and efficient) because the Snapshot registration procedure builds a
collection of pointers-to-members. Pointers-to-members are odd C++ constructs that point to a
member’s location in a struct or class, which is very different from a traditional pointer, which points
to the memory address of a specific member of a specific object. By learning and remembering
member locations, the Snapshot system can simply take an object, determine what class it was

12

Figure 4: Snapshot System

instantiated from (usually statically), apply the pointer-to-member and get a traditional pointer to
the data item. That item is then written to the stream in the proper format.

This design, however, comes at several costs. The pointers-to-members are contra-variant in
the sense that a pointer-to-member can not point to a member in a derived class (compared with
co-variance or polymorphism, where a pointer to a base class can also point to a derived class),
AgentLib has a complex set of template wrappers designed to capture type information and store
the pointers. This template system forces the compiler to generate a lot of small classes, which
increases compile time and adds a small amount of “code bloat.”

Overall, though, the smaller registration functions and centralized file format design trades
off very well against delegated writes mainly because the file format itself is very complex. By
centralizing the design, we avoid frequent debugging efforts looking for a problem that is distributed
among an ever-changing list of classes.

3.7 Supporting AgentLib Classes

3.7.1 Type Registration (TypeReg)

Every object (including every agent) in an N-ABLE model is an instance of some pre-defined type.
For example, the number 3.1415926 may be defined as a float or double, while the string “Hello
World” may be defined as a character array. So that type names declared in N-ABLE object
classes are portable, i.e., the types mean the same thing regardless of the particular compiler,
the type registration system (TypeReg) includes additional type information to many types found
in the program. In particular, the TypeReg system assigns each type a visible name that can
be used to portably identify the type in input files (by ModelGen), when transferring objects
between processes (by the Transfer system), and when sending simulation data to output files (by
the Snapshot system). The type registration system also identifies class hierarchy of polymorphic
objects (such as agents) and determine when and where such objects can be created and become
associated with other objects. This is especially useful when generating new models.

Although much of the code that defines the TypeReg system is found in AgentLib, the actual
registrations are distributed in the various N-ABLE files that implement the types being registered.
By localizing such registrations, we avoid a giant registration function that quickly becomes out
of date. Indeed, we can customize the N-ABLE program for some problems simply by adding or
removing the relevant files that define agents and the type registration system will automatically
know what is (and by extension, what is not) available.

13

3.7.2 Transfer

Massively parallel computing environments, while proving additional computing power to agent
simulations, require additional computer code to handle both the spreading of agents across these
nodes at the beginning of simulation and potentially during a simulation (dynamic load balancing).
To move agent objects and other simulation objects across nodes, they must be serialized and
de-serialized in an orderly manner.

Normally, objects like Agents exist in computer memory in a form that is machine-dependent
– that is, the sizes, layouts and locations of data that make up the object are tied to a particular
machine. In order to transfer an object from one machine to another, the object first has to be
serialized into a intermediate representation that can safely be moved between machines. Then
on the receiving end, the object has to be deserialized or expanded back into a usable object –
one that is machine dependent on the receiving machine. Also, separate programs running on the
same machine (i.e., ”processes”) each have their own view of memory (i.e., an address space) – so
while the data sizes and layouts may be the same for two copies of the same program on the same
machine, the differing address spaces require objects to be serialized for exchange.

The Transfer system is a collection of classes that provide a way to serialize and deserialize
objects. It provides support for serializing objects into a variety of intermediate representations
(such as a binary format, a text format and an XML format). We usually choose the binary format
because it is fastest. Occasionally the binary format causes problems when exchanging between
machines that are ”too different,” so we’ll use the Text format instead. If someone has to inspect
the serialized data, we’ll prefer to use the XML format because it’s easier to read (but it is also
several orders of magnitude slower than the binary format).

Our main use of the transfer system is to move objects between parallel processes. On a parallel
computer, each CPU or processor runs a separate copy of the parallel program (i.e., separate
processes). Each process has its own address space, and hence requires serialization to exchange
objects. In our case, we usually want to exchange Message objects (which are like letters that
Agents send one another). In such cases, a process will use the transfer system classes to serialize
the object into a character string and send that string to the destination process. The destination
process will receive the string then use the transfer system classes to deserialize the object into
its own memory space. Once the process is complete, an object is said to have been ”transferred”
between the two processes.

The name ”Transfer system” is a slight misnomer – the Transfer system performs the serializa-
tion and deserialization steps, but relies on something else for the actual transfer of the serialized
representation. For example, to transfer between MPI processes, we would serialize into a string,
then use a pair of MPI Send and Receive calls to transfer the string between the processes.

The Transfer System consists of a base class called Transfer and many overloaded functions
named transfer. Every built-in type (i.e., char, int, float, double, etc.) has a transfer function, a
set of ”primitives” that every other transfer function builds upon. The primitive transfer functions
call a corresponding virtual function in the Transfer base class. Classes derived from the Transfer
class (for example the paired input/output versions of BinStorage, TextStorage, and XMLstorage)
override the virtual functions of the base class to store the corresponding built-in type in the given
format. (For example, BinStorage reads or writes the data in binary format, while TextStorage
stores the data in text format.) The transfer function for a type is used both for incoming and
outgoing transfers – the actual behavior (i.e., inputting or outputting) is determined by the Transfer

14

Figure 5: Classifier System

class that is passed into the transfer function.

3.7.3 Random Number Generator

So that large multi-processor simulations are deterministic (repeatable), AgentLib provides a cen-
tralized Random Number Generator class that abstracts the process of obtaining pseudo-random
numbers. Currently, the Random Number Generator generates its pseudo-random numbers through
a lagged Fibonacci sequence, using an algorithm recommended by Knuth[9] as a general-purpose
generator (other algorithms could be used in the future). One advantage of this algorithm is that
each possible seed yields effectively independent sequences with very long periods; in contrast,
traditional algorithms typically yield sequences with relatively short periods and where any seed
merely positions the generator somewhere in the sequence.

3.7.4 Classifier

N-ABLE sellers currently use a genetic algorithm (GA) to search out market prices that give their
company the greatest profits.11 This GA uses AgentLib Classifier system, which includes a set of
sensor functions that “measure” the external environment, a set of actuator functions, or actions
that can be taken, a fitness function that measures the success of the last action, and a set of
strengths that are randomly selected to perform the next action (Figure 5).

The strengths in the table are adjusted by the fitness function that measured how well a decision
moved the system as a whole towards the desired end (maximization or minimization of the fitness
function, depending on the application). In the beginning, all decisions are equally probable (as
reflected by equal strengths in the table), but over time, the fitness function adjusts the strengths
in the table and certain decisions become more probable in context.

3.7.5 XML Processor Classes

The XML Processor class (which includes Characters, Processor, and XMLTable) provides simu-
lations with a W3C recommendations-compliant, minimal non-validating XML processor with a

11This GA does a good job of letting sellers of monopolist companies find the greatest price the market will bear,
as well as letting sellers in competitive markets drive down prices. It does less well in oligopolistic markets, where
game theoretic strategies are more successful.

15

Figure 6: N-ABLE Classes

SAX-like interface. For example, the ModelGen class uses the XML Processor to read input files
and create a simulation.

The XML Processor works by (1) applying events to the XML document being read and (2)
defining call-back functions for those events. For example, when the Processor encounters a start
tag in an XML document, it considers the encounter an event and notifies the Model object by
calling a start-tag call-back function.

The Model implements the AgentLib XML Processor by providing call-back functions cus-
tomized to the particular document it expects to read (e.g., the input specifications file used to
create a simulation) and then reacting appropriately to the sequence of events. Because of this
flexibility, the XML Processor can be reused for different kinds of documents simply by providing
different sets of call-back functions (conveniently organized by deriving from, and overriding virtual
functions in, the XML EventHandler class).

4 N-ABLE Classes

The set of classes that constitute the N-ABLE simulation engine are built largely using classes
from the AgentLib library. For example, N-ABLE simulations are controlled by the NABLEModel
class, which inherits from AgentLib’s Model class. The fundamental N-ABLE economic agent is the
EconomicAgent, which inherits from the AgentLib Agent class. Other important N-ABLE classes
include Market(which contains the base-level Seller and Buyer classes), Infrastructure, Shipper,
and Router. The N-ABLE classes are discussed in turn.

4.1 EconomicAgent

The EconomicAgent (Figure 7) is the primary class for modelling the buying, selling, production,
economic planning, and learning of economic agents in an N-ABLE economy; this includes man-
ufacturing and service firms, households, banks, and government institutions. Starting from the
center of the figure, economic agents typically conduct one or more productive activities, whether it
be the consumption of goods (e.g., by households),12 the production of goods and services (e.g., by

12In economics, households consume goods so as to produce “utility,” or personal satisfaction/contentment.

16

Figure 7: Generic EconomicAgent Structure

manufacturing firms), or the production and distribution of utilities (e.g., by electric power utilities
and transmission/distribution infrastructure).13 When a Production runs out of inputs, Buyers on
the left go to Markets and buy the goods; when Production has marketable outputs, Sellers on the
right sell the goods in Markets.

For each of production, there is one seller for each market in which this firm’s good can be sold.
Each production typically has one or more commodity inputs (e.g., producing a car requires metal,
tires, glass, electronics, and more). The EconomicAgent assigns one buyer to each input material,
regardless of the number of productions in which the material is used. This buyer periodically
checks the inventory of this material and when the material is low, he goes to its market and
attempts to purchase more. (Each buyer and seller has a unique AgentLib ObjectID and knows
their parent EconomicAgent’s unique AgentID so that Message Events can be sent between them
for the purposes of buying and selling.

Sellers, production, and buyers work independently but cooperatively to keep the firm produc-
tive and profitable. When a new order comes in to a seller, it attempts to sell product in the
Warehouse; if there is not enough, the seller denies the order but then tells production to make
more of the product. Buyers, in addition to periodically checking inventory, also check to see if a
lack of their input caused production to be stopped; if so, the buyer purchases more for inventory
so as to prevent this “starvation” of production.

The Accountant keeps track of all order-related information in its accounts payable and accounts
receivable records. When the firm gets a new order, it logs it in the accounts receivable record.
When payment is received, the Accountant deposits the payment in the Bank. Conversely, when a
buyer makes a purchase, the buyer’s Accountant logs the new order in its accounts payable records,
and when the order is shipped and received, the buyer’s Accountant sends payment to the firm

13This is a constant returns to scale production technology: the fractional content of inputs is constant regardless
of the production level. A decreasing returns to scale technology uses increasing fractions of inputs per unit output (it
is less efficient as production increases), while increasing returns to scale uses decreasing fractions (is more efficient).

17

Figure 8: Shipper

from which it purchased the product.
The Warehouse class stores all inventories of input and output commodities, whose types are

selected from an enumeration list in the CommodityType class.14 The EconomicAgent also has
a Wall object, which contains the Spigots from which Infrastructure class-based commodities are
drawn (think of a spigot that taps in to the water distribution) and the Sinks to which new
infrastructure product is sent (think of a sink that pours water into a water distribution system,
which then distributes the water to users who have Spigots).

Each EconomicAgent has indirect access to the NABLEModel Shipper, which ships discrete
goods from one EconomicAgent to another. When a Seller within an EconomicAgent ships a
product, it sends a shipment request to the Shipper who then picks up the package and delivers
it to its destination.15 Finally, the EconomicAgent has a CommTerminal object, which delivers
all electronic-based communications between agents, via a Router. When making these commu-
nications, agents within EconomicAgent can access the terminal and send a message to a Router
object, which then forwards the message to the CommTerminal of the intended recipient. Currently,
the Accountant uses the CommTerminal to make all financial transactions with the Bank (which is
required by all N-ABLE simulations). Future applications within N-ABLE could use the CommTer-
minal and Router classes to model telephone calls (digital and analog), internet messaging, and
electronic payments systems.

Broadly, the three N-ABLE infrastructure-related classes — Infrastructure, Shipper, and Router
— model three quite different types of “real world” infrastructure systems. The Infrastructure class
models the uni-directional conveyance of a continuous medium (e.g., water, natural gas, electric
power) that has no properties other than a type declarer (such as “WATER”) and the ability to
be used in very small, divisible units. Shippers, on the other hand, are designed to bi-directionally
carry bulk commodity in fixed-size units (e.g., a package containing an order). CommTerminals are
designed to bi-directionally send discrete data with potentially highly embodied intelligence (such
as a list of payments for a bank to make, the contents of a URL, or specific order details).

14This CommodityType class currently lists commodities such as “GOODS” and “CAPITAL.” Future versions of
this class will allow for arbitrary designations of commodities and have an extendible list of commodity properties.

15Specifically, the Seller schedules a “Ship” Message Event in the central Model Calendar, which then delivers the
Message to Shipper. The Shipper then schedules a Task Event in the Model Calendar to ship and deliver to the
Buyer in the customer EconomicAgent.

18

Figure 9: Router

4.2 Firm and Its Subclasses

So as to provide a modular means for creating different economic agents that use different markets
and associated contracts, the EconomicAgent is a flexible, extensible framework that can build
different economic agents and market participants from building blocks. The Firm, InfraFirm,
TransportFirm, CommFirm, and BankFirm classes provide those building blocks, by each (other
than Firm) providing variants of the Firm class’s FirmBuyer, FirmProduction, and FirmSeller
agents, and the contracts that result between Buyers and Sellers.16

For example, the Firm class includes FirmBuyer, FirmProduction, and FirmSeller classes which
are designed for ordering, producing, and selling physical goods (e.g., that would be shipped by
truck). In contrast, the InfraFirm class, a subclass of Firm, includes InfraBuyer, InfraProduction,
and InfraSeller classes which know how to buy an infrastructure commodity (by buying a Spigot),
know how to produce an infrastructure commodity (by producing and “pouring” into a Sink), and
know how to sell an infrastructure commodity (by selling a Spigot), respectively.

Figure 10 shows how these Firm classes and sub-classes are used to create buyers, productions,
and sellers in an economic firm. The firm in the figure uses three inputs for production: a banking
input (a bank account for handling payments and receipts), an infrastructure input (POWER),
and a material input (FABMETAL). The buyer for the banking input is constructed as a Bank-
FirmBuyer, located in the BankFirm class; the buyer for the infrastructure input is constructed
as InfraFirmBuyer, located in the InfraFirm class, and and the buyer of goods is constructed as a
FirmBuyer, from the Firm class. Since the firm is producing a physical good (”GOODS”), its pro-
duction is created as a FirmProduction object, and it is sold using a FirmSeller, also from the Firm
class.17 By specifying all of these objects in the N-ABLE simulation input file, each EconomicAgent
can properly purchase inputs, produce, and sell in markets.

16FirmBuyer and FirmSeller inherit from the Market class’s Buyer and Seller, and FirmProduction inherits from
the Production class.

17To be clear, GOODS and all other commodities in the CommodityType class are arbitrary designations, that is,
the name of the commodity does not imply any restriction on how the commodity can be produced, bought, or sold.
POWER could be sold in discrete units via the Firm class, and FABMETAL could be sold in divisible units via the
InfraFirm class. It would just be confusing.

19

Figure 10: Example Use of Firm and Its Sub-classes in a EconomicAgent

Figure 11: Market Object

4.3 Economic Markets and Infrastructure Classes

N-ABLE economic agents communicate and contract with one another via a number of markets
and infrastructure.

4.3.1 Economic Markets

The Market class (which derives from AgentLib BBoard) is used to create markets (or BBoard
directories) for Buyers and Sellers to find one another and make economic exchanges of goods for
money. When N-ABLE first instantiates agents at the beginning of a simulation, each Buyer created
for a firm has a designated Region, such as “Region1,” which defines a spatial or contextual region
for the market. The Buyer also has a CommodityType-based commodity it will be purchasing;
the combination of CommodityType and Region uniquely defines this market. When the Buyer is
created, the Model creates this Market (unless it has been already created for a previously created
Buyer or Seller) and the Buyer is then added to this Market/BBoard listing. When all Region1
buyers and sellers have been created, the commodity-Region1 paired Market object contains a
directory of all of its Buyers and Sellers. This directory is the means by which a Buyer can locate
a Seller of the commodity.

20

Figure 12: Infrastructure Object

Buyers and sellers can have varying rules of exchange, depending on the type of market. Buyers
and sellers that derive from the N-ABLE “Firm” class purchase and sell goods in discrete chunks,
with maximum acceptable prices and immediate billing. In contrast, InfraBuyers and InfraSellers
in the InfraMarket class purchase and sell Spigots that give access to the infrastructure commodity,
and bill monthly. In both cases, the default market mechanism for Buyers finding the best seller is
a sequential search algorithm: the buyer first selects a potential seller and asks for its price for the
good or service. If the buyer determines that it may get a lower price if it keeps shopping, it will.
The buyer continues this sequential searching until the expected benefit of an additional search is
no longer greater than the cost of this search.18

4.3.2 Infrastructure

The Infrastructure class is used by NABLEModel to handle the distribution of water, electric power,
and other public utility-type commodities from producers to users. The Infrastructure object has
the functionality to accept new commodity into its system (though the Sinks on Producers’ Walls),
to distribute the commodity to users (through Spigot objects on the users’ Walls), and to ration
the distribution when demand for the commodity exceeds supply (through an interrupt detector
in the Infrastructure object). Figure 12 illustrates how Infrastructure Sinks and Spigots provide
access to distribution network capabilities.

Each InfraBuyer periodically decides whether to shop around for another, cheaper provider of
the commodity; if it does, then it removes its existing Spigot, pays the remaining balance on its
existing contract and closes the contract, and then attaches the new Spigot to its Wall.

5 Examples of N-ABLE Economic Firms

The following examples illustrate how the AgentLib and N-ABLE classes are used to make economic
firms. Each is a variant of the basic EconomicAgent structure of production, sellers, buyers, and
economic accounting. Each also uses a different combination of messaging between agents within
an EconomicAgent firm and between EconomicAgents.

18For more details on this search rule, see Carlson and McAfee[5] and Ehlen[6].

21

Figure 13: Example Manufacturing Firm

5.1 Manufacturers

Figure 13 illustrates a typical N-ABLE manufacturing firm (this firm is similar to the EconomicA-
gent shown in Figure 7). The firm uses three inputs to produce two goods. In-house inventories of
input and output goods are stored in the EconomicAgent Warehouse.

Following the life-cycle of an order, the sellers update daily their prices, using price classifiera
(derived from AgentLib’s Classifier class) to “learn” from past pricing to find the best prices for
this firm in their markets. When a seller receives an order, the Accountant posts the order in
its accounts receivable log. If the seller can’t sell from inventory in the Warehouse, he increases
production. As production occurs, the material inputs are used in constant proportions to their
output “recipe” which specifies the quantity of each input is required per unit output. When the
order is filled, the seller contacts the Shipper and requests that the product be shipped to the
customer buyer agent. Ultimately, the Accountant gets a payment from the buyer’s Accountant
and then deposits it in the Bank, which then debits the Buyers account and credits the seller’s
account.19

5.2 Consumers

Figure 14 illustrates a typical consumer. This consumer uses three goods to “produce” two different
“utilities.” Since consumers do not in general sell this utility (they are consumers), the consumer
EconomicAgent does not have Seller agents, does not ship goods, and keeps no entries in its accounts
receivable log. Otherwise, it is identical in function to a manufacturing firm.20 Additional example
constructions of EconomicAgent-based infrastructure providers and banks could be displayed as

19If the buyer and seller use different banks, then these banks handle the transaction with an interbank payment.
20The next version of N-ABLE will have markets for labor, so that households will work at firms and receive

income. N-ABLE will then model circular economies where the flow of goods and services (including labor) flow in
one direction and money flows in the opposite direction.

22

Figure 14: Consumer Agent

well.

6 Examples of N-ABLE Simulations

The following three example simulations illustrate how N-ABLE classes-based agents are used to
create simulations. Each is intentionally simple in nature; large and elaborate simulations are built
as extensions from these types of sub-assemblies. All N-ABLE simulations are essentially data-
driven: all of the particular settings for the number and types of agents and infrastructure are set
in the input file. No N-ABLE or AgentLib classes need to be modified.

6.1 Single Economic Market

Figure 15 illustrates a single economic market composed of five firms all selling a single good to
numerous consumers. The FirmBuyer, FirmSeller, and FirmProduction classes are used so that
consumers can buy from the firms; the Bank and Router classes provide the means for making
payments and storing money; and the Shipper class provides the means for delivering the goods
to households. Demand for the good, delivery of goods, and payment happen as follows. Each
time period, the N-ABLE Consumer class produces “utility” by consuming the input goods from
inventory. Each FirmBuyer agent assigned to each input checks inventory of the good and if low,
goes to the FirmMarket to purchase. Using the sequential search algorithm, the FirmBuyer selects
the first FirmSeller who has the amount of good needed and at a low enough price as determined by
the search algorithm. If successful, the FirmBuyer makes a purchase and the FirmSeller contacts
the Shipper to deliver the goods. Once delivered, the FirmBuyer sends a payment to the FirmSeller,
who then uses the CommTerminal and Router to make payment to the Bank.

23

Figure 15: Single-Good Market

Figure 16: Three-Firm Supply Chain

6.2 Four-Stage Supply Chain

Figure 16 illustrates a four-step supply chain, where firms produce a good in sequence. Consumers
consume the Final Good and when their inventories are low, purchase from Firm 3. FirmBuyers,
FirmSellers, FirmMarkets, Shipping, and banking are mechanically the same as in the previous
example. When Firm 3 runs out of the Intermediate Good material it needs to produce the Final
Good, it purchases more from Firm 2. Analogously, when Firm 2 runs out of Raw Materials it
purchases more from Firm 1.

Over the long term, consumer demand “pulls” goods through the system, and the ability of
the supply chain to provide to consumers is determined ultimately by the amount of Raw Material
that Firm 1 has in inventory. In the short term, the dynamics of supply, demand, and inventories
are quite complex:21

21This is a variant of the beer game model, a supply chain that displays chaotic output and inventory behavior.

24

Figure 17: Infrastructure Market

6.3 Infrastructure Market

Figure 17 illustrates a basic market where one firm sells water to two households. The InfraFirm-
Buyer, InfraFirmSeller, InfraFirmMarke provide the means for housholds can shop for and purchase
a utility contract and then use water. InfraFirmProduction provides the means for the firm can
produce water and supply it to the water distribution system. At the beginning of a simulation,
the households draw water from their own inventories. When inventories get low, the household’s
InfraFirmBuyers go to the InfraFirmMarket and buy a spigot from the Water Firm. Once pur-
chased and installed, the households draw water as needed. Each time period the Water Firm’s
InfraFirmProduction checks its Sink to see what the “pull” for water is and then produces to that
pull. Each month, the Water Firm’s Accountant bills the water users, who then pay via the Bank.

7 Overview of User Interface

The N-ABLE user interface is a Windows-based framework for organizing the data for input, for
submitting input files to N-ABLE, for real-time monitoring of data, and for viewing and archiving
simulation output.22 The following screens, which are likely to be the only interaction most analysts
have with N-ABLE, briefly illustrate how N-ABLE carries out some of these tasks.

Figure 18 shows the initial screen, displays a navigation panel for new users, and a list simu-
lations either currently running on the SimRunner, archiving data on the SimStreamer, or both.
Figure 19 displays the screen used to construct construct simulations from constituent agents and
objects (e.g., EconomicAgent variants and infrastructure).On the left-hand side is a treeview listing
the current set of agents, their components, and new branches for creating new agents or compo-
nents. The right hand panel is used to input and edit the object selected in the tree. The N-ABLE
user interface has three main types of results screens: timeseries, 2D scatter diagrams, 3D point
clouds. Figure 20 displays the timeseries graph; this figure along with the three others all have
the left-hand-side tree view, which contains a hierarchy of all snapshot data, by simulation, agent
type, (AgentLib) AgentID, and then data element. For example, Figure 20 shows three timeseries
of data for Firm agent: advertised price, sold amount, and profits.

See North et al[10] for a description and comparison of alternate implementations.
22The N-ABLE 2.0 interface will be Java-based.

25

Figure 18: User Interface - Simulation Console

Figure 19: User Interface - Inputs

26

Figure 20: User Interface - Timeline Results Data

27

8 Summary

The N-ABLE architecture is a collection of objects that represent economic agents, markets, and
infrastructure. In addition to traditional microeconomic and macroeconomic constructs, these
objects help model the physics of how the economics is carried out: how buyers meet sellers in
markets, how physical discrete commodities are transported, how flow commodities like electric
power are established and rationalized during outage, and telephony and other data travel or
breakdown over data networks.

N-ABLE accomplishes this through two distinct sets of classes. The first set of classes, AgentLib,
provides the basic structure necessary to instantiate new agents, schedule their daily, weekly, and
monthly activities, and send messages between them (particularly when the agents reside on dif-
ferent nodes in massively parallel systems). To insure that these classes work well for a range of
applications, there is no economic or other subject-specific code in AgentLib. The second set of
classes are specific N-ABLE classes that allow for the modelling of economic markets, economic
production within firms, economic accounting, physical product shipment, utility distribution, and
more.

N-ABLE agents are built by assembling agents and other objects from the AgentLib library.
Specific economic agents and supporting infrastructure are build from EconomicAgents, infrastruc-
ture objects, and other N-ABLE objects. Due to the inherent data-driven design of the AgentLib
library, a wide range of N-ABLE simulations can be constructed and run.

References

[1] D.C. Barton, E.D. Eidson, D.A. Schoenwald, K.L.Stamber, R.K.Reinhert (2000) Aspen-EE: An
Agent-Based Model of Infrastructure Interdependency, Sandia report SAND2000-2925, Sandia
National Laboratories, Albuquerque, NM, December 2000.

[2] Dianne C. Barton, Eric D. Edison, David A. Schoenwald, Roger G. Cox, and Rhonda K.
Reinert. (2004) Simulating Economic Effects of Disruptions in the Telecommunications Infras-
tructure, SAND2004-0101, 2004.

[3] N.Basu, R.J.Pryor (1997) Growing a Market Economy, Sandia Report SAND97-2093 - UC-905,
Sandia National Laboratories, Albuquerque, NM, September 1997.

[4] N.Basu, R.J.Pryor, T.Quint, T.Arnold (1996) Aspen: A Microsimulation Model of the Econ-
omy, Sandia Report SAND96-2459 - UC-905, Sandia National Laboratories, Albuquerque,
NM, October 1996.

[5] J.A. Carlson and R.P. McAfee (1983) “Discrete Equilibrium Price Dispersion,” Journal of
Political Economy, Vol. 91, No. 3, pp. 480-93.

[6] M.A. Ehlen (1996) “Bank Competition: The Effect of Market Share and Price Dispersion on
Price Levels,” Cornell University, Ithaca, NY, 1996.

[7] M.A. Ehlen, A.J. Scholand, and K.L. Stamber (2003) “The Effects of Residential Real-Time
Pricing on Transco Loads, Pricing, and Profitability: Simulations Using the N-ABLE Agent
Model,” submitted to Energy Economics, 2004.

28

[8] M.A. Ehlen (2004) “Search Costs and Market Stability: The Importance of Firm Learning on
Equilibrium Price Dispersion”, submitted to Journal of Economic Behavior and Organization,
2004.

[9] Knuth, D.E. (1998) The Art of Computer Programming, v.2 3rd ed. Addison-Wesley Longman,
pp. 186-188, 1998.

[10] North, M., and C.M. Macal, “The Beer Dock: Aligning Three and a Half Implementations of
the Beer Game,” SwarmFest 2002, 17 pg., Swarm Development Group, Seattle, WA USA (In
Press).

[11] R.J.Pryor, N.Basu, T.Quint (1996) Development of Aspen: A Microanalytic Simulation Model
of the U.S. Economy, Sandia Report SAND96-0434 - UC-905, Sandia National Laboratories,
Albuquerque, NM, February 1996.

[12] A. Smith (2000) Wealth of Nations, New York, NY: Random House, Inc., p. 485.

[13] J.Sprigg and M.Ehlen (2004) Full Employment and Competition in the Aspen Economic Model:
Implications for Modeling Acts of Terrorism, Sandia Report in submission, Sandia National
Laboratories, Albuquerque, NM, August 2004.

29

 1

Distribution

1 0161 Patent & Licensing Office 11500
1 0619 Review & Approval Desk 09216 for DOE/OSTI
2 0899 Technical Library 09616
1 9018 Central Technical Files 08945-1
1 0741 M. Tatro 06200
1 1138 J. L. Mitchiner 06220
1 1138 D. Horschel 06226

10 1138 M. A. Ehlen 06221
10 1138 E. D. Eidson 06221
1 1138 A. J. Scholand 06221
1 1138 P. S. Downes 06221
1 1138 D. K. Belasich 06221
1 0318 D. A. Schoenwald 09216
1 0196 B. N. Chenowethe Creel 09216
1 0318 J. A. Sprigg 09216

lmaffit
Rectangle

