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Abstract 
 
Our nation’s security as well as the quality 

of life of its citizenry depends on the continuous 
reliable operation of a collection of complicated 
interdependent infrastructures including 
transportation, electric power, oil, gas, 
telecommunications and emergency services.  A 
disruption in one infrastructure can quickly and 
significantly impact another, causing ripples across 
the nation.  Our infrastructures are increasingly 
reliant on new information technologies and the 
Internet to operate, often being connected to one 
another via electronic, informational links. While 
these technologies allow for enormous gains in 
efficiency, they also create new vulnerabilities. The 
focus of this paper is the development of a unifying 
mathematical framework to represent these “mega 
infrastructures” and a collection of algorithms that 
can be used to estimate performance and optimize 
investment.  We include a small computational 
example that focuses on the delivery of gas and 
electric services, including the underlying SCADA 
system that supports the gas network, to illustrate the 
operation of the algorithms. 
 
 

1. Introduction  
 
Our  nation’s security as well as the quality of 

life of its citizenry depends on the continuous reliable 
operation of a collection of complicated 
interdependent infrastructures including 
transportation, electric power, oil, gas, 
telecommunications and emergency services.  A 
disruption in one infrastructure can quickly and 
significantly impact another, causing ripples across 
the nation.  Our infrastructures are increasingly 
reliant on new information technologies and the 
Internet to operate, often being connected to one 
another via electronic, informational links. While 
these technologies allow for enormous gains in 
efficiency, they also create new vulnerabilities. The 
same technology that allows us to transmit 
information around the globe at the click of a mouse 
can be used to disrupt our vital systems including the 
flow of electric power or water, and the dispatch of 
emergency services.   

Rinaldi et al. [9] describe infrastructures as 
complex adaptive systems (CASs) and create a 
conceptual framework for addressing infrastructure 
interdependencies. They identify six dimensions that 
can be used to describe infrastructure 
interdependencies, and apply this framework to 
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analyze the role other infrastructures play in 
supporting the operation of the electric power system.    

In this paper, we develop a mathematical 
framework to represent interconnected infrastructure 
networks and a collection of algorithms that can be 
used to estimate performance and optimize 
investment.  This framework treats uncertainty in the 
capacity of links in the networks as a key 
characteristic and uses measures like those suggested 
by Aven [1,2] to reflect network performance.  
Algorithms based on both simulation and analytic 
methods relate the evolving condition of individual 
components and subsystems (including cyber 
services) to the ability of the interconnected 
infrastructures to deliver services to customers.  This 
structure is then extended to answer questions related 
to optimal investments by optimizing the choices for 
the stochastic processes that describe the evolution of 
component and subsystem conditions. 
 
2. Mathematical Representation for 
Interdependent Infrastructures 
 

We begin by asserting that we can represent 
interconnected infrastructures through the use of 
networks (graphs of nodes and arcs).  The arcs 
represent components or subsystems in an 
infrastructure or the connection between 
infrastructures.  The arcs have capacities and these 
capacities may be uncertain and evolve over time.  
Further, the capability of one component or 
subsystem may be correlated with the performance of 
several other components or subsystems.  
Correlations stem from a number of causes. For 
instance, links in similar geographic locations are 
likely to suffer similar fates, either as a result of 
contamination from one infrastructure to another or 
because they fall victim to the same event.  Also, the 
topology of some networks implies that when certain 
links experience diminished capacity all downstream 
links encounter the same or more severe difficulties. 

Nodes and links can also represent the 
information infrastructure.  The state of the 
information system links affects the capacity of the 
links they support.  For example, when the signaling 
system in the telephone system experiences 
difficulties, calls may be dropped, reducing capacity 
in the circuit switched network. 

To illustrate these ideas consider a small 
example of two interconnected infrastructures – a 
natural gas distribution network and an electricity 
generation/distribution network. The gas distribution 
network is supported by a supervisory control and 
data acquisition (SCADA) system. This example has 
been created to be small enough to make it easy to 

understand but complex enough to contain 
illustrations of the types of relationships that would 
be found in much larger real networks. 

The combined gas and electric network is shown 
in Figure 1. It contains two separate suppliers, 
labeled S1 and S2. The gas that enters the distribution 
network from supplier S1 enters via node DS1.  
Similarly, the gas that enters the distribution network 
from supplier S2 enters via node DS2.  There are four 
distinct demands for gas served by this network, two 
of which are electric power generation stations (E1 
and E2). Either generating station can serve the 
electric load at L2 but only one of the generators can 
serve the electric load at L1.  By separating the 
generating facilities into two nodes and a connecting 
arc (e.g., E1 and G1) we can represent a “node 
failure” (partial or complete loss of a generator) as a 
capacity loss on the connecting arc. Values of 
demands for gas and electricity (per period) are noted 
at nodes D1, D2, L1 and L2. The numbers alongside 
links in the network represent the nominal capacities 
of those links.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
In joining these two networks together, we have 

also created a transformation of the “commodity” 
flowing through the network at the E1 and E2 nodes, 
where gas is transformed into electricity. For this 
example, we will assume that this transformation 
occurs with a constant coefficient (e.g., 100 cu. ft. of 
natural gas produces 1 MWh of electricity). 
However, the efficiency of the conversion could also 
be represented as uncertain.   
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Figure 1. An example network for 
interdependent gas and electric 

infrastructures. 
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SCADA equipment monitors volumes, pressures, 
and temperatures as well as the status of pipeline 
facilities.  It can be used to remotely start and stop 
compressors, thereby changing flow volumes. A 
SCADA system controls the flow of gas in links 
a→b, b→c, c→d and d→e. We will assume (for the 
purposes of this example) that the SCADA has two 
core subsystems.  One subsystem supports links a→b 
and b→c and the second supports c→d and d→e. In 
this example, we assume that the SCADA system 
always has access to the necessary electric power, but 
the structure described here can be generalized to the 
case where that may not be true. 

Changes in link capacity over time may include 
both random failures (that reduce arc capacity) and 
repair actions of uncertain duration (that restore 
capacity). We will define states on a link 
corresponding to different capacity levels, and use 
Markov and semi-Markov processes to represent 
state transitions over time.  Use of Markov and semi-
Markov processes to model evolving system and 
component conditions is consistent with several 
previous models (e.g., some recent works include 
[4,7]). 

Figure 1 gives the capacities on links that are 
considered to be deterministic. Figure 2 defines the 
stochastic processes for those links that are treated as 
having uncertain capacity.  For example, link 
S1→DS1 can have a capacity of 90, 95, 100 or 105. 
The evolution of capacities on the gas supply links 
are assumed to be semi-Markov processes; the 
remaining links are assumed to be characterized by 
Markov processes.  The holding time distributions for 
the semi-Markov process (T matrices) are all 
assumed to be Normal (and therefore defined by a 
mean and standard deviation – denoted in Figure 2 by 
two values separated by a comma within the T matrix 
specifications).  Observations from these 
distributions are rounded to determine the number of 
periods the process holds. The use of semi-Markov 
processes on the gas supply links and Markov 
processes on the remaining links in this example is 
for illustration only – there is no requirement in the 
modeling approach for any specific type of process 
on any given type of link, and Markov and semi-
Markov processes can be mixed as appropriate to 
represent the specific situation being modeled. 

 

 
 

Figure 2 – Parameters for the uncertain links. 
 

The condition of each of the two SCADA 
subsystems is represented by a binary random 
variable where 0 indicates diminished condition and 
1 indicates fully functional. Since links a→b and 
b→c are controlled by a single SCADA subsystem, 
changes in their capacity determined by the condition 
of the SCADA system occur together, creating a 
correlation between them. This is also the case for 
links c→d and d→e.   Since the capacities on links 
a→b, b→c, c→d and d→e are affected by the 
condition of the SCADA system, the state definitions 
depend on the condition of the relevant SCADA 
subsystem.  For example, if the portion of the 
SCADA system that provides support to links a→b 
and b→c is in diminished condition the highest 
capacity state is 250 on link a→b instead of 300. 

 
3. Understanding System Performance 

 
Both steady-state and transient behavior are 

important to understanding system performance.  For 
this illustrative analysis we will concentrate on two 
core questions, one focused on transient behavior and 
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the other on steady-state performance.  The questions 
are as follows: 

1. If the capacity on each link (as understood 
through the associated stochastic process) is as 
low as possible, how long does it take the 
system to “recover” and satisfy all demands?   

2. In steady state, what are the probability 
distributions for the product delivered at D1, 
D2, L1, and L2? 

Estimating probability distributions for delivered 
gas at D1 and D2 and electric power delivered to L1 
and L2 is critical to understanding the service quality 
that can be offered to customers.  Understanding the 
“time to recover” provides insight into system 
robustness.  

The general problem of which our example is an 
instance can be described as follows.  Consider an 
infinite horizon generalized network flow problem 
with the node set N  and the arc set A . Suppose 

( )jict ,  be the capacity of arc ( ) Aji ∈,  in period 

t . Let ( )( ) EjicC tt ∈= ,  and { } ∞∈= ECC t  

where E  is the state space for the capacity on all 
links in period t. Assume that C  is a semi-Markov 
process with probability measure ( )θµ ,C . Let D  
be the demands at each demand node in each period. 
Suppose that f  is a performance measure defined on 

∞E . In the transient analysis f  is a distribution of 
the time to “recover”.  In the steady state analysis, 
f is the probability distributions for the product 

delivered to each demand node (in the example, 
f contains four probability distributions). 

We can estimate the probability distribution for 
the time to recover using simulation. The procedure 
to create an observation from this distribution is as 
follows and by iteratively employing it, we can 
estimate the distribution. 
1. Let i=1; for each link assume the capacity has 

just reached the lowest feasible state.  
2. Given the capacity on each link, solve a 

generalized flow problem to determine the 
demand satisfied at each location assuming all 
demands are equally important.   

3. Let i=i+1. 
4. If all demands are satisfied stop.  i is an 

observation of the number of periods required to 
recover.  

5. Update each link state based on the associated 
stochastic process; go to step 2. 
Since some of the stochastic processes have 

transition probabilities that are quite small and 
holding time distributions that are quite long, many 
replications are likely to be required.  To overcome 

this difficulty, importance sampling can be used.  The 
core idea behind using importance sampling in this 
application is to select alternative transition matrices 
and holding time distributions which are more 
computationally advantageous but to “correct” the 
results using the relative likelihood of seeing the 
observations under the original parameters.  Jeneja 
and Shahabuddin [6] and Cai, et al. [3] begin to give 
some insight into how to do this; however, there are 
still significant challenges, especially when the 
holding time distributions are very long. 

If each link is at its lowest capacity, no product 
can be delivered to any of the customers.  Figure 3 
presents the probability distribution for the time to 
recover based on 1000 replicates. The average time to 
recover is 10.6 periods, but there is about a 5% 
chance that it will take 20 or more periods, and in one 
sample experiment, it took 36 periods for recovery to 
occur. Because of the structure of the analysis, it is 
easy to determine the conditions that give rise to each 
observation for recovery time.  This type of 
information is likely to be particularly valuable to 
decision-makers seeking to improve system 
performance. 
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Figure 3 – Distribution of time to recover. 
 

We can estimate the steady-state probability 
distributions for the product delivered to each 
demand location using the core ideas in the previous 
algorithm.  Figure 4 illustrates the probability 
distribution for product delivered to each demand 
node (when the storage tank is not available) based 
on 1000 replicates of the steady-state sampling 
scheme.    The proportion of periods in which 
demands at the various “load nodes” of the system 
are met varies from about 94% to above 99%.  In 
general, it is harder to meet demand at D2 then D1 
because of the uncertainty associated with links b→c, 
c→d and d→e.   
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Figure 4 – Probability distribution of product 

delivered in steady-state. 
 

4. Optimizing Investments 
 
Investment opportunities that can improve 

performance can be represented in the Markov 
models as changes in the transition matrices. For 
example, we could improve the reliability of a piece 
of equipment, and represent this improvement as 
reduced probabilities of entering failure states in the 
Markov model for its capacity. This alternative 
transition matrix for a link in the network will have 
an overall effect on the performance of the system as 
a whole, and this effect can be evaluated via 
simulation. The substitution of the new transition 
matrix for the old also implies a cost for making the 
improvement. The investment optimization problem 

is then to choose what investments (changes to 
specific transition matrices) to make so as to have the 
greatest effect on improving system performance, 
subject to budget constraints on the total cost 
incurred. 

This optimization problem is straightforward 
to represent mathematically, but it is quite 
complicated to solve directly, in part because the 
evaluation of the benefits for any specific 
combination of investments requires doing a 
simulation. In a general mathematical sense, if C  is a 
Markov or semi-Markov process that depends on 
some parameter θ , it has a probability 
measure ( )θµ ,C that determines the probabilities of 
the system occupying various states. If the system has 
a performance measure )(Cg  that is of interest, the 
simulation model can be viewed as constructing an 
estimate of the expected performance for a given θ : 

      ( ) ( )[ ] ( ) ( )θµθ θ ,dCCgCgEf ∫==          (1)                             

The optimization entails choosing Θ∈θ  to 

maximize ( )θf  where Θ  is the set of all possible 
choices for the stochastic processes on each link. 
 Optimization of the investments using (1) is 
difficult, as the underlying probability measure 
depends on the parameter θ  and the function f  
needs to be evaluated using simulation for each 
choice of the parameter θ . However, if we change 
the underlying probability measure using importance 
sampling, the optimization is much easier.  Now, the 
evaluation of the function f  is totally independent 
of the parameter θ  and can be done beforehand.  
The results of the evaluation of f simply need to be 
“corrected” by the relative likelihood as the 
parameter θ  changes in the course of the 
optimization.  Notice that, since the observations are 
generated and then rescaled based on the relative 
likelihood with respect to a particularθ , this method 
inherently uses common random numbers. 

Suppose our objective is to maximize the 
probability that demand is satisfied at all four 
locations.  The performance measure is then as 
follows: 

( ) ( ) ( )∑=
C

CCg θπθα ,  (2) 

where )(Cg is the probability that all the demands 

are satisfied and ( )θπ ,C  are the steady-state 
probabilities under θ . 

To illustrate the insights that can be obtained 
through this type of optimization, we use a simple 
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greedy heuristic to estimate the optimal investment 
strategy. The procedure is as follows: 
Step 1:  Calculate 1000 sample paths of the system 

for 1000 periods each, using transition 
matrices for each link that are similar to those 
in the base configuration of the system but 
allow for more “effective simulation.”  Let θ  
represent the stochastic processes selected for 
each links.  Calculate the probability all 
demands are satisfied under θ  and let this 
value be P*. 

Step 2:  Identify the links for which there is sufficient 
funds to make the next incremental 
investment.  If there are no links, stop. 

Step 3: For each of the links identified in Step 2, 
separately calculate the improvement in the 
probability that all the demands can be 
satisfied if the next incremental investment on 
the link is made.  Each calculation will require 
the “correction” of the 1000 sample paths 
identified in Step 1 based on the “importance 
function” for the links.   

Step 4:  Make the additional investment on the link 
that results in the largest increase in the 
probability that all the demands can be 
satisfied provided that increase is positive.  If 
the improvement is positive, update P*, 
decrement the budget available given this 
investment, update the set of stochastic 
process on the links, θ , and go to step 2; else 
stop. 

Since we assume a probability measure to 
generate the observations and rescale based on the 
importance function, many modern heuristic search 
methods are potentially useful as augmentations of 
this simple greedy search procedure, such as those 
given in Rayward-Smith, et al. [8] and Hromkovic 
[5].   

To illustrate the type of information that can 
come from an analysis of this character, assume that 
investments can be made to improve the reliability of 
the delivery of gas from both suppliers, the reliability 
of the SCADA system, the gas transmission lines as 
well as the generators.  For simplicity, assume that all 
the investments conform to the following pattern as 
to changes in the stochastic processes.  Suppose that 
for $100K invested on a link, the lowest capacity 
state is removed and the transition probabilities to 
that state are added to those for the next lowest state.  
For each successive state removed, the cost is $150K, 
$200K, $250K, $300K, $350K, and $400K 
respectively.  The investments on a link must be done 
in order.  For example, to ensure that at least 100,000 
cu ft. of gas is available from supplier 1, $250K must 
be invested.   

Figure 5 illustrates the trade-off frontier 
when the objective is to maximize the steady state 
probability that all the demands are met. Since the 
estimates are the result of simulation, 95% 
confidence intervals are also given. The top of the 
vertical line represents the upper limit and the bottom 
the lower limit. The mean is the value at the middle 
of the line.   The order of investments suggested is to 
first ensure the reliability of gas supply from supplier 
2, then invest in gas transmission links c→ d and d→ 
e, and then in the electric generation links E1→ G1 
and E2→ G2. The most significant improvement in 
overall system reliability is from increasing the 
reliability of gas supply from supplier 2. Without that 
supply, increases in system capacity further 
“downstream” in the network are ineffective. 
Subsequent investments in the gas transmission links 
and the electric power generation can increase system 
reliability modestly, but the optimization points to the 
gas supply as the critical investment area. 
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Figure 5 –Level of investment vs. steady-state 

probability that all demands are satisfied. 
 

5. Conclusions 
 

This paper focuses on representing 
interdependent infrastructure networks using Markov 
and semi-Markov processes to reflect uncertain 
capacity on network links. The Markov-based 
approach allows analysis of both transient and 
steady-state concerns regarding availability of 
service. It also enables representation of correlations 
(both spatial and temporal) between the conditions of 
network links, as well as the effects of uncertain 
condition of supporting information infrastructure 
(e.g., SCADA systems) on the performance of the 
controlled physical system. A small-scale example 
has illustrated the structure of the analysis approach. 

 In this framework, investments that would 
improve the performance of selected system 
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components are represented as changes in the 
stochastic processes governing link capacities. These 
changes can include changes in the state-space, the 
transition matrices, or both. A discrete optimization 
problem can then be formulated to find the set of 
investments that should be chosen to maximize a 
performance measure subject to a budget constraint. 
This has also been illustrated using a gas-electric 
network example. In the example contained here, the 
optimization was solved heuristically, using a greedy 
search procedure. 

The modeling framework described here 
suggests several important areas for further research. 
One direction for investigation is improved use of 
importance sampling for the simulation portion of the 
analysis. The semi-Markov models are likely to have 
very long transition time distributions from some 
states, and the transition matrices in both Markov and 
semi-Markov models of infrastructure networks have 
very small transition probabilities to some low-
capacity states. This implies that the simulation will 
only rarely enter those states. We have implemented 
some basic ideas for importance sampling to improve 
the estimates of system performance in those states, 
but further effort in this direction is important. 

The computational procedures inside the 
simulation of the network also could be enhanced to 
represent a broader range of types of infrastructure 
interconnections more effectively, and to reflect 
storage of commodities (e.g., natural gas) within the 
network. These are natural extensions to the simple 
kinds of examples we have worked with so far. 

There is substantial room for more work on the 
search process for optimal investments. Our initial 
experiments have used a simple greedy search 
process. Although this has worked relatively well, 
there are several other avenues that ought to be 
explored, and that could yield more effective 
optimization methods. 

There are also likely to be several different 
choices for system performance measures, and those 
choices will have effects on the types of investments 
that are considered to be most beneficial in the 
networks. This is an important area related to the 
optimization. 

Finally, the model structure is clearly dependent 
on having good estimates of parameters (transition 
matrices, time-to-transition distributions, etc.), and 
these estimates have to be constructed from empirical 
data. Because the infrastructure systems of interest 
are typically highly reliable, there may be relatively 
little data on transitions to some potentially 
“interesting” states that are very rarely entered. This 
is an important empirical issue in making the 
approach really useful in practice. 
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