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Overview 



3 

About Powertech 

Global customer base 
300+ customers, including many Fortune 500 
 
 
 

Based in Surrey, British Columbia 
Founded in 1979, with over 30 years of technical 
engineering expertise 

World-class Technical Expertise 
130 employees: technologists, professional engineers 
and PhDs 

Large multidisciplinary laboratory facility  
11 acre site; 200,000 sq. ft.; 19 labs) 



• 1994 - requested by Ballard to investigate 

safety of using CNG cylinders for hydrogen 

• Determined a lack of any standards – 

Powertech now: 

• Convener of ISO 15869 for Hydrogen tanks 

• Chair of U.S. HGV2 for Hydrogen tanks 

• Secretary of CSA B51 (first published hydrogen fuel tank standard in 

world) 

• Chair U.S HGV3.1 for H2 vehicle components 

• Convener ISO 17268 for H2 fill connectors 
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History in Hydrogen 
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Hydrogen Test Facilities 



• Perform certification testing of ALL high pressure components in a vehicle 

fuel system  

• Cylinders, solenoid valves, regulators, pressure relief devices, etc. 

• Perform certification testing of ALL high pressure components in fuel 

stations   

• Storage vessels (design pressures up to 100 MPa), hoses, break-aways, 

flow meters, check valves, nozzles, connectors, etc. 

• Perform design verification and safety testing of complete fuel systems, 

and complete vehicles 

• Extreme temperature fast filling, collision impact, vehicle fire, etc. 
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Hydrogen Testing 



 Instron servo-
hydraulic test frame 

 10,000 psi limit 

 Tests: 

 Fatigue life 

 Fatigue crack growth 
rate 

 Fracture toughness 

 Slow strain rate tensile 
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Hydro gen Test Chamber 



 Multiple o-ring pull rod seals 

 SSRT: no problem 

 Fatigue: o-rings wore extremely fast 

 Internal strain gauge based load cells 

 Signal drift, unstable readings 

 First attempt was non-vented (top cracked open) 

 Alignment issues caused galling of pull rod 

 Stacking Polypak seals caused collapse and extrusion 

 Encountered pull rod seizing during attempt at low 
temperature test (difference of CTE) 
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CONSTANT Evolution 



 Stellar pressure transducer 

 Conax Buffalo 10-wire pass 
through 

 External and internal load 
cells 

 Eutectic pressure relief 
device 

 Over-pressure relief valve 
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Hydro gen Test Chamber 



 Heat tape and 
insulation for 
elevated temperature 
tests 

 Temperature control 
to +85oC 
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Elevated Temperature Tests 



 Dynamic sealing insert into 
vessel bore 

 Double Polypak piston seals 
backed by brass bushings 

 Seals held by ring clips 

 Polished pull rod made from 
Q&T 4130 

 Plans to incorporate leak 
port 
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Dynamic Sealing 



 Internal load measured 
using proving ring design 

 Deflection of ring 
measured using vented 
Macro Sensors LVDT 

 Numerical modeling used 
to design a variety of load 
capacities 

 LVDT holders are 
transferred between them 
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Internal Load Measurement 



 Crack opening 
displacement measured 
using vented LVDT 

 LVDT is mounted to the 
specimen 

 Load line COD is calculated 
using geometrical 
relationships 
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COD Gauge 



• Load and COD data for sample specimen 

• Cycle frequency was 0.1 Hz, stress ratio was 0.1 

• Data was recorded at 5 Hz for one full cycle every 5 minutes 
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Sample Fatigue Test Data 
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• Load and COD data for the first cycle 

• Graph on left indicates accurate sine wave control 

• Graph on right indicates negligible hysteresis, thus, favorable 
accuracy obtained from compliance measurements of crack 
length 
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• Compliance 
calculation of crack 
length versus cycles 

• Calculated crack 
lengths are very close 
to post-test 
measurements (<5%) 

• Linearly adjusted to 
correspond to physical 
measurements 
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 Resulting relationship between stress intensity 
amplitude and crack growth rate represented by the 
Paris Law 
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 Method A, disk burst test 

 Various pressure ramp rates 

 Comparison of burst pressure between hydrogen 
and helium 
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ISO 11114-4 



 Step load test to determine threshold for crack 
propagation 

19 

ISO 11114-4 



 Method C, sustained load 

 CT specimens loaded with taper pin 

 1000 hours soaked in hydrogen 

 Inspect for crack growth 
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ISO 11114-4 



 Thin disk of test 
material embedded in 
flange 

 Hydrogen applied to 
one side of the 
specimen 

 Nitrogen bank on the 
other 

 Nitrogen bank 
sampled for hydrogen 
content at regular 
intervals 
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Permeation Testing 



 Measuring at multiple temperatures can reveal the 
permeability coefficient and activation energy 
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Permeation Testing 



 Low temperature testing 

 Measurement of large crack opening 
displacements 

 Fatigue testing using negative load ratios 
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Challenges and Limitations 



Thank you! 
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