MATERIAL TESTING IN H₂ GAS

SANDIA NATIONAL LAB

I. Moro, L. Briottet, P. Lemoine

APRIL 9-10, 2013
MATERIAL TESTING UNDER HYDROGEN GAS AT CEA/LITEN

OVERVIEW
Uniaxial loading under H$_2$ < 350 bar and < 300°C

Disc/tube test under H$_2$/He < 1000 bar - Impurities

H$_2$/D$_2$ gas permeation tests < 5 bar and < 300°C

Permeation cell
PRESSURE VESSEL
+
SERVO-HYDRAULIC TEST FRAME

• MTS servo-hydraulic test frame (250 kN)
• Custom vessel
• Frontal opening
PRESSURE VESSEL : OVERVIEW

Specific design to allow thermal expansion while remaining aligned

Specific device to screw the door at nominal torque without damaging the load line

Device for pressure vessel alignment
Pressure vessel

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum volume available</td>
<td>5,5L + use of dedicated tool to reduce the gas volume</td>
</tr>
<tr>
<td>Max pressure (MPa)</td>
<td>35</td>
</tr>
<tr>
<td>T (°C)</td>
<td>RT - 300</td>
</tr>
</tbody>
</table>

Test frame

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device maximum load</td>
<td>50 kN</td>
</tr>
<tr>
<td>Displacement</td>
<td>~100 mm</td>
</tr>
<tr>
<td>Min displacement rate</td>
<td>~1 µm/s</td>
</tr>
<tr>
<td>Fatigue test</td>
<td>R > 0</td>
</tr>
<tr>
<td>Frequency</td>
<td>Tested < 10Hz under H₂</td>
</tr>
</tbody>
</table>
PRESSURE VESSEL : CROSS SECTION

- Material vessel: SS 316L
- Stud
- Front door
- Moving rod
- Water cooling
- Gas-tight ducting for instrumentation
- Seals

Furnace
PRESSURE VESSEL: CROSS SECTION
PRESSURE VESSEL : SEALS

3 O-ring dynamic seals

Monitoring
Pumping
Security alert

Static seals

Kalrez seals
(perfluoroelastomer)

SS S-type seals
(temperature)
Strain gages COD or extensometers

- Signal drift during long term tests under hydrogen pressure (> few hours)
- Not stabilised after 2 days under 30 MPa H_2
- Slow drift: not critical for cyclic loadings
- WOL test (with in-situ precracking) not possible
External load cell (100kN) : friction between rod and seals estimated < 300 N
=> detrimental for tests below ~10 kN

Development of an internal 50kN load cell (strain gages protected from H₂ gas)
no drift
very sensitive to alignment and clamping
- H₂, N₂
- Remote control and monitoring
- Pneumatic valves
- H₂O et O₂ sensors: not effective for low ppm (< 10 ppm)
 - Hygrometer: capacitance principle using a gold/alumina oxide probe
 - Trace Oxygen Analyser: Micro fuel cell (electrochemical galvanic device)

⇒ Tests under H₂: N60 purity gas

Always the same procedure including: [Vacuum / N₂] (x 3) before H₂ inlet
Sample preparation:
- traction / LCF: surface roughness
- crack growth / toughness: precrack under air

Gas management procedure to ensure gas purity
- \(N_2\) pressure at testing pressure to check tightness
- \(H_2\) pressure
- Tests using MTS (MPT or specific procedure)
- After testing: \(H_2\) sweeping out, \(N_2\) inlet, vacuum, 1 bar \(N_2\)

External load = \(f(P)\)
Remote control – No access under H₂
Automated gas management procedure
Security camera
Min venting flow rate

Seal tightness control
H₂ and O₂ sensors
2 H₂ thresholds
10 % Inferior flammability limit in air
20 % Inferior flammability limit in air

Automated safety procedure

Shut down all electrical power in test room
→
H₂ sweeping out
N₂ inlet
Max venting flow rate in the room

PRESSURE VESSEL: SAFETY ISSUES

MTS
Gas management
MAIN ADVANTAGES
- Available volume (+ use of tools to reduce gas volume) / instrumentation
- Remote gas management
 - “Fast” atmosphere switches
- Reliable: 6 years old – No major trouble
- Precise measurement from low to high loads
- Load cell: no drift under H₂
- Alignment: ~ straight crack fronts

MAIN DISADVANTAGES
- Test in temperature: thermal inertia
- Test preparation: ~3 hours, alignment
- Gas purity analysis
- Pressure below 35 MPa / Low P accuracy below 2 bar

FUTURE IMPROVEMENTS
- Gas purity analysis
- Extensometer with strain gages: signal drift → LVDT?
- Crack initiation detection from small defect (calibrated hole)
- Towards 100 MPa?
DISK PRESSURE TESTS
DISC PRESSURE TEST : SET-UP

Compressed air
He
H₂

Remote control

H₂O
Remote control

H₂, He: Up to 100MPa, Tmax = 100°C

2 cells

Pressure rate: up to 1000 bar/min above 0.1 bar/min

Controlled pressure rate

Working with impure gas (dedicated cell)
O₂
H₂O (bubbler up to 100°C)
(from few ppm to 5000 ppm)
Including long time steps
DISK PRESSURE TESTS

SEALS

- O-ring (elastomer) at high rates
- Indium at low rates

WATER CONTENT CONTROL

- Dedicated H₂ + H₂O gas bottle
- Using bubbler
- Measuring P and T
- Assuming saturated gas
DEVICE ADAPTED TO TUBE PRESSURE TESTS

Long time range tests
under H$_2$ pressure (few months)
DISC PRESSURE TESTS

Advantages

- Low volume
- Easier to proceed
- Dedicated cell for impure gas
- Fast gas switches (few seconds)
- Closer to service-life loadings

Disadvantages

- Less instrumented
- More difficult to analyze mechanically (use of FEM)
- Boundary conditions
- Small thickness

Improvements

- Measuring in-situ deflection
- Developing tests under fatigue (cycling pressure) with / without defects
H₂/D₂ GAS PERMEATION DEVICE

- **Mass spectrometer**

20°C < T < 300°C
Pabs < 5 bar

- Diffusion coefficient
- Solubility
- Traps (binding energy)
- Oxide layer

Developments

Permeation under tensile loading
Influence of hydrostatic stress gradient
THANK YOU