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Tue Vision

* To create an all-electron cascadable InAs quantum dot medium for mid-IR photonics
— In principle, may be more efficient than quantum well material ufilized in more mature
Quantum Cascade Lasers (QCLs)
— Can naturally emit light normal to the growth direction, QCLs can not
* To integrate the material with photonic crystal cavities
— Create a arrayable, wavelength tunable, surface emitting devices
@ Use surface plasmon couplers to enhance pumping and photon exiraction
— Better understand the coupling of nanoparticles with macroscopic surface plasmon modes
— Possible alternative route to arrayable, tunable emitters
— Possible active detection platform

WHAT ARE QUANTUM DOTS?

There are many forms of quantum dots these days. Essentially, these are man-made nanostructures small
enough to exhibit characteristics of three-dimensional quantum confinement. Commonly discussed quantum
dots can be individual particles grown in a chemical solution (CdSe for example), or, in our case, clusters of

InAs that are ‘self-assembled’ in a GaAs or AlGaAs matrix during growth.
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THe ProBLEM WITH INAS DOTS:

The energy and momentum considerations involved in tunneling from quantum dots (zero-dimensional,
‘artificial atoms’) fo quantum wells (two-dimensional) is different than what is normally considered for QCLs
(quantum well to quantum well or 2D-2D).

Our INITIAL APPROACH:

Try to use the semiconductor matrix surrounding the InAs quantum dot to engineer tunneling rates through
upper (p-states) and lower (s-states). We desired current injection info the upper p-state, followed by a mid-
IR optical transition fo the s-state.

The basic premise is to use the different wave-
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QUR SECOND APPROACH:

(turns out to be similar o a guess we made several years ago, but now has some better understanding behind if)

Go ahead and tackle the 0D fo
2D tunneling problem

—

Get a good physicist, Ken Lyo,
and let him figure it out

Ken’s Answers (significantly simplified)
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COMPARISON TO A PREVIQUS ATTEMPT
WITH A QUANTUM WELL FILTER

S1A QW filter: 604 QW filter (the new design):.

As temperature increases,
emission disappears
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Why this is important:
 We can get room temperature emission

o The injector and filter structure you place around the dots significantly impacts characteristics
(I-V, emission saturation) and performance

© The theoretical understanding of how this works has been developed giving us a path forward
to further development

SURFACE PLASMONS

© What are they?

— Charge oscillations on a metal surface

— Coupling to light can be facilitated by fabricating a lattice of holes in metal films

© Why do we care?

— Properly designed metal meshes lead to ‘extraordinary transmission’. Essentially an optical
bandpass filter which can coherently transmit over 90% on resonance. Good for output coupling
and wavelength tuning.

— If they can be made ‘tunable’ either by an electrical current or gate bias, plasmonic devices can
be used for active filters, modulators, and beam steerers

TunasLe miD-IR SURFACE PLASMON DEVICES
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