#### Exceptional service in the national interest





## **Energy Storage Overview**

#### Ray Byrne, Ph.D.

**Acknowledgment:** this work was supported by the DOE energy storage program under the guidance of Dr. Imre Gyuk.



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-4387

#### Outline



- Grid scale energy storage
- Value streams
- Storage on the grid today

## Grid Scale Energy Storage

Sandia National Laboratorie

- Primary methods for energy storage
  - Electrochemical
    - Lithium batteries
    - Lead acid batteries
    - Flow batteries
  - Mechanical
    - Compressed air
    - Pumped hydro
    - Flywheels
  - Thermal
    - Molten salt
    - Ice
  - Electrical
    - Ultra Capacitors



#### SCE Tehachapi Plant, 8MW, 32 MWh



## Why Do We Need Energy Storage?



- Major reasons for installing energy storage:
  - Renewable integration
  - Transmission and Distribution upgrade deferral
  - Power quality, e.g., UPS application, microgrids, etc.
  - Improved efficiency of nonrenewable sources (e.g., coal, nuclear)
  - Off-grid applications (not the topic of this presentation)



### **Electricity Storage Services**



**Bulk Energy Services** 

Electric Energy Time-Shift (Arbitrage)

**Electric Supply Capacity** 

**Ancillary Services** 

Regulation

Spinning, Non-Spinning and

Supplemental Reserves

Voltage Support

Black Start

Other Related Uses

Transmission Infrastructure Services

Transmission Upgrade Deferral

Transmission Congestion Relief

**Distribution Infrastructure Services** 

Distribution Upgrade Deferral

Voltage Support

**Customer Energy Management Services** 

Power Quality

Power Reliability

**Retail Electric Energy Time-Shift** 

Demand Charge Management

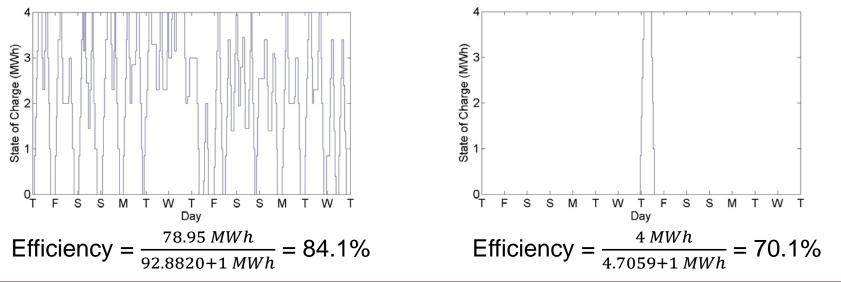
Source: DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA

Additional information: "Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide" http://www.sandia.gov/ess/publications/SAND2010-0815.pdf

#### Recent Storage Policy Breakthroughs 🖻

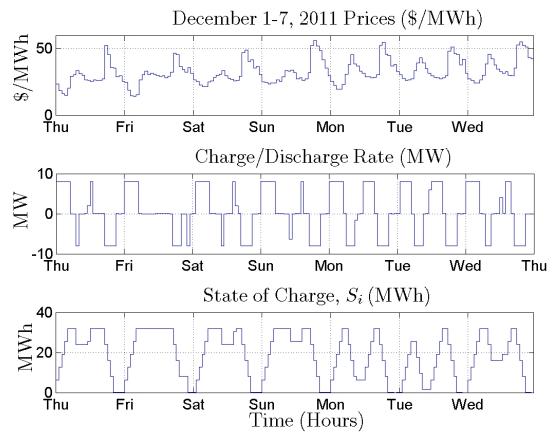
- American Recovery and Reinvestment Act (ARRA) of 2009 Energy Storage Demonstration Projects
  - 16 projects
  - Varying levels of technology maturity
  - 50% federal cost share (\$600M for all 21 SGDPs)
- FERC order 755 and FERC order 784: "pay-for-performance"
  - More fairly compensates "fast responding" systems (e.g., storage)
  - Market redesign for frequency regulation compensation
    - Separate signals for "fast" devices
    - Mileage payment in addition to capacity payment
- California energy storage mandate (California Public Utilities Commission) 10/17/2013
  - 1.3 GW by 2020 (Note the units!)

# California Energy Storage Mandate




| Storage Grid Domain        |      |      |      |      |       |
|----------------------------|------|------|------|------|-------|
| Point of Interconnection   | 2014 | 2016 | 2018 | 2020 | Total |
| Southern California Edison |      |      |      |      |       |
| Transmission               | 50   | 65   | 85   | 110  | 310   |
| Distribution               | 30   | 40   | 50   | 65   | 185   |
| Customer                   | 10   | 15   | 25   | 35   | 85    |
| Subtotal SCE               | 90   | 120  | 160  | 210  | 580   |
| Pacific Gas and Electric   |      |      |      |      |       |
| Transmission               | 50   | 65   | 85   | 110  | 310   |
| Distribution               | 30   | 40   | 50   | 65   | 185   |
| Customer                   | 10   | 15   | 25   | 35   | 85    |
| Subtotal PG&E              | 90   | 120  | 160  | 210  | 580   |
| San Diego Gas & Electric   |      |      |      |      |       |
| Transmission               | 10   | 15   | 22   | 33   | 80    |
| Distribution               | 7    | 10   | 15   | 23   | 55    |
| Customer                   | 3    | 5    | 8    | 14   | 30    |
| Subtotal SDG&E             | 20   | 30   | 45   | 70   | 165   |
| Total - all 3 utilities    | 200  | 270  | 365  | 490  | 1,325 |

## **Energy Storage Efficiency**

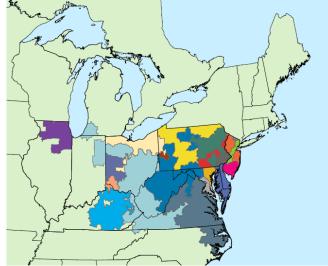



- Round Trip Efficiency =  $\frac{output MWh}{input MWh}$  (same SOC)
- Quoted efficiency can be confusing:
  - Typically AC-to-AC, sometimes quoted DC-DC
  - Does it include balance of plant (e.g., air conditioning, heating, etc.)?
  - What type of charge/discharge cycle?
- Example: 1MW, 4MWh system, 2 weeks, 85% efficiency, balance of plant = 2.9762 kW



- Energy arbitrage buy low, sell high
- Energy price swings must be larger than efficiency losses

 Rarely captures the largest value



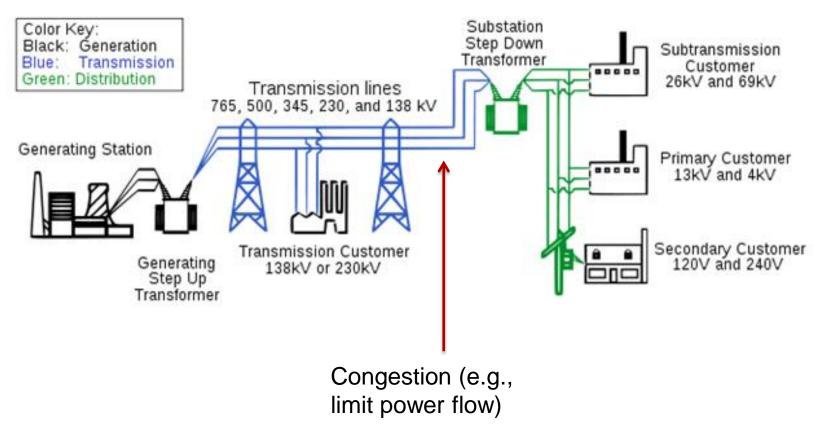





- Frequency regulation
  - Used to maintain 60 Hz grid frequency
  - Second by second dispatch
  - Typically the most valuable service

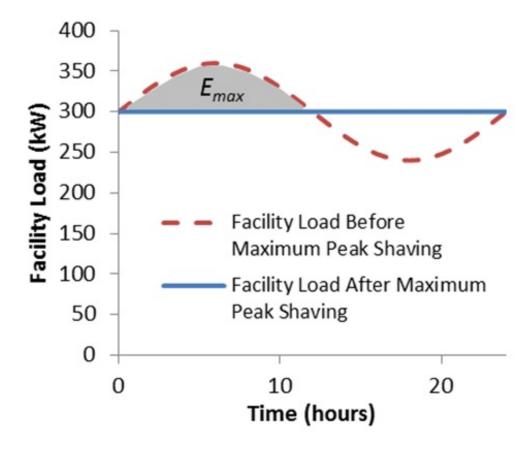
| Month | Year | $\% q^R$ | $\% q^D$ | $\% \; q^{REG}$ | Revenue        |
|-------|------|----------|----------|-----------------|----------------|
| Jun   | 2014 | 0.65     | 0.41     | 98.67           | \$487,185.94   |
| Jul   | 2014 | 1.22     | 0.38     | 98.06           | \$484,494.90   |
| Aug   | 2014 | 1.20     | 0.38     | 98.06           | \$354,411.61   |
| Sep   | 2014 | 1.23     | 0.52     | 97.73           | \$401,076.97   |
| Oct   | 2014 | 1.30     | 0.38     | 97.85           | \$535,293.84   |
| Nov   | 2014 | 1.71     | 0.58     | 96.43           | \$431,106.41   |
| Dec   | 2014 | 1.07     | 0.50     | 96.92           | \$341,281.46   |
| Jan   | 2015 | 0.80     | 1.10     | 97.34           | \$443,436.10   |
| Feb   | 2015 | 1.03     | 1.37     | 96.59           | \$998,392.65   |
| Mar   | 2015 | 0.87     | 0.71     | 98.41           | \$723,692.29   |
| Apr   | 2015 | 0.90     | 0.20     | 98.76           | \$527,436.11   |
| May   | 2015 | 1.02     | 0.37     | 98.62           | \$666,290.70   |
|       |      |          |          | Total           | \$6,394,098.97 |




PJM results, 20MW, 5MWh 200-flywheel system



Beacon Power Flywheel




- Transmission and Distribution deferral
  - Can be a very large \$\$\$\$
  - Very location specific



Sandia National Laboratories

- Reduction in demand charges (behind the meter)
- Large potential savings for industrial customers





4 MW

\$205,932

\$207,315

\$462,344

\$628,591

- Pool transmission and capacity payments
- Example: ISO-NE
- Regional Network Service (RNS) payment for using pool transmission services – based on monthly peak load (\$98.70147/kW-yr)
- Forward capacity market payment based on annual peak load

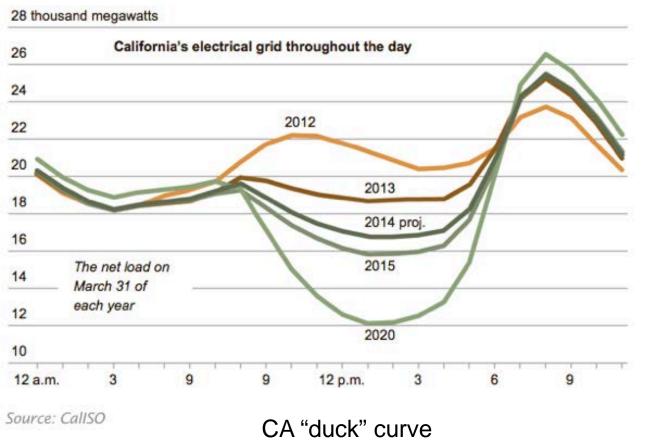
| ISO-NE Capacity Clearing Price |                     |                              |                    |           |           |           |  |
|--------------------------------|---------------------|------------------------------|--------------------|-----------|-----------|-----------|--|
| Year                           | Price (\$/kW-Month) |                              |                    |           |           |           |  |
| 2010-2011                      | \$4.254             | Year                         | Price<br>(\$/kW-   | 1 MW      | 2 MW      | 3 MW      |  |
| 2011-2012                      | \$3.119             |                              | (\$/KVV-<br>Month) |           |           |           |  |
| 2012-2013                      | \$2.535             | 2015-16                      | \$3.129            | \$51,477  | \$102,958 | \$154,443 |  |
| 2013-2014                      | \$2.516             | 2016-17                      | \$3.150            | \$51,822  | \$103,649 | \$155,479 |  |
| 2014-2015                      | \$2.855             |                              | •                  |           | . ,       | . ,       |  |
| 2015-2016                      | \$3.129             | 2017-18                      | \$7.025            | \$115,572 | \$213,153 | \$346,744 |  |
| 2016-2017                      | \$3.150             | 2018-19                      | \$9.551            | \$157,128 | \$314,269 | \$471,424 |  |
| 2017-2018                      | \$7.025             |                              |                    |           |           |           |  |
| 2018-2019                      | \$9.551             | Assumptions: 9.6MW base load |                    |           |           |           |  |

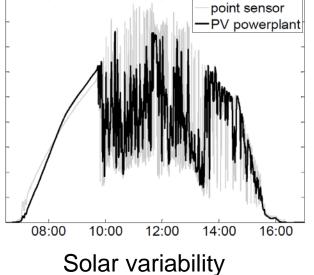


- Distribution level energy storage
  - Volt/VAR support
  - Islanding during outages
  - Frequency regulation
  - Renewable time shift
  - Peak shaving
  - Arbitrage






DTE ARRA energy storage demonstration project






#### Renewable firming

- Puerto Rico is penalizing rapid ramp rates
- Duck curve (CA is starting to be concerned)



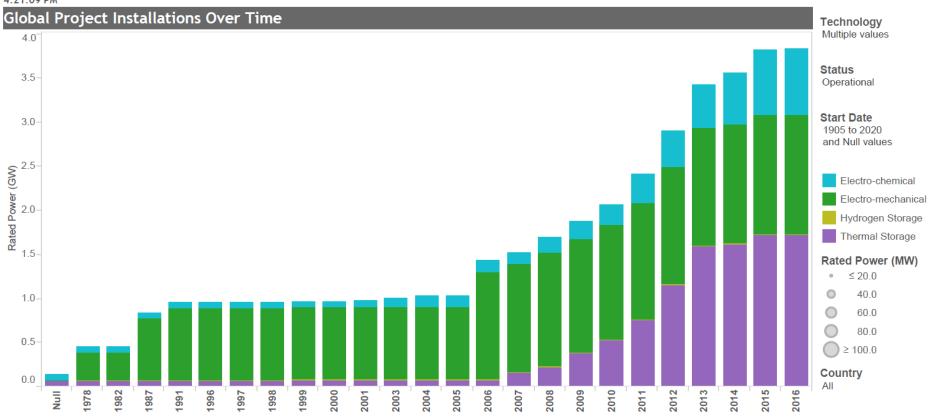


For vertically integrated utilities – increased regulating and spinning reserves. In market areas, adding ramping products.



## Why is Storage Valuation Difficult?




- Location/Jurisdiction
  - Market area, e.g., California ISO
  - Vertically integrated utility, e.g., PNM
  - Transmission and distribution deferral is very location specific
- Many applications require a combination of technical and financial analysis
  - Dynamic simulations (requires an accurate system model)
  - Production cost modeling (requires an accurate system model)
- Difficult to break out current cost of services, especially for vertically integrated utilities
- Identifying alternatives can be difficult
- Many storage technologies are not "off-the-shelf", proven technology (e.g., O&M costs, warranty????)
- Storage is expensive

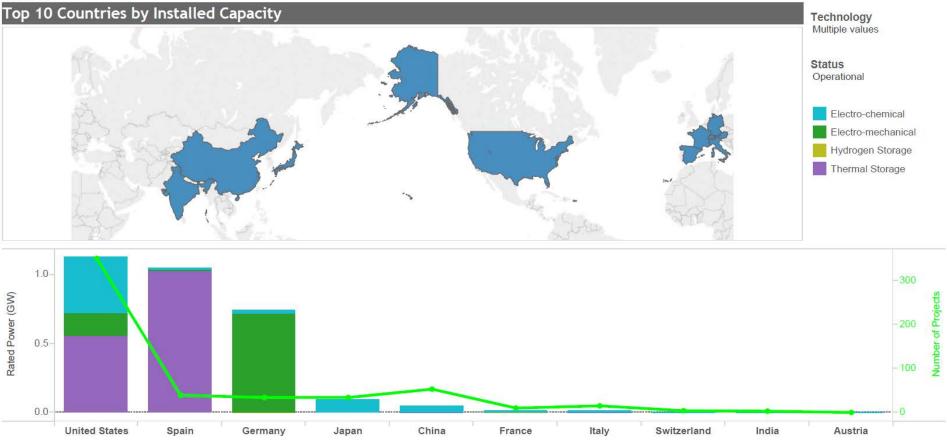
#### Energy Storage on the Grid Today



DOE Global Energy Storage Database

Last Updated 3/2/2016 4:21:09 PM




Source: DOE Energy Storage Database

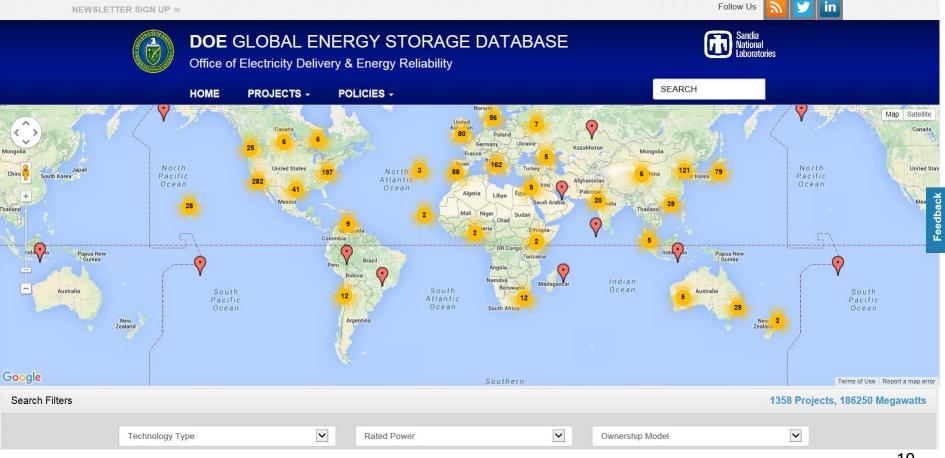
#### Energy Storage on the Grid Today



DOE Global Energy Storage Database

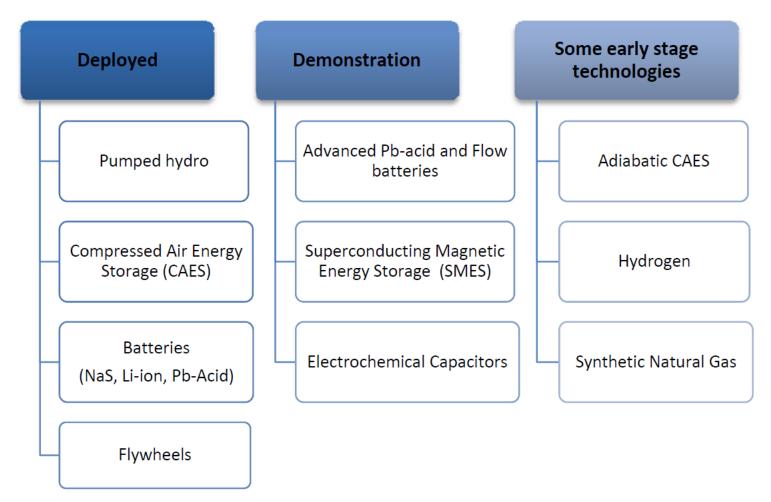
Last Updated 3/2/2016 4:21:09 PM




Source: DOE Energy Storage Database



#### **DOE Energy Storage Database**


Two ways to find the web site:

- <u>http://www.energystorageexchange.org/</u>
- Google "DOE energy storage database"



## **Technology Maturities**





**Source:** U.S. Department of Energy, "Grid Energy Storage", December 2013.

## **Technology Overview - CAES**



- Compressed air energy storage (CAES)
  - Established technology in operation since the 1970's
  - 110 MW (26+ hours) plant in McIntosh, Alabama – operational since 1991
  - Better ramp rates than gas turbines
- Applications
  - Energy management
  - Backup and seasonal reserves
  - Renewable integration
- Challenges
  - Geographic limitations
  - Lower efficiency
  - Slower than flywheels or batteries
  - Environmental impact



Solution-mined salt dome in McIntosh, AL



PG&E CAES feasibility study (porous rock)



SustainX isothermal CAES

## Technology Overview – Pumped Hydro

- Pumped hydro energy storage
  - Developed and mature technology
  - Very high ramp rates
  - Most cost effective form of storage
- Applications
  - Energy management
  - Backup and seasonal reserves
  - Regulation service (variable speed pumps)
- Challenges
  - Geographic limitations
  - Plant site
  - Lower efficiency
  - High overall cost
  - Environmental impact



Mt. Elbert Pumped Hydro, 0.2MW, peaking plant, operational 1981.



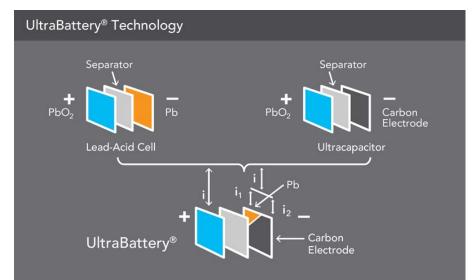
Bath County Pumped Storage (Dominion Resources), 3 GW, operational December 1985



## **Technology Overview - Flywheels**



- Flywheel energy storage
  - Modular technology
  - Long cycle life
  - High peak power
  - Rapid response
  - High round trip efficiency (~85%)
- Applications
  - Load leveling
  - Frequency regulation
  - Peak shaving
  - Transient stability
- Challenges
  - Rotor tensile strength limitations ( $E \approx \omega^2$ )
  - Limited energy storage time (frictional losses)






Beacon Power Hazle Township, PA plant. 20 MW, 5MWh. Operational September 2013. Stephentown, NY plant was built first.

## Technology Overview – Lead Acid

- Advanced Lead Acid Energy Storage
  - Developed by Ecoult/East Penn Manufacturing
  - Carbon plates significantly improve performance
  - Mature technology
  - Low cost
  - High recycled content
  - Good battery life
- Applications
  - Load leveling
  - Frequency regulation
  - Grid stabilization
- Challenges
  - Low energy density
  - Limited depth of discharge
  - Large footprint

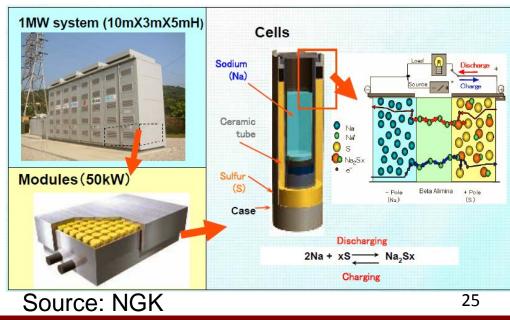




Albuquerque, NM

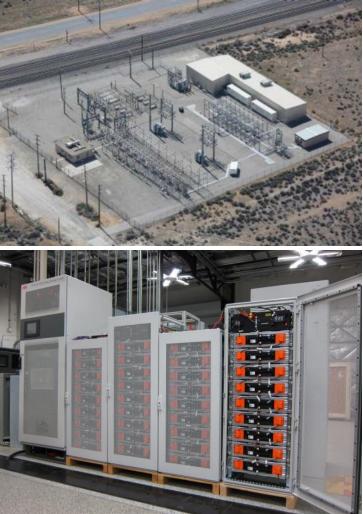
East Lyons, PA




## **Technology Overview - NaS**



- Sodium Sulphur Energy Storage
  - High energy density
  - Long discharge cycles
  - Fast response
  - Long life
  - 190 sites in Japan
  - Developed by Ford in 1960's
  - Sold to Japan (NGK is largest manufacturer)
- Applications
  - Power quality
  - Congestion relief
  - Renewable integration
- Challenges
  - High operating temperature (250-300C)
  - Liquid containment issues




#### Los Alamos, NM. 1 MW, 6MWh.



## Technology Overview – Li-ion

- Li-ion Energy Storage
  - High energy density
  - Good cycle life
  - High charge/discharge efficiency
- Applications
  - Power quality
  - Frequency regulation
- Challenges
  - High production cost
  - Extreme sensitivity to:
    - Over temperature
    - Overcharge
    - Internal pressure buildup
  - Intolerance to deep discharge



SCE Tehachapi plant, 8MW, 32MWh.

## **Technology Overview** – **Flow Batteries**

- Flow Battery Energy Storage
  - Long cycle life
  - Power/Energy decomposition
  - Lower efficiency
- Applications
  - Ramping
  - Peak Shaving
  - Time Shifting
  - Power quality
  - Frequency regulation
- Challenges
  - Developing technology
  - Complicated design
  - Lower energy density





Enervault plant, Turlock, CA. 250kW, 1 MWh.



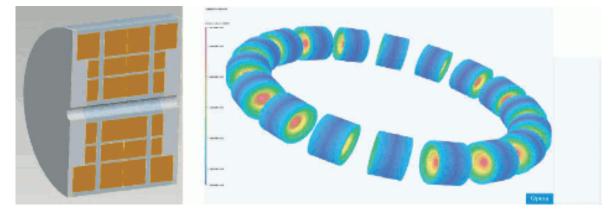
Vionx Vanadium Redox Flow battery, 65kW, 390kWh

## **Technology Overview - Capacitors**



- Capacitor Energy Storage
  - Very long life
  - Highly reversible and fast discharge, low losses
- Applications
  - Power quality
  - Frequency regulation
  - Regenerative braking (vehicles)
- Challenges
  - Cost






Ultra capacitor module, designed for vehicle applications (e.g., buses, trains)

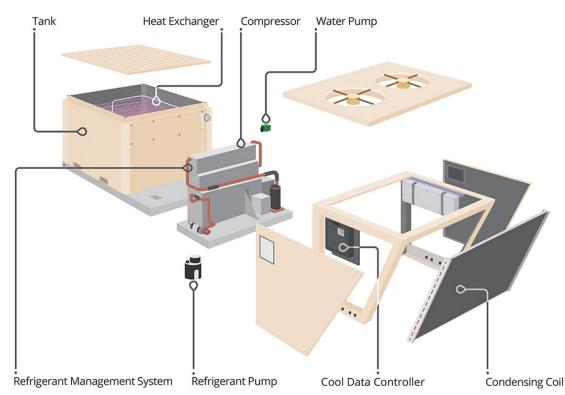


### **Technology Overview - SMES**

- Super Conductive Magnetic Energy Storage
  - Highest round trip efficiency (~95%)
- Applications
  - Power quality
  - Frequency regulation
- Challenges
  - Low energy density
  - Component and manufacturing cost



2010 SMES Project (ARPA-E)


Sandia

## Technology Overview – Thermal



- Thermal Energy Storage
  - Ice-based technology
  - Molten salt
- Applications
  - Energy time shift
  - Renewable firming
- Challenges
  - Lower efficiency (~70%) for electricity-electricity
  - Solar thermal plants more expensive than PV





Ice Energy's proven Ice Bear® system, www.ice-energy.com

#### Summary



Additional information can be found at:

http://www.sandia.gov/ess/

 Information on ARRA energy storage demonstration projects: <u>https://www.smartgrid.gov/recovery\_act/program\_impacts/energy\_storage\_technology\_performance\_reports.html</u>