

Energy Storage Integration into the GLEAMM Project Dr. Michael Giesselmann, P.E. **Professor & Chair of ECE** Texas Tech University August 24, 2016

GLOBAL LABORATORY FOR ENERGY ASSET MANAGEMENT AND MANUFACTURING

GLEAMM was established thanks to a \$13 million dollar investment by the State of Texas and matching commitments from our corporate partners.

http://gleamm.org/

Increase Research

Accelerate Innovation

Grow Field Testing at Group NIRE

GLE/MM Collaborators

inte

Sandia National

UNIVERSITY OF

TEXAS

ARLINGTON

TOSHIBA Leading Innovation >>>

Systems Center

U.S. DEPARTMENT OF

ENERG

Office of

Science

History of National Wind Institute (NWI) at Texas Tech University May 11, 1970

Tornado Shelter in Impact Testing Lab

Drs. Swift, McDonald, Kiesling, & Mehta

Tornado Shelter, Dr. Kiesling

TTU National Wind Institute moving to Reese Center

National Wind Institute (NWI) at Texas Tech University (TTU)

VORTECH Tornado Simulator

National Wind Institute (NWI) at Texas Tech University (TTU)

Dr. John Schroeder with KA-Band Mobile Radar

Flow Visualization

Dual-Doppler Horizontal Wind Speed (m s⁻¹) 80 m - AGL

NWI Director Search

TEXAS TECH UNIVERSITY National Wind Institute

Director of Texas Tech University National Wind Institute

Job Description

The Texas Tech University (TTU) invites applications for the position of Director of Texas Tech National Wind Institute (NWI).

The primary focus of the Director will be to substantially expand the scope and international prominence of the NWI. The Director is expected to foster significant growth in research and fee-for-service revenues of the center. We seek applicants with a strong track record of extramural funding of research and publications in wind hazard, wind-energy production, storage and dissemination, or related fields. In addition, evidence of effective administrative activities or cross-disciplinary team leadership is preferred.

https://www.smartgrid.gov/files/CCET-SGDP-FTR_Feb_2015.pdf

Battery Storage System (BSS) at Reese Technology Center from DAT Project

http://www.younicos.com/en/home/

The Battery Storage System (BSS) uses 18 racks with 256 Li-Ion batteries totaling 4,608 battery cells with a combined energy storage capacity of 1 MW-hr.

Site of Battery Storage System at Rees Technology Center

2016 NM Regional Energy Storage & Grid Integration Workshop, Aug 24: 9:40 am

Battery System on South Plains Electric Coop, part of Golden Spread Coop

SOUTH PLAINS ELECTRIC COOPERATIVE, INC.

South Plains Electric Cooperative, Inc. is a distribution cooperative (Texas 56 Lubbock County) with headquarters in Lubbock, Texas, serving portions of Crosby, Hale, Hockley, Lubbock and Lynn Counties. Additional offices are located in Lorenzo and southwest of Lubbock.

MORE ON SOUTH PLAINS

Golden Spread Cooperative part of SPP

2016 NM Regional Energy Storage & Grid Integration Workshop, Aug 24: 9:40 am

2016 NM Regional Energy Storage & Grid Integration Workshop, Aug 24: 9:40 am

Views of Battery Storage System (BSS)

2016 NM Regional Energy Storage & Grid Integration Workshop, Aug 24: 9:40 am

Detailed view of 60 Ah, 3.7V nom. Cells

2016 NM Regional Energy Storage & Grid Integration Workshop, Aug 24: 9:40 am

Remote Monitoring

Remote Monitoring from Manufacturer's Site

Battery in Ramp-Control Mode

Charging for Peak Shaving

Discharging for Peak Shaving

Xtreme Power's CCET Web Interface

Battery Operational Parameters and Use Cases

Table 1. Overall BESS Testing Approach

Number	Test Type	Time of Year	Time of Day	Duration		
1	Ramping	All year	Night	Seconds		
2	Demand Response	Summer (May to August)	Day	Minutes to hours depending on		
				peak loads		
3	Frequency Support	All year	Night	Seconds		
4	Wind Speed Drop	All year	When drop occurs	Seconds to minutes		
5	FRRS	All year	When needed	Until frequency recovers		

Table 2. Parameters for Asset Characterization Module

Location of battery	Distribution		
Market	Regulated		
Owner	Utility (End User)		
Type of Battery	Lithium-ion		
Total name plate power output	1000 kW		
Total name plate energy storage capacity	1000 kW hours (kWh)		
Round trip efficiency	95%		

Battery Operational Parameters and Use Cases

-	FL.
5	1
	h

Response time of BESS	0.005 seconds			
Cycle life	4000 cycles			
Expected year over demand growth of electric system	2%			
Expected life time	20 years			
Average inflation rate	2%			
Discount rate in net present value analysis	7%			
Total Installed cost of deployment	\$2,000,000			
Fixed charge rate to annualize cost of deployment	11%			
Non-energy operations and maintenance (O&M) cost	\$50,000/year			
Primary application	Demand charge management			
Selected secondary application(s)	Renewables energy time-shift and			
	electric service power quality			

Economic Analysis

- \$2,309,600 in reduced electricity costs (mostly from reduced demand charges)
- \$594,900 in improved power quality savings (includes voltage and frequency support)
- \$546,600 in emissions savings

This total gross benefit of 3,451,000 results in a return on investment of 491,200 (after the cost of the BESS, annual O&M expenses, etc.) for this option (benefits/cost = 1.16). Note that without the estimated environmental benefits, which are based on the future existence of a market for monetizing reduced emissions, the net return would be a negative 55,400. Even under the favorable conditions of being able to serve all of the identified functions, a utility likely would not make such an investment until the regulatory rules allowed cost recovery of storage investments or at least the environmental benefits.

Economic Analysis

L	

	Cumulative Benefit and Cost Table					
	Benefits	Additional Benefits - Total Present Value over the Deployment Period	+	Primary and Secondary Benefits - Total Present Value over the Deployment Period		Total Benefit - Present Value over the Deployment Period
	Arbitrage Revenue	\$ -	-	\$ -		\$ -
Market Revenue	Capacity Market Revenue	\$ -		\$ -		\$ -
	Ancillary Services Revenue	\$ -		5 -		\$ -
	Optimized Generator Operation (Non-Utility	\$		\$ -		\$ -
improved Accet	Optimized Generator Operation (Utility/Ratepayer)	\$ -		\$ -		\$ -
Utilization	Deferred Generation Capacity Investments	\$		\$		\$
Grinzarion	Reduced Congestion Costs (Non-Utility Merchant)	\$ _		\$ -		\$ -
	Reduced Congestion Costs (Utility/Ratepayer)	\$ -		\$.		\$ -
T&D Capital Savings	Deferred Transmission Investments	\$		\$		\$
and the second second	Deferred Distribution Investments	\$ -		\$ -		\$
Energy Efficiency	Reduced Electricity Losses	\$ -		\$ -		\$ -
Electricity Cost	Reduced Electricity Cost (Consumer)	5		\$ 2,309,600		\$ 2,309,600.00
Savings	Reduced Electricity Cost (Utility/Ratepayer)	\$		\$ -		\$ -
	Reduced Outages (Consumer)	\$ -		\$ -		\$ -
Power Interruptions	Reduced Outages (Utility/Ratepayer)	\$ -		\$.		\$ -
Power Quality	Improved Power Quality	\$		\$ 594,900		\$ 594,900.00
· · · · · · · · · · · · · · · · · · ·	Reduced CO2 Emissions	\$		\$ 127,500		\$ 127,500.00
Co Contrationer	Reduced SOx Emissions	\$ -		\$ 13,900		\$ 13,900.00
Air Emissions	Reduced NOx Emissions	\$.		\$ 36,200		\$ 36,200.00
	Reduced PM Emissions	\$ -		\$ 369,000		\$ 369,000.00
	Total Gross Benefit	\$ -		\$ 3,451,100		\$ 3,451,100.00
	Costs					
	Capital Cost of Deployment (fixed charge rate) Operating and maintenance costs not related to energy (labor for operation, plant maintenance, equipment wear leading to loss- Decommissioning and Disposal Costs Total Annual Cost of Deployment					\$ 2,406,800.00
						\$ 546,900.00
						\$ 6,300.00
						\$ 2,959,900.00
	Total Net Benefit					\$ 491,200.00

Briefing of Congressman Michael McCaul Chair of Homeland Security Committee on Cybersecurity

