Exceptional service in the national interest

energy.sandia.gov

Virtual Power Plants and Large Scale Renewable Integration New Mexico Regional Energy Storage and Grid Integration Workshop, 24 Aug 2016

Jay Johnson, Jose Tabarez, Cliff Hansen, Mitch Burnett, Jack Flicker,

Mohamed El-Khatib, David Schoenwald, Jorden Henry

Photovoltaic and Distributed Systems Integration, Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Virtual Power Plants

- VPPs are aggregations of DER assets controlled to provide identical (or superior) grid-support services compared to traditional generators.
 - Enables renewable energy, demand response, and energy storage to provide grid services
 - Improves grid reliability by providing additional operating reserves to utilities and ISO/RTOs
 - Removing renewable energy high-penetration barriers
- Goal: Develop a unified platform incorporating <u>resource forecasting</u>, standard <u>communications</u>, <u>optimization</u>, and <u>control/dispatch</u> to provide grid services with DERs.

2

Virtual power plant with communication network (EPRI)

Lake Side natural gas turbine power station in Vineyard, Utah. (Wikipedia Commons)

VPPs will provide a range of grid services

VPP Architecture

 Depending on the ancillary service(s) and the market, the VPP architecture and execution vary. Generally, there are 4 steps:

Sandia National Laboratories

DETL-MdS-Prosperity VPP Use Case

-25

-25

Albuquerque Airport

Kirtland Air Force Base

Mesa del Sol

Aperture Center

PNM Prosperity Project

VPP Forecasting

Day-ahead Unit Commitment Co-optimization

Optimization

 Example of the optimization shifting solar energy to higher price point

Battery

discharge at

Controls

Red Team Demonstrations at DETL

Goal: protect the VPP through enclaving of VPP DERs and intrusion detection algorithms.

Conclusions

- Sandia development of Secure Virtual Power Plants will:
 - Increase the quantity of renewable energy on the grid
 - Improve the electric grid resiliency in high-penetration solar situations
- Sandia is researching different aspects of VPP technology:
 - Stochastic optimization
 - Advanced coordinated DER controls
 - Secure communications and cybersecurity
 - DER interoperability
- Conducting demonstrations at Sandia in 2017 with real hardware!

Questions?

Jay Johnson Photovoltaic and Distributed Systems Integration Sandia National Laboratories P.O. Box 5800 MS1033 Albuquerque, NM 87185-1033 Phone: 505-284-9586 jjohns2@sandia.gov