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The drive to greater energy density and efficiency 
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 Increased energy densities and other material advances 
lead to more reactive systems – greater efficiency / less 
losses. 
 Charged batteries include a ‘fuel’ and ‘oxidizer’ all internally. 

  Li-Ion electrolyte, 
packaging, and 
other materials are 
often flammable. 

 External heating or 
internal short 
circuits can lead to 
thermal runaway. 

 

 



 

 Failure rates as low as 1 in 
several million,  

 But number of cells used in 
energy storage is potentially 
huge (billions). 

 High likelihood of ‘something’ 
going wrong,  

 Need to design against many 
possibilities. 

 

 A single cell failure that 
propagates through the pack 
could lead to an impact even 
with very low individual failure 
rates 
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www.nissan.com 

www.internationalbattery.com 

www.samsung.com 

www.saft.com 

Validated reliability and safety is one of four critical 
challenges identified in 2013 Grid Energy Storage 
Strategic Plan 

http://www.nissan.com/
http://www.internationalbattery.com/
http://www.samsung.com/


Approaches to designing in safety 

The current approach is to test our way into safety1 

 Large system (>1MWh) testing is difficult and 
costly. 
 

Consider supplementing testing with predictions of 
challenging scenarios and optimization of mitigation. 

 Develop multi-physics models to predict failure 
mechanisms and identify mitigation. 

4 1 ‘Power Grid Energy Storage Testing Part 1.’ Blume, P.; Lindenmuth, K.; Murray, J. EE – Evaluation Engineering. Nov. 2012. 

 Build capabilities with 
small/medium scale 
measurements. 

 Still requires some testing and 
validation. 



 

 

• Leverage the large DOE-NNSA Investments in Sierra-Mechanics Integrated 
Code simulation tools developed at Sandia National Laboratories under the 
Advanced Scientific Computing (ASC) program for Science-based Stockpile 
Stewardship by applying these tools to battery safety analysis 

Heat transfer mechanisms in a fire 

Physics: 
 
• Turbulent fluid mechanics (buoyant 

plumes) 
• Participating Media Radiation (PMR) 
• Reacting flow (hydrocarbon, particles, 

solids) 
• Conjugate Heat Transfer (CHT) 
• The simulation tool predicts the 

thermal environment and object 
response 

 

How do we evaluate these terms in realistic 
scenarios? 



Fire modeled as a combustible hydrocarbon 
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Predicting fire environments and consequential 
heating 
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The equations and couplings… 

Multi-physics coupling  



From predicting fire environments to predicting 
heat release in a battery pack 

Fire environment results in heating 

of notional battery pack. 

 

Now focus on what happens to  

that heated battery pack. 



Development of heat release models from 
calorimetry measurements 
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 Calorimetry measurements inform and calibrate models for heat release 
rates.  

 Here cathode heat release models are evaluated based on literature 
measurements. 

 These heat release models are in our codes and used in subsequent 
predictions. 

 

 Measurement from:  MacNeil, D. D. and J. R. Dahn (2001). "Test of reaction kinetics using both differential scanning 
and accelerating rate calorimetries as applied to the reaction of LixCoO2 in non-aqueous electrolyte." 

  Models based on Spotnitz, R. and J. Franklin (2003). "Abuse behavior of high-power, lithium-ion cells." Journal of 
Power Sources 113(1): 81-100. 

 

 



Modeling thermal runaway in lithium ion cells 

 Evolution simulated using calorimetry-derived heating rates and 
lumped thermal mass. 

 Consider SEI decomposition, cathode-electrolyte reaction, electrolyte 
decomposition, anode-electrolyte reaction 

 Fire environment modeled as an ambient temperature. 

 Bound thermal runaway versus heat dissipation. 
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Max temp. predicted versus 

environment (oven) temp.  

Temp. evolution two environ. 

temps., two cathode materials 



Thermal runaway occurs if  
heat release exceeds heat losses 
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• Predicted heating rates based on ARC measurements. 

• Higher environment temperature leads to thermal runaway. 

• Low temperature degradation occurs in both cases.  
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Thermal runaway occurs if  
heat release exceeds heat losses 
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• Criterion for self heating: 

40 60 80 100 120 140 160 180 200 220

T [C]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

d
T

/d
t 
[C

/s
]

Mn2O4, Tinf=150 C
Mn2O4, Tinf=240 C

Heat  

losses 

Chemical heat  

release 
Net heating 

Increasing battery scale 

reduced heat losses, lowers 

ignition temperature 

Cell temp [C] 



Thermal runaway occurs if  
heat release exceeds heat losses 
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• Criterion for self heating: 
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Focus mitigation on 

shallow-sloped regions! 
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Failure of a single cell can propagate to rest of pack 
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Experimental propagation in 

5 stacked pouch cells 

Lamb, J., et al. (2015). Journal of Power Sources 283: 517-523. 



Propagation across multiple (5) cells 
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Interstitial temperatures 

Pack Voltage 

• Prediction and mitigation of cell-to-cell 
propagation is key to addressing risk.  

• Here simulating propagation across 
series of pouch cells.   

• Accurate measurements of highest 
temperature kinetics unavailable and 
need to be calibrated to get 
agreement. 

 



Propagation across multiple (5) cells 
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Interstitial temperatures 

Pack Voltage 

• Prediction and mitigation of cell-to-cell 
propagation is key to addressing risk.  

• Here simulating propagation across 
series of pouch cells.   

• Accurate measurements of highest 
temperature kinetics unavailable and 
need to be calibrated to get 
agreement. 

 



Pulsating Propagation at large scales 
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• Extend modeling to large 
scales at small cost relative 
to measurements. 

• Prediction and mitigation 
of cell-to-cell propagation 
is key to addressing risk.  

• Here predictions include 
multi-step mechanism 
involving anode, cathode, 
electrolyte reactants. 

 

• Propagation across a 
large pack (128 cells 
here) exhibits pulsating 
instabilities.  

• Note heating rate varies 
by 100x (log scale). 
 

 



Pulsating Propagation at large scales 
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• Extend modeling to large 
scales at small cost relative 
to measurements. 

• Prediction and mitigation 
of cell-to-cell propagation 
is key to addressing risk.  

• Here predictions include 
multi-step mechanism 
involving anode, cathode, 
electrolyte reactants. 

 

• Propagation across a 
large pack (128 cells 
here) exhibits pulsating 
instabilities.  

• Note heating rate varies 
by 100x (log scale). 
 

 

2011 Chevy Volt Latent Battery Fire 
at DOT/NHTSA Test Facility 



The mechanism of pulsating propagation  
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• Heat released is conducted upstream of reaction front, increasing the total 
enthalpy (sum of sensible and chemical enthalpy) 
 

• Front propagates rapidly through preheated region with larger HTOT. 
 

• Slow propagation (low Temp), but 
preheating mixture ahead of 
reaction front. 

 

	
H

TOT
= c

p
T +Y

r
DH

r

• Rapid propagation (high Temp), 
into preheated mixture. 

 



Parameter studies of propagation at large scales 
are possible with models 
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• Prediction and mitigation of cell-to-cell propagation is key to addressing risk.  
• Single-step heat-release predictions with a range of heat release and boundary temps. 
• Propagation across a large pack (80 cells here) exhibits pulsating instabilities.  
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Future work 
 Fit historical data from a variety of battery chemistries (Sandia BattLab and 

literature) to kinetic models. 

 

 

 
 

 

 Focus on heat losses required to mitigate propagation. 

 Intermediate term 
 Integrate reacting thermal model of battery packs with fire models in 

Sierra to evaluate safety of representative geometries and scenarios. 

 Predict contributions of battery thermal runaway to overall fire load 
and as source of hazardous products. 

   Ultimate goal: Predict criteria for cascading failure to act 
as a design tool in developing mitigation strategies.  

 

Heat losses 

 
 Identify cell-pack configurations that 

inhibit initial ignition. 

 Model thermal interaction of battery 
packs in Sierra.   

 Predict configurations leading to 
cascading versus isolated failure. 



Publications and presentations 

 Publications 
 Ferreira, S.R., et al., Fundamental aspects of the safety of large-

scale energy storage systems, Paper 5.3, in Power Sources 
Conference. 2016: Orlando, FL. 

 Hewson, J.C., Understanding the limits of thermal runaway in 
lithium-ion battery systems, in Interflam. 2016: London, UK. 

 

 Presentations: 
 Ferreira, S.R., et al., Fundamental aspects of the safety of large-

scale energy storage systems, Paper 5.3, in Power Sources 
Conference. 2016: Orlando, FL. 

 Hewson, J.C., Understanding the limits of thermal runaway in 
lithium-ion battery systems, in Interflam. 2016: London, UK. 
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In closing 

 Thermal runaway is a significant risk and potential barrier to 
development and acceptance. 

 Simple thermal models coupled with knowledge of fire 
environment can potentially identify critical ignition and 
propagation trends. 

 Quality measurements are key to parameter identification. 

 Progress this term in  

 Development of thermal source terms. 

 Integration of source terms in ASC multi-physics code 
framework. 

 Identification of thermal ignition criterion. 

 Cell-to-cell propagation along homogenized pack structures. 
23 
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