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The drive to greater energy density and efficiency @ =

" |ncreased energy densities and other material advances
lead to more reactive systems — greater efficiency / less
losses.

= Charged batteries include a ‘fuel’ and ‘oxidizer’ all internally.

= Li-lon electrolyte, Liquid electrolyte
_ C;H,0,, LiPF,
packaging, and
other materials are Electrolyte decomposes, T >100 C

LiPF; — LiF + PF;
often flammable. PF, + H,0 — 2HF + POF,

= External heating or GH,0; = €O, +PEO

. Cathode
internal short Li,CoO,
circuits can lead to «_ SEI growth
Li* + C;H,0,
thermal runaway. A
SEI layer Cathode oxidizes electrolyte T >200 C

Li,C00, — xLiCo0, + (1-x)/3 (Co30,+05)
C0:0, — 3 CoO + 0.5 O,
C3H403 +2.5 02—) 3 C02 +2 H20

(passivation layer)
CH,CH,0CO,Li, Li,CO;




Validated reliability and safety is one of four critical ) e,
challenges identified in 2013 Grid Energy Storage
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Strategic Plan
Single Cell
~0.5-5 Ah
= Failure ratesaslowas 1in &
several million, St;ig:a;::g;ﬁgge
= But number of cells used in ~10-200 Ah
energy storage is potentially EV Battery Pack 1005. (4
huge (billions). 13050;;3';
= High likelihood of ‘something’ %
going wrong, Stationary storage
. . system 1000s or more
" Need to design against many individual cells

el epeys MWh
possibilities. '

WWW.nissan.com
www.internationalbattery.com

= Asingle cell failure that P ——
propagates through the pack www.saft.com

could lead to an impact even
with very low individual failure
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Approaches to designing in safety rh)

The current approach is to test our way into safety?

" Large system (>1MWh) testing is difficult and
costly.

Consider supplementing testing with predictions of
challenging scenarios and optimization of mitigation.

= Develop multi-physics models to predict failure
mechanisms and identify mltlgatlan.soo o

= Build capabilities with
small/medium scale
measurements.

= Still requires some testing and
validation.
Time: 46.683046

1‘Power Grid Energy Storage Testing Part 1.” Blume, P.; Lindenmuth, K.; Murray, J. EE — Evaluation Engineering. Nov. 2012.




How do we evaluate these terms in realistic ) e,
scenarios?
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* Leverage the large DOE-NNSA Investments in Sierra-Mechanics Integrated
Code simulation tools developed at Sandia National Laboratories under the
Advanced Scientific Computing (ASC) program for Science-based Stockpile
Stewardship by applying these tools to battery safety analysis

Physics:

e Turbulent fluid mechanics (buoyant
plumes)

» Participating Media Radiation (PMR)

» Reacting flow (hydrocarbon, particles,
solids)

e Conjugate Heat Transfer (CHT)

* The simulation tool predicts the
thermal environment and object
response

Heat transfer mechanisms in a fire




Predicting fire environments and consequential ) e,
heating
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Time: 139.595814

Fire modeled as a combustible hydrocarbon
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Multi-physics coupling )

The equations and couplings...

Fluids: RTE:
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From predicting fire environments to predicting @5 g,
heat release in a battery pack

2.163e+03

(NENRRRRN

Time] 120.001112

Temp 7 5.000e-07
2.980e+02 764 1230 2.163e+03 -
WLIIIIIIIIIIIII
mass burning rate Time: 62.669048 _. : \ : :
Fire environment results in heating
000e+00 12e-7 2.5e-7 3.8e-7 5000e-07 .
lII;WHHIIH Of n0t|0nal battery paCk.

Now focus on what happens to
that heated battery pack.




Development of heat release models from ) e,
calorimetry measurements
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= Calorimetry measurements inform and calibrate models for heat release
rates.

= Here cathode heat release models are evaluated based on literature

measurements.
= These heat release models are in our codes and used in subsequent
predictions.
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= Measurement from: MacNeil, D. D. and J. R. Dahn (2001). "Test of reaction kinetics using both differential scanning
and accelerating rate calorimetries as applied to the reaction of LixCoO2 in non-aqueous electrolyte."

= Models based on Spotnitz, R. and J. Franklin (2003). "Abuse behavior of high-power, lithium-ion cells." Journal of
Power Sources 113(1): 81-100. 9




Modeling thermal runaway in lithium ion cells

= Evolution simulated using calorimetry-derived heating rates and
lumped thermal mass.

= Consider SEI decomposition, cathode-electrolyte reaction, electrolyte

decomposition, anode-electrolyte reaction

= Fire environment modeled as an ambient temperature.

= Bound thermal runaway versus heat dissipation.
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Thermal runaway occurs if ) e
heat release exceeds heat losses
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0.08 - —-‘—-Mn2‘04, Tn150C| | | | | | 4
-------- Mn204, Tinf=240 C i .
0.06 e /i Chemical heat
o w7 { release

004 Net heating S B . .
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006
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Cell temp [C]
* Predicted heating rates based on ARC measurements.
« Higher environment temperature leads to thermal runaway.

* Low temperature degradation occurs in both cases. "




Thermal runaway occurs if
heat release exceeds heat losses
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Thermal runaway occurs if ) e
heat release exceeds heat losses
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/i Chemical heat
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E 0 sensitivity to scale and
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Failure of a single cell can propagate to rest of pack T e,

Experimental propagation in
5 stacked pouch cells
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Lamb, J., et al. (2015). Journal of Power Sources 283: 517-523. "
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Propagation across multiple (5) cells ) feuma,

* Prediction and mitigation of cell-to-cell
propagation is key to addressing risk.

* Here simulating propagation across
series of pouch cells.

e Accurate measurements of highest
temperature kinetics unavailable and
need to be calibrated to get

agreemen t. .
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Propagation across multiple (5) cells )t

* Prediction and mitigation of cell-to-cell
propagation is key to addressing risk.

* Here simulating propagation across
series of pouch cells.

e Accurate measurements of highest
temperature kinetics unavailable and
need to be calibrated to get

agreemen t.
;
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Pulsating Propagation at large scales ) feimat

* Extend modeling to large
scales at small cost relative
to measurements.

e Prediction and mitigation
of cell-to-cell propagation |
is key to addressing risk. “Time: 0 sec

* Here predictions include
multi-step mechanism
involving anode, cathode, g
electrolyte reactants.

Mesh Spacing = 0.0001 m
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* Propagation across a
large pack (128 cells
here) exhibits pulsating
instabilities.
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Pulsating Propagation at large scales ) feimat

* Extend modeling to large
scales at small cost relative
to measurements.

e Prediction and mitigation
of cell-to-cell propagation _
is key to addressing risk. ‘Time: 12000 sec

* Here predictions include
multi-step mechanism
involving anode, cathode,
electrolyte reactants. -

Mesh Spacing = 0.0001 m
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The mechanism of pulsating propagation rh) i,

* Heat released is conducted upstream of reaction front, increasing the total
enthalpy (sum of sensible and chemical enthalpy) #TOT :cpT+YrDHr

* Front propagates rapidly through preheated region with larger H -

-ﬂ-

T (K)
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reaction front. 19



Parameter studies of propagation at large scales ) o

are possible with models
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Prediction and mitigation of cell-to-cell propagation is key to addressing risk.
Single-step heat-release predictions with a range of heat release and boundary temps.
Propagation across a large pack (80 cells here) exhibits pulsating instabilities.
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Future work i) st

= Fit historical data from a variety of battery chemistries (Sandia BattLab and
literature) to kinetic models.

= |dentify cell-pack configurations that f / fHeat losses

inhibit initial ignition. —
= Model thermal interaction of battery
packs in Sierra. \ \\v

= Predict configurations leading to
cascading versus isolated failure.

300 600 700
T1me Q002 s a1

= Focus on heat losses required to mitigate propagation.
" |ntermediate term

® |ntegrate reacting thermal model of battery packs with fire models in
Sierra to evaluate safety of representative geometries and scenarios.

= Predict contributions of battery thermal runaway to overall fire load
and as source of hazardous products.

= - Ultimate goal: Predict criteria for cascading failure to act
as a design tool in developing mitigation strategies.
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Publications and presentations ) feuma,

= Publications
= Ferreira, S.R., et al., Fundamental aspects of the safety of large-
scale energy storage systems, Paper 5.3, in Power Sources
Conference. 2016: Orlando, FL.

= Hewson, J.C., Understanding the limits of thermal runaway in
lithium-ion battery systems, in Interflam. 2016: London, UK.

= Presentations:
= Ferreira, S.R., et al., Fundamental aspects of the safety of large-
scale energy storage systems, Paper 5.3, in Power Sources
Conference. 2016: Orlando, FL.

= Hewson, J.C., Understanding the limits of thermal runaway in
lithium-ion battery systems, in Interflam. 2016: London, UK.

22
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In closing )t

= Thermal runaway is a significant risk and potential barrier to
development and acceptance.

= Simple thermal models coupled with knowledge of fire
environment can potentially identify critical ignition and
propagation trends.

= Quality measurements are key to parameter identification.
= Progress this termin
= Development of thermal source terms.

" |ntegration of source terms in ASC multi-physics code
framework.

= |dentification of thermal ignition criterion.

= Cell-to-cell propagation along homogenized pack structures.
23
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