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BACKGROUND - For large generation and load complexes separated by long 1+KS—K8™ +...FKS

transmission lines, the propensity for complex inter-area oscillations increases. LThe Padé approximation is incorporated into the state model, thus allowing}

These oscillations have been identified as a hazard for utility systems since they network time delay to be compensated for in the optimization.
may cause damage to equipment or restrictions on power flows. These oscillations
are described by mode frequency, mode shape, and damping ratio. Engineering
solutions are needed to mitigate these oscillations.

EXAMPLE SYSTEM — A Three-area system Is considered wherein each area

Includes droop, speed governor control, turbine and rotor dynamics and
transmission to the other areas. In addition, the model includes long asymmetric

Power (MW) AUPEEL, qll?ﬁgl}}f(“gfg;;oﬁlf;?1‘6“6“1 Broakup network time delays of 0.5-1.5 sec from one area to another. This system has
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PROJECT GOALS — This work aims to develop and demonstrate a robust method to oy arer ranster A3 j Angle from

area j

compute the damping control gains for distributed energy storage systems that SIMULATION RESULTS — The optimization was formulated to provide

accounts for network time delays. damping to both modes but to prioritize the lightly damped 0.333 Hz mode.
CONTROL APPROACH - A Structured Control Algorithm (SCA) is applied Damping control was evaluated for local feedback (FB), network FB without

wherein inter-area oscillations are assigned a mathematical penalty, a ‘cost’, and an delay compensation and network FB with delay compensation. Eigenvalues are
algorithm determines the gains K, at each node such that the system cost Is f:ompared for each, and various Cases are evaluated In s!mulatlon_ for a simple
minimized. The method requires a linearized system model and a cost function to be Impulse response. Network FB with delay compensation provides the best
defined. The dynamic effect of time delay is incorporated into the state model using damping with less control energy at the specitied mode. The 0.333 Hz mode Is
the Padé approximation. In practice, energy storage systems modulate power as a ob_servable In the fl-fg_ oscillation. This mode dampens fastest with network FB
function of these gains with feedback from local and remote frequency with delay compensation. System Eigenvalues
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