Experimental Investigation of Silicon Carbide Power Device Reliability

September 27, 2012

Robert Kaplar, David Hughart, Sandeepan DasGupta, Matthew Marinella, Mark Smith, and Stanley Atcitty

The authors gratefully acknowledge the support of Dr. Imre Gyuk of the United States Department of Energy, Office of Electricity Delivery and Energy Reliability, Energy Storage Program
Project Overview

- **Wide-bandgap semiconductors have material properties that make them theoretically superior to Silicon for power device applications**
 - Lower power loss and reduced cooling requirements would increase the efficiency and reduce the size and complexity of power conversion systems linking energy storage to the grid, *thus reducing overall system cost*
 - However, wide-bandgap materials and devices are far less mature than their Si counterparts; many questions remain regarding their reliability, *limiting their implementation in systems*

- **Goal:** Develop a reliability model for a commercially available plastic- and metal-packaged 1200 V SiC power MOSFET under bias and temperature stress
Example of Motivation for WBG Power Electronics: Portable Energy Storage

Benefits of portable storage
- Low installation cost
- Short time from installation to operation
- System is optimized for use at multiple sites

Typical portable power conversion system
- PWM voltage sourced converter
- Silicon-based power electronics
- Water cooled (*complex, bulky, and expensive*)

Typical Applications
- Grid stabilization
- Frequency regulation
- Renewable integration
- Peak shaving
- Voltage support
SiC has Superior Material Properties for Power Devices

SiC

- Band Gap
- Breakdown Electric Field
- High Temperature
- High Voltage
- Low n_i
- SATuration Velocity
- Small Size
- Dielectric Constant
- Low Capacitance
- Thermal Conductivity
- High Temperature
- High Frequency
- High Temperature
- Low Capacitance

<table>
<thead>
<tr>
<th>Property</th>
<th>Si</th>
<th>4H-SiC</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_G (eV)</td>
<td>1.1</td>
<td>3.2</td>
</tr>
<tr>
<td>E_C (MV/cm)</td>
<td>0.3</td>
<td>3.0</td>
</tr>
<tr>
<td>ε_r</td>
<td>11.8</td>
<td>10.0</td>
</tr>
<tr>
<td>v_s (10^7 cm/s)</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>κ (W/cm$^\circ$K)</td>
<td>1.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Figure courtesy of Prof. D. K. Schroder, ASU (collaborator on this project).
Potentially Lower Power Loss for SiC compared to Si

Switch power loss mechanisms:
1. Leakage
2. Turn-on
3. Conduction (R_{ON})
4. Turn-off

Figure courtesy of Prof. D. K. Schroder, ASU (collaborator on this project)

We have characterized the reliability of a commercially available 1200 V SiC power MOSFET
Leakage Loss Mechanism: Plastic vs. Metal Package

- Part is rated to 125°C
- Metal-packaged part shows negligible leakage for $T \leq 140°C$
- Plastic-packaged part shows significantly higher leakage at high T
Gate Voltage Dependence of OFF-State Leakage Current

- Metal package: Negative gate voltage may be used to turn device completely off.
- Plastic packaging appears to introduce an extrinsic drain-to-source leakage path.
Conduction Loss Mechanism: Threshold Voltage Instability

- Shift in threshold voltage ΔV_T (likely due to charge trapping in the gate oxide) will change R_{ON} and thus the ON-state conduction power loss

- ΔV_T is a function of time t, gate voltage V_G, and temperature T

- Assume a power-law dependence on t and V_G, and an Arrhenius dependence on T

- For positive V_G:
 $$\Delta V_T = 8.5 \times 10^{-3} t^{0.40} V_G^{3.8} \exp(-0.34/kT)$$

- For negative V_G:
 $$\Delta V_T = -1.4 \times 10^2 t^{0.42} |V_G|^{0.79} \exp(-0.33/kT)$$

Threshold voltage shift is independent of packaging type
Example of Statistical Prognostics: Integrated Free-Wheeling Diode

Free-wheeling diode ideality factor η may be used as a statistical screening criterion to predict the V_T shift for a particular device.
We have demonstrated that:

• Plastic packaging of a 1200 V SiC MOSFET increases OFF-state leakage current compared to metal packaging, especially at high temperature – *plastic package increases OFF-state power loss*

• Compared to zero gate voltage, negative gate voltage may be used to reduce leakage current (and hence OFF-state power loss) *in metal-packaged devices only*

• Gate electrical and thermal stress changes the MOSFET’s threshold voltage (and hence ON-state power loss), and we have developed models for $\Delta V_T(t, T, V_G)$ for positive and negative V_G – *normal gate stress increases ON-state power loss*

• The reliability model contains a statistical element, and the free-wheeling diode ideality factor may be used to screen for the expected magnitude of ΔV_T
Future Tasks

• Better understand the statistical nature of the MOSFET reliability model (test a larger number of parts)
• Examine switching loss mechanisms, especially in a realistic power circuit environment
• Investigate the physics of gate oxide degradation (collaboration with Auburn and Arizona State Universities)
• Characterize the reliability of competing WBG devices, and understand which device is best for the power electronics system in terms of performance, reliability, and cost
 • Examine the reliability of non-MOS SiC devices (e.g., BJT and JFET)
 • Compare SiC-based devices to GaN power HEMTs (we have recently initiated a collaboration with Hughes Research Labs for this purpose)
FY12 Publications

Contact Information

Dr. Robert Kaplar (Bob)
Sandia National Laboratories
Advanced Semiconductor Devices
 and Reliability Physics, Dept. 1748
Phone: 505-844-8285
Email: rjkapla@sandia.gov

Dr. Stanley Atcitty (Stan)
Sandia National Laboratories
Wind Energy Technologies, Dept. 6121
Phone: 505-284-2701
Email: satcitt@sandia.gov

We gratefully acknowledge the support of Dr. Imre Gyuk of the DOE Energy Storage Program