An Advanced Power Converter System Based on High Temperature, High Power Density SiC Devices

Timothy Lin, Bob Liu
Aegis Technology Inc., Santa Ana, CA
Hui Zhang, Tolbert Leon
The University of Tennessee at Knoxville, Knoxville, TN
ACKNOWLEDGMENTS

- Funded by the Small Business Technology Transfer (STTR) program of the U.S. Department of Energy (DOE/ESS) and managed by Sandia National Laboratories (SNL).
Outline

1. Introduction
2. Objective
3. Approach
4. Work scope (Design, Modeling and Simulation)
5. Summary

• Acknowledgment: DOE STTR Phase I (DE-FG02-05ER86234), supervised by Stanley Atcitty (Sandia National Lab.), Imre Gyuk (DoE)

• Aegis Technology Inc.: Power electronics and thermal management for wide bandgap semiconductor
1. Introduction – Advantages and Challenges

• Si technology is approaching its theoretical limits.
• SiC devices are superior to present Si devices.
 – High temperatures, breakdown voltages, frequency and thermal conductivity
 – High efficiency, light weight, small size in SiC conversion system
• Challenges in utilizing SiC power devices.
 – High cost (expensive material, low yield) and limited availability (Schottky diodes, JFET)
 – New circuits, passive components, gate drivers and thermal management (high temperature, high power density package)
2. Objectives

- Develop an innovative power converter using high temperature, high power density SiC devices.
 - High efficiency, small size, and light weight
 - High power density, high temperature, and high frequency
 - Scalable current ratings for various motor controls

- Insert the technology for the applications in electric energy storage, motor control, and others.
3. Approach

- Circuit design and modeling of converter to evaluate the effects of SiC devices on power loss and efficiency.

- High temperature, high power density packages for the thermal management of SiC power devices.

- Gate drive that enables SiC power devices under high temperature.
4.1 Design – Converter

- **Battery**: Lead acid battery
- **Converter**: SiC devices (JFET, Schottky diode)
 Bi-directional conduction
- **Utility grid**: 3-phase, 60Hz, 480 V line-line voltage

![Converter Design for Battery System](image)
4.1 Design – Power Module

Power module circuit

- Feed throughs of 1 - 5 for the power input (1,2) and output (3,4,5).
- Feed throughs of 9 -17 for the circuit control.
4.1 Design – Thermal Management

High temperature, high power density package

High temperature AlN package
High efficiency graphite (carbon foam) heatsink
4.1 Design – Thermal Management (cont.)

- AlN package substrate
 - High thermal conductivity
 - Low CTE matchable with SiC
 - High thermal shock resistance and insulation

<table>
<thead>
<tr>
<th>Property</th>
<th>AlN</th>
<th>Alumina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity (W/m K)</td>
<td>200</td>
<td>20</td>
</tr>
<tr>
<td>Dielectric strength (kV/cm)</td>
<td>140 - 170</td>
<td>100</td>
</tr>
<tr>
<td>CTE ($x10^{-6/°C}$) (25 ~ 400 °C)</td>
<td>4.5</td>
<td>7.3</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>3.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Flexure strength (MPa)</td>
<td>300 - 500</td>
<td>240 - 260</td>
</tr>
</tbody>
</table>

- Carbon foam heatsink
 - High thermal conductivity
 - Interconnected pores acting like network microchannel
 - High convective heat transfer (100% enhancement over Al heatsink).
4.2 Circuit Modeling

- Compute power losses of SiC devices /power module/converter.
- Evaluate junction temperatures of the SiC devices and the energy efficiency of the converter.
- Demonstrate the advantages of the SiC inverter compared to its Si counterpart quantitatively.
- Investigate the effects of important parameters (package, heatsink etc.).
4.2 Circuit Modeling – Methodology

Single device model:
On-state resistance switching characteristics

Converter system power loss model:
Averaging technique

Thermal model:
Equivalent circuit

Temperature Loop

Parameters

Device tests

Control Strategy
4.2 Circuit Modeling – SiC Power Devices

Modeling and testing: Static/switching characteristics

- SiC diode I-V, on-resistance, voltage drop (Vd) at different ambient temperatures
- SiC switch I-V, on-resistance, voltage drop (Vd) at different temperatures

Forward Voltage of SiC Schottky Diode

I-V characteristics of JFET
4.2 Modeling – Power Module

- Power loss: Sum of power loss in VJFET and diode
 - Conduction loss
 - Switching loss

- Thermal model

Thermal equivalent circuit of the power module
4.3 Simulation

Implement model using Matlab Simulink

Simulation flow chart

Battery model, power loss model, and system thermal model
4.3 Simulation – Results

A periodical input was modeling to compute the junction temperature increase of devices

Junction temperature after 20 cycles

Heatsink 1

Heatsink 2

(a) JFET

(b) Diode
4.3 Simulation – Results (cont.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Maximum temperature for 1st cycle (°C)</th>
<th>Ave. temperature rise per cycle (°C)</th>
<th>Maximum power loss (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JFETs</td>
<td>Diodes</td>
<td>JFETs</td>
</tr>
<tr>
<td>Heatsink 1: R<sub>ch</sub>=0.0026, t<sub>ch</sub>=0.01; R<sub>ha</sub>=1, t<sub>ha</sub>=900;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC</td>
<td>38.025</td>
<td>38.639</td>
<td>0.041</td>
</tr>
<tr>
<td>Si</td>
<td>71.844</td>
<td>111.773</td>
<td>0.548</td>
</tr>
<tr>
<td>Heatsink 2: R<sub>ch</sub>=0.0026, t<sub>ch</sub>=0.01; R<sub>ha</sub>=0.01, t<sub>ha</sub>=60;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiC</td>
<td>38.021</td>
<td>38.612</td>
<td>0.007</td>
</tr>
<tr>
<td>Si</td>
<td>71.748</td>
<td>111.276</td>
<td>0.104</td>
</tr>
</tbody>
</table>

Maximum temperature, average temperature and maximum power loss
4.3 Simulation – Results (cont.)

<table>
<thead>
<tr>
<th>Material</th>
<th>Average power input (W)</th>
<th>Average power loss (W)</th>
<th>Average temperature for 1st cycle (°C)</th>
<th>Inverter efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiC</td>
<td>1131.21</td>
<td>5.92</td>
<td>Heatsink 1: (R_{ch} = 0.0026, t_{ch} = 0.01;) (R_{ha} = 1, t_{ha} = 900;)</td>
<td>37.090 37.228 99.48%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heatsink 2: (R_{ch} = 0.0026, t_{ch} = 0.01;) (R_{ha} = 0.01, t_{ha} = 60;)</td>
<td>37.066 37.205</td>
</tr>
<tr>
<td>Si</td>
<td>1131.21</td>
<td>77.69</td>
<td>Heatsink 1: (R_{ch} = 0.0026, t_{ch} = 0.01;) (R_{ha} = 1, t_{ha} = 900;)</td>
<td>38.777 44.730 93.13%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heatsink 2: (R_{ch} = 0.0026, t_{ch} = 0.01;) (R_{ha} = 0.01, t_{ha} = 60;)</td>
<td>44.110 57.808</td>
</tr>
</tbody>
</table>

Average power loss and efficiency of a SiC inverter and a Si inverter
5. Summary

- SiC power converters are expected to provide higher efficiency and reduced size/weight.

- Feasibility demonstration a SiC converter through
 - Circuit design
 - System modeling
 - Packaging and thermal management

- Integration of circuit design and thermal management will enable SiC converters and their applications.

- System prototype including high-temperature gate drive is under investigation.