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1. Introduction – Advantages and Challenges

• Si technology is approaching its theoretical limits.

• SiC devices are superior to present Si devices.
– High temperatures, breakdown voltages, frequency and thermal 

conductivity  

– High efficiency, light weight, small size in SiC conversion system 

• Challenges in utilizing SiC power devices.
– High cost (expensive material, low yield) and limited availability 

(Schottky diodes, JFET)

– New circuits, passive components, gate drivers and thermal 
management  (high temperature, high power density package) 



2. Objectives

• Develop an innovative power converter using high 
temperature, high power density SiC devices.
– High efficiency, small size, and light weight

– High power density, high temperature, and high 
frequency

– Scalable current ratings for various motor controls

• Insert the technology for the applications in 
electric energy storage, motor control, and others.



3. Approach

• Circuit design and modeling of converter to 
evaluate the effects of SiC devices on power loss 
and efficiency.

• High temperature, high power density  packages 
for the thermal management of SiC power 
devices.

• Gate drive that enables SiC power devices under 
high temperature.



4.1 Design – Converter

Converter Design for Battery System

• Battery: Lead acid battery
• Converter: SiC devices (JFET, Schottky diode)

Bi-directional conduction
• Utility grid: 3-phase, 60Hz, 480 V line-line voltage
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4.1 Design – Power Module
Power module circuit

• Feed throughs of 1 - 5 for the power input (1,2) and output (3,4,5).
• Feed throughs of 9 -17 for the circuit control. 



4.1 Design – Thermal Management

High temperature 
AlN package

High efficiency graphite 
(carbon foam) heatsink

High temperature, high power density packageHigh temperature, high power density package



4.1 Design – Thermal Management (cont.)

• AlN package substrate
– High thermal conductivity
– Low CTE matchable with 

SiC
– High thermal shock 

resistance and insulation

240 - 260300 - 500Flexure strength (MPa)

3.93.3Density (g/cm3 )

7.34.5CTE (x10-6/°C ) (25 ~ 
400 °C)

100140 - 170Dielectric strength 
(kV/cm )

20200Thermal conductivity 
(W/m K )

AluminaAlN

• Carbon foam heatsink
– High thermal conductivity
– Interconnected pores acting 

like network microchannel 
– High convective heat transfer 

(100% enhancement over Al 
heatsink).



4.2 Circuit Modeling

• Compute power losses of SiC devices /power 
module/converter. 

• Evaluate junction temperatures of the SiC devices 
and the energy efficiency of the converter. 

• Demonstrate the advantages of the SiC inverter 
compared to its Si counterpart quantitatively. 

• Investigate the effects of important parameters 
(package, heatsink etc.).



4.2 Circuit Modeling – Methodology

Single device model:

On-state resistance
switching characteristics

Converter system
power loss model:

Averaging technique

Thermal model:

Equivalent circuit

Device
tests

Control
Strategy

Temperature
Loop

Parameters



4.2 Circuit Modeling – SiC Power Devices

• SiC diode I-V, on-
resistance,  voltage 
drop (Vd) at different 
ambient temperatures

• SiC switch I-V, on-
resistance,  voltage 
drop (Vd) at different 
temperatures

Modeling and testing: 
Static/switching characteristics

I-V characteristics of JFET

Forward Voltage of SiC Schottky Diode



4.2 Modeling – Power Module

– Power loss : Sum of power loss in VJFET and 
diode

– Thermal model 

( ) 6tot J DP P P= + ×

Thermal equivalent 
circuit of the power 
module

• Conduction loss
• Switching loss 



4.3 Simulation

Implement model  using Matlab Simulink

Battery model, power loss model, and system thermal model 

Simulation flow chart



4.3 Simulation – Results

(a) JFET                                                        (b) Diode
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A periodical input was modeling to compute the junction temperature increase of 
devices 



Maximum temperature, average temperature and maximum power loss
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4.3 Simulation – Results (cont.)



Average power loss and efficiency of a SiC inverter and a Si inverter
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4.3 Simulation – Results (cont.)



5. Summary

• SiC power converters are expected to provide higher 
efficiency and reduced size/weight.  

• Feasibility demonstration a SiC converter through
– Circuit design 
– System modeling
– Packaging and thermal management

• Integration of circuit design and thermal management 
will enable SiC converters and their applications. 

• System prototype including high-temperature gate drive 
is under investigation. 


