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Abstract

Some materialsmay naturally form discontinuities such as cracks as a result of deforma-
tion. As an aid to the modeling of such materials,a new framework for the basic equations
of continuum mechanics, called the “peridynamic” formulation, is proposed. The propa-
gation of linear stress waves in the new theory is discussed, and wave dispersion relations
arederived. Material stability and its connection with wave propagation is investigated. It
is demonstrated by an example that the reformulated approach permits the solution of
fractureproblems using the same equations eitheron or off the crack surface or crack tip.
This is an advantage for modeling problems in which the location of a crack is not known
in advance.

3





Contents

1

2

3

4

5

6

7

8

9

Introduction

Basic formulation

Isotropy

Elasticity

Structureless materials

Harmonic materials

Relation to the conventional theory

Linearization

Unstressed configurations

10 Material stability

11 Homogeneous deformations in the linear theory

12 Plane waves in a linear material

13 Loading conditions

14 Example of fracture

15 Generalization

16 Summary

7

8

10

12

16

17

18

21

23

24

29

30

35

38

42

44

5



List of Figures

1 A body with an internal subregion. . . . . . . . . . . . . . . . 11
2 Computation of r and change of variables. . . . . . . . . . . . 25
3 Effect of changing A on predicted dispersion curves. . . . . . . 34
4 Graphs of the functions Al, Az, and B. . . . . . . . . . . . . . 36
5 Example of material behavior in anti-plane shear. . . . . . . . 40
6 Mode-III crack tip behavior predicted by the peridynamic and

conventional theories . . . . . . . . . . . . . . . . . . . . . . ..41



1 Introduction

Many problems of fundamental importance in solid mechanics involve the
spontaneous formation of discontinuities. Here, “spontaneous” means that a
discontinuity forms where one was not present initially. The formation of a
crack in a homogeneous solid is an example of such a problem.

The mathematical framework that has been developed for continuum me-
chanics is in some ways ill-suited to the modeling of such problems. The rea-
son is that partial derivatives are used to represent the relative displacement
and force between any two “neighboring” particles. By definition, the neces-
sary partial derivatives with respect to the spatial coordinates are undefined
along the discontinuities. Various remedies are employed to get around this
difficulty, depending on the severity of the discontinuity. For example, phase
changes involve a discontinuity in the first partial derivatives of displacement
with respect to position. To study phenomena of this type, one may evaluate
these first spatial derivatives on either side of the surface of discontinuity and
use a weak solution of the underlying partial differential equations [I]. This
technique fails when we attempt to study a more severe discontinuity, such
as a crack, in which the displacement field is itself discontinuous. In this
case, the only recourse is basically to redefine the body so that the crack lies
on the boundary. Such a redefinition of the body has been an ingredient in
essentialityall of the work that has been done on the stress fields surrounding
cracks (see [2] for a summary of this work).

Both these techniques, the use of weak solutions in the case of phase
changes, and the redefinition of the body in the case of cracks, require us to
know where the discontinuity is located. This limits the usefulness of these
techniques in problems involving the spontaneous formation of discontinu-
ities, in which we might not know their location in advance. This motivates,
in part, the reformulation of the equations of continuum mechanics so that
the same equations apply both on and off of a discontinuity. Another mo-
tivation is that it is simpler and more aesthetically pleasing to avoid using
special techniques whenever a discontinuity happens to appear.

In this paper we propose a continuum model that does not distinguish
between points in a body where a discontinuity in displacement or any of
its spatial derivatives may be located. The essence of the model is that
integration, rather than differentiation, is used to compute the force on a
material particle. Since the spatial derivatives are not used, the equations
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remain equally valid at points or surfaces of discontinuity. We propose the
term peridynamic model for such a formulation, from the Greek roots for
near and force.

The proposed method falls into the category of nonlocal models, because
particles separated by a finite distance can interact with each other. Al-
though there has been a considerable amount of research done on nonlocal
elastic and thermoelastic models (see [3] for a general approach), the objec-
tive of eliminating the spatial derivatives appears not to have been pursued
previously. Instead, most concepts of nonlocal modeling average the strains
within some finite neighborhood and involve a stress tensor that must be dif-
ferentiated in the equation of motion. The present approach is fundamentally
different in that it avoids using these quantities.

2 Basic formulation

Suppose a body occupies a reference configuration in a region R.. We assume
that each pair of particles interacts through a vector-valued function f such
that L, the force per unit reference volume due to interaction with other
particles, is a functional of the displacement field u. At any point x in the
reference configuration, and at any time t,the value of L is given by

Lu(x, t) = JR f(u(x’, t) – U(x, t), X’ – x)dV./ Vx C ~, t z O. (1)

More concisely,

L.(x) = /x f(u’ – U,X’ – x)dV’ on 7?. (2)

The peridynamic equation of motion is given by

pti=Lu+b on7?t>0, (3)

and the pem”dynamic equilibrium equation is given by

Lu+b=O on%L (4)

where b is some prescribed loading force density, which represents external
force per unit reference volume. The function f will be called the pairwise
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force function. Note that no spatial derivatives appear in (2). This is the
feature promised in the Introduction.

Throughout this paper, all integrals refer to Riemann integration. It
will be assumed that all functions are sufficiently well behaved to possess
Riemann integrals.

The following notation will be used for relative displacement vectors and
relative position vectors in the reference configuration:

q=u’–u, <=x’–x. (5)

This notational convenience will not be restated each time it is used. Note
that ~ + q is the relative position of the particles in the deformed configura-
tion.

We call the reference configuration equilibrated if (4) is satisfied with
b a u s O. If f(O, ~) = O for all ~ # O, then the reference configuration will
be called pairwise equilibrated. Note that pairwise equilibrated implies equi-
librated. A third notion of equilibration of the reference configuration will
be discussed in Section 9. This third notion, which will be called unstressed,
allows for nonzero forces between pairs of particles even though there is no
“stress” in the body in a sense to be defined later.

All constitutive information is contained in the function f. There is no
need to assume any particular degree of smoothness of this function with
respect to either of its arguments.

The fact that the pairwise force function f that appears in (2) does not
contain history-dependent variables as arguments implies that the material
described by this function does not have memory of its deformation history.
We therefore call such a material, whose f has the form f (u’ – u, x’ – x), a
peridynamic material without memory.

The form of L. shown in (2) is appropriate for homogeneous bodies. The
form for nonhomogeneous bodies would have a more complicated integrand:
f (u’ – u, x, x’). In this paper we will deal only with the homogeneous theory,
for simplicity.

An important restriction on the form of f is provided by Newton’s Third
Law: the force on particle 1 due to particle 2 equals minus the force on
particle 2 due to particle 1. Thus,

f(–q, –g) = –f(q, ~) vq, f. (6)
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(6) will be called the linear admissibility condition on f.
Another restriction on f arises from conservation of angular momentum:

This says that the force vector between two particles is parallel to their
relative current position vector. If this condition did not hold, we could
choose a pair of particles, initially at rest, such that their combined angular
momentum would change over time even in the absence of external forces.
(7) will be called the angular admissibility condition on f.

An immediate conclusion from the restrictions (6) and (7) is that the
most general form of f is

f(q, ~) = F(r), <)($+ q), v&,‘q, (8)

where F’ is a scalar-valued function such that

f’(-q, –f) = F(Q, t) QE,q. (9)

Conversely, any f satisfying (8) and (9) also satisfies the requirements (6)
and (7).

In the subsequent discussion, it will often be convenient to restrict atten-
tion to points in a body that are sufficiently far from its boundary that for
constitutive modeling purposes, the point sees a surrounding body that is
infinite in all directions. To make this more precise, suppose that for a given
material there is some smallest positive number 6 such that f (q, ~) = O for
any q whenever I&I>6. Such a number 6 will be called the horizon for the
material. If such a 6 exists for a material, let 72° be the subset consisting of
all points in 7? that have a distance of at least 6 from the nearest point on
the boundary of %2:

7P={x ER: Ix’–xl<d=+x’ CR} (lo)

The set 7?0 will be called the internal subregion of 7? (Figure 1).

3 Isotropy

Let a peridynamic material without memory be given, and let its pairwise

force function be f. Suppose there is a set Z of tensors such that

f(Qq, Q~) = Qf(q, &) Vq,~, VQ c Z. (11)
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Figure 1. A body with an internalsubregion.
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Then Z isagroup under thetensor multiplication operator, and we say Z
is a material symmetry group of the material. This idea, of course, parallels
the analogous concept in the conventional theory of elasticity.

In the present discussion, we will be concerned with only one material
symmetry group, the set of proper orthogonal tensors, 0+. A peridynamic
material with this material symmetry group will be said to be isotropic.
Thus, for an isotropic material,

f(Qq, Q<) = Qf(q, ~) kfq, f, vQ c O+. (12)

This means that the response of the material is independent of the orienta-
tion of the material. In other words, the material has no special directions.
Equivalently, isotropy holds if and only if

F’(Qq, QQ = I’(q, Q Vq,~, VQ < O+. (13)

We now seek further restrictions on F for isotropic materials. To do this,
first note that by (13), in an isotropic material, we can rotate a given pair
of vectors ~ and q arbitrarily without changing the value of F, provided the
angle between the vectors is unchanged. This means that the value of F
depends only on the geometry of the triangle with two sides of lengths \&]
and Iql, and the angle between these sides, Cos–l ~ . q/( l~JIql ). (The case
q = O is easily treated as a special case.)

For reasons that will become clear in a later section, it is more convenient
to deal with 1<+ q[ rather than Iql, and it is completely equivalent to do so.
Thus, the most general form of F for an isotropic material is

F(~, &)= I(p, q,r), p=l~+~l, q=&-~, T= /(t, v<, ‘q (14)

where 1 is a some scalar-valued function. Equivalently,

f(~, g) = 1(P, ~,T)(C + ~)1 W, n. (15)

Since p, q, and r are invariant with respect to rigid rotations, any material
described by (14) is necessarily isotropic according to (13).

4 Elasticity

A peridynamic material

/
f(q, g)

r

will be called microelastic if

“d~ = O. V closed curve I’,

12
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where dq represents differential vector path length along r. This means that
the net work done on any material particle x’ due to interaction with another
fixed particle x as x’ moves along any closed path is zero.

If f is continuously differentiable in q, then by Stokes’ Theorem, a nec-
essary and sufficient condition for (16) to hold is that

where the
respect to

Vqxf(r), f)=o vf#o (17)

notation “V~ x” means the vector curl operator evaluated with
the coordinates of q.

Another consequence of Stokes’ Theorem is that a necessary and sufficient
condition for a peridynamic material to be microelastic is the existence of a
differentiable, scalar-valued function w, called the pairwise potential function,
such that

(18)

To investigate the implications of the condition (17), we apply it to (8),
assuming that I’ is continuously differentiable:

This condition holds if and only if there exists a scalar-valued
such that

~(% c) = A(L%t)(t + n).

Integrating this, we find

~(??,q= ~(P,5), P = 1<+d

function A

(20)

(21)

where H is another scalar-valued function, continuously differentiable in p.
Equivalently, for a microelastic material we can write

Reversing the above steps shows that any material satisfying (21) is neces-
sarily microelastic according to (17).

An interpretation of the result (22) is as follows: if a material is microe-
lastic, every pair of points x and x’ is connected by a (possibly nonlinear)
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spring. The force in the spring depends only on the distance between the
points in the deformed configuration. (Recall that ~ + q is the relative de-
formed position vector, so p is the relative deformed distance between two
particles whose original separation distance was r = 1~1.)

For a given microelastic material with a known H, the pairwise potential
function is supplied by

(23)

where W. is an arbitrary constant. This result may be confirmed by using
the chain rule to evaluate dw/E@ from (23). For such a material we write

where ti is a scalar-valued function.
If a material is isotropic as well as microelastic, then comparison of (21)

with (14) shows that H can depend on its second argument, ~, only through
I(1. 1 cannot depend on its second argument, q = <. q, at all. For a
microelastic isotropic material, we can therefore write

W(q, f) = V(I< + d, Iel) (25)

where ti is a scalar-valued function.
Peridynamic materials without memory that are not microelastic are

physically unreasonable, because in such a material we can always find a
cyclical mot ion of two particles x and x’ that produces energy. Therefore,
the remaining discussion will concern only microelastic materials. However,
there is still the possibility of physically reasonable peridynamic materials
with memory that are not microelast ic. Such materials will not be consid-
ered in this paper.

We now make the transition from microelasticity, a concept that concerns
only the interaction between pairs of particles, to macroelasticity, which con-
cerns bodies as a whole. Let a microelastic body be given, with pairwise
potential function w. At any point x in the body, define the macroelastic
energy density functional WU(X) by

~u(x) = ; /#J(U’ – U,X’ – x)dV’, (26)
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Also define the total rnacmelastic energy functional @ by

au = I WU(x)d~ (27)
‘R

provided conditions in a body are such that this integral exists. To demon-
strate the significance of these quantities, we consider the motion of a mi-
croelastic body and the time derivative of its total macroelastic energy. (We
allow u to be time-dependent.)

*U = ~~ // (2M * ~wu’–u, x’–x)ddVdV

= ;~~g( U’ – U,X’ – X) “ (u’ – u) dV’ dV. (28)

We can get rid of the term involving u’ by using the change of variables
x’ e x and applying (6). Then, using (18) and (3),

&u=– /}(~ *fu’–u, x’–xud VddVdV

= -JJPU-WV

= _~[;(;u.u)-b-u]dV.

So, we conclude

&+ Tu=/Rb. tidV

(29)

(30)

where T. is the total kinetic energy of the body. This result states that work
done by external forces on a microelastic body is converted either to kinetic
energy or to macroelastic energy density, with no dissipation. This statement
is identical to its well-known analogue in the conventional formulation of
solid mechanics, provided we replace the macroelastic energy density with
the conventional strain energy for an elastic solid. This analogy will allow us
to compare in a meaningful way the constitutive behavior of elastic materials
in the conventional and peridynamic theories. This will be discussed in a later
section.
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5 Structureless materials

A peridynamic material without memory will be called structureless if there
is a vector-valued function g of a single vector variable such that

f(%c) = g(n + 6) v<, q. (31)

The meaning of this definition is that in a structureless material, the pairwise
force function f depends only on the current (deformed) relative position of
the two particles.

In a structureless material, deformations that merely “reshuffle” the par-
ticle positions without changing the local density of particles have no effect
on the internal forces. Simple shear deformations fall into this category. In
this respect, structureless materials are like compressible inviscid fluids.

For an isotropic structureless material, comparison of (31) with the form
of the most general isotropic material (15) shows that there is a scalar-valued
function G such that

~(%~) = G(P), P = 1<+d Vt,q. (32)

Furthermore, comparison of (32) with (21) shows that any isotropic struc-
tureless material must be microelastic. Conversely, (15), (22), and (31) imply
that any microelastic structureless material must be isotropic.

Suppose a structureless body undergoes an isotropic expansion of the
form x + u = ox, where a is a constant. We compute the macroelmtic
energy density at a typical point x in an internal subregion:

~(x) = /@l&+ ~1) ~v

= 4T
/“

ti(cn-)r2 dr
o

4X w—— / ()Gss2ds~. (33)

where the change of variables s = w has been used. So, we have shown that
W w l/( Va3), where VQ3 is the total current volume of the body. Since W
represents energy per unit reference
mass follows the same dependence.

volume, this means that energy per unit

16



Therefore, regardless of the details of G, specific energy is inversely pro-
portional to volume in homogeneous deformations. This means that struc-
tureless materials cannot be used to accurately model most real fluids. The
reason for this restriction is that in real fluids, degrees of freedom correspond-
ing to thermal motion of the molecules, including vibrational and rotational
modes, play a key role in determining the internal energy density. These de-
grees of freedom are not captured in the present theory, although the theory
could perhaps be modified to do so.

Alternatively, an enhanced version of the theory is presented in Section
15 that permits a significant generalization of the response of structureless
materials under isotropic expansion.

6 Harmonic materials

Consider an isotropic, microelastic material for which F’ is independent of q,
so that we can write

~(q,<) = K(lgl) or f(~, <) = ~(ltl)(t +~) ~<7q (34)

for some function K. For such a material, (2) becomes

Lu(x) =/R K(lx’ – xl) ((U’ – U) + (X’ – X)) dV’. (35)

In this case, L is linear, so the principle of superposition can be applied as
in conventional linear elasticity.

Then if 7? contains an internal subregion 7?0, and if b -0, the equilibrium
equation (4) simplifies to

/ (1~K X’– X/)( U’– U) dV’=0 VxE R”. (36)

Any displacement field that satisfies Laplace’s equation, V2U = Oon R, also
satisfies (36) on 7?0. To see this, let u be any displacement field that satisfies
Laplace’s equation on 7?. Let ST be the spherical shell of radius r centered
at any given x in the interior of l?.

/(() ux’—
s.

If S. is contained

u(x)) dAXI= O.

17
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This is the famous averaging property of solutions to Laplace’s equation. It
is readily confirmed by writing out the Taylor series for u(x’) centered at x
and applying the differential equation to the derivatives that appear in the
coefficients in the series. The fact that such a displacement field satisfies (36)
now follows because from (37),

J’w) [~ (u’-u) ~A’]~~=o ‘= Ix’-xl vx=~” (38)
T

Because of this property, isotropic microelastic materials of the form (34)
will be called harmonic materials.

Note that for harmonic materials, the relation to Laplace’s equation es-
tablished above holds regardless of the particular choice of K. The corre-
sponding statement when there is time dependence is not true: it will be
shown in Section 12 that wave speeds depend on the details of K. Also, the
results of Section 10 show that the form of K affects material stability.

7 Relation to the conventional theory

Because of its importance in relation to measurable quantities, we now discuss
a notion of “force per unit area.” Imagine a homogeneous, microelastic body
that has undergone a homogeneous deformation. Suppose a plane T divides
the body into two subregions 7?+ and 72–. Then X!+ exerts some force on
%?-. This force is applied not just on the surface of R-, but through “action
at a distance” to particles below the surface as well. If this force is divided
by the area of T (l 7?, we have a notion of force per unit area.

To make this concept more precise and general, we now define 7(x, n),
the areal jorce density, at a point x in 1? in the direction of unit vector n.
Let x and n be given, and let

R+={x’c7Z: (x’–x)”n> O}, 7?-={x’e R_: (x’–x)-n< O}.
(39)

Let L be the following set of colinear points:

z={ie R-:x= x–sn, Oss< 00}. (40)

Now define
7(x, n) = // (= ~+ f U’ – u, X’ – x)dVxrd~ (41)
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where d~ represents differential path length over L. This quantity is about
as close as one can come to the concept of traction, which plays a central
role in the conventional theory.

A configuration is said to be unstressed if

r(x, n) = O Vx G ??,, h. (42)

In general, an unstressed configuration cannot be found for a given body. For
example, a body composed of the gas-like structureless, microelastic material
with G(p) = 1/p2 has no unstressed configuration. However, materials that
behave more like solids can have unstressed configurations. An example is
the isotropic, microelastic material with I(p, q, r) = (p – r)2. This mate-
rial is pairwise equilibrated in the reference configuration, so the reference
configuration is necessarily unstressed (see Section 2).

The foregoing definition of r is most useful in the case of a homogeneous
deformation of a body with an internal subregion 7?0. In this case, for x ~ 7?0,
T(x, n) equals the force per unit area in the intuitive sense, i.e., in the sense
of the first paragraph of this section. For such a homogeneous deformation,
we can repeat Cauchy’s proof of the linear dependence of -r on n. Therefore,
we can meaningfully speak of a stress tensor a, independent of x, such that

-r(x, n) = cm k’x C 7?0, h. (43)

This stress tensor is really a Piola-Kirchhoff stress tensor, because r repre-
sents force per unit area in the reference configuration.

For a microelastic material, it was established in the discussion leading up
to (30) that there is a connection between the macroelastic energy density W
defined in (26) and the strain energy density of conventional elasticity theory,
which we will call W. The connection is that they both represent stored
energy accumulated through deformation, and this energy is recoverable by
reversing the deformation. In the case of homogeneous deformation, these
two quantities must therefore be identical in %?O.This also establishes that
the u defined in (43) is identical with the stress tensor in the conventional
theory, 0~/t3F, where F is the deformation gradient tensor.

We now turn to the issue of how W can be computed from a given pairwise
potential function w. To do this, we use (26) noting that U’–U = (F– 1) (x’–
x):

(44)
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Using (24), (44) becomes

J’@’) = ; /z~(Jm7 e) dQ VF. (45)

This shows that the l?’ defined in this way represents a legitimate hyperelastic
material in the conventional theory, because its only dependence on F is
through F~F, i.e., the right Cauchy-Green tensor.

If the material is also isotropic, then we can use (25) and the fact that
the eigenvalues of F~F are the squares of the principal stretches, Al, A2, A3.
Thus, using components in a principal basis for F*F,

This shows immediately that for such a material we can write

l&(F) = LI(&, A2,As) (47)

where !2 is a function that possesses the necessary symmetries for an isotropic
material:

fl(A~, A2,As) = C?(A2,A~,A~) = . . . . (48)

As an example, consider the isotropic microelastic peridynamic material with
the following pairwise potential function:

‘WK +d, I&l)= ‘Y(H) (I6 +d2 – IK12)2 (49)

where ~ is a scalar-valued shielding function that describes the way that
the strength of interaction between particles drops off as a function of their
separation in the reference configuration. Using components in a principal
basis for F~F, we have ~i + qz = Ai&i(no sum). Carrying out the integration
indicated in (46) for this material, we find, after simplification,

20



The conventional hyperelastic material described by (50) is a reasonably
behaved compressible material, provided JO~y(r)r6dr >0. This example il-
lustrates that many different peridynamic materials can have the same “large
scale” response as a given hyperelastic material in the conventional theory
of elasticity. To see this, note that if we choose two functions ~(l) and ~(2J
such that

/
~ +1) (T)r6 ~r =

J%2W6 dr, (52)
o

then these materials have the same @ according to (5o). Yet they may have
very different “small scale” properties in the peridynamic theory, as discussed
in Section 12.

In summary, for any microelastic material, we have found the correspond-
ing conventional elastic material (in the sense of homogeneous deformations).
Now we briefly consider the converse: for a given function ~ in the conven-
tional theory of elasticity, can we find a pairwise potential function that
generates it in the peridynamic theory? The answer is in general no. As a
demonstration of this, it will be shown in Section 11 that the linear elastic
moduli that can be generated from peridynamic materials are quite restricted.

Therefore, the peridynamic theory is simultaneously more general and
less general than the conventional theory of elasticity. Not all conventional
elastic materials can be modeled with the peridynamic approach. But for
those that can be, there may be an infinite number of peridynamic materials
corresponding to the same conventional material, as demonstrated in the last
example.

8 Linearization

Now we return to the general peridynamic material (8) and assume that
Iql <<1. Assuming that the required partial derivatives exist (these are
not the spatial derivatives discussed in the Introduction), we linearize the
function f (., ~) while holding & fixed:

where C is the second-order micromodulus tensor given by

c(g) = :(0, f). (54)
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Error terms of order 0( lq\2)have been omitted from (53). Thus, for a linear
peridynamic material, (2) and (53) lead to

Lu=~[c(x’-x)(u’ -u)+ f(07x)lx)l dv’ ~x = ~ (55)

where the notation Lu = LU is used since L is now a linear operator. If the
body possesses an internal subregion Tl”, then in view of (6), (55) simplifies
to

Lu =
/
RC(X’ – X)(U’ – U) dV’ ‘dx ~ no. (56)

C inherits the following property from f according to (6) and (54):

C(–g)= c(f) v~. (57)

Differentiation of (8) with respect to q yields

(58)

If a linear material is microelastic, (17) applied to (54) shows that

c(g) = Cqf) Vg. (59)

This condition is also sufficient for the linear material derived from (58) to
be microelastic. Comparing (59) with (58), evidently not all linear materials
are microelastic, since in general the C derived from (58) is not symmetric.
A necessary and sufficient condition for it to be symmetric is that there be
a scalar-valued function A such that

(60)

in other words dF/dq(O, f) must be parallel to f. lf this is the case, we write

where A and F. are given by

(62)
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Note that because of (57) and (61), A and FOsatisfy

Also note that l?O-0 if the reference configuration is pairwise equilibrated.
In this case f (O, “) - 0 in (53). On the other hand, there is no reason to
assume that this condition would exist in real materials. (See Section 9).

For a microelastic material, using (21):

(64)

For an isotropic material, using (14):

Note that in a linear isotropic material, A and F. depend on ~ only through

Igl. We will use the same symbols ~(1~1) = ~(~) and Fo(]<l) = F(<) in
this case to avoid a proliferation of notation. Also note from the discussion
following (24) that if the material is microelastic as well as isotropic, then
the term 01/~q vanishes in (65).

For an isotropic structureless material, using (32):

(66)

9 Unstressed configurations

As discussed in Section 7, a body is in an unstressed configuration if -r(x, n) =
O at all points x in the body for all directions n. Consider an isotropic,
microelastic body ~ with an internal subregion %?O. Let an orthonormal
basis {el, ez, e3} be given. From (8), (41) and (42), an unstressed rejerence
configuration has

O= 71(0, el) = ~m~+~(o)x’+.el)(x’+ .el)~J’Jd. (67)

Setting < = x’+ sel and using a spherical coordinate system with

CI =7-cos O, &=rsinOcos@, &3=rsin @sin@, (68)
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the integral in (67) becomes

lWITIC”S-’(S’”’12=
FO(r)(r cos 19)~2sin Odo d6 ds dr = V (69)

where

(70)

and F. is defined in (62). (See Figures 2(a) and 2(b) for an illustration of the
change of variables.) So, for an unstressed reference configuration, we have

Iu=o. (71)

This result places a restriction on F if the reference configuration is to be
unstressed. It is of import ante because in modeling real materials, it is too
restrictive to assume pairwise equilibration, which requires that the force
between any two particles vanish (see Section 2). On the contrary, it is to be
expected that there may be significant forces between particles even when
no loading is applied. Equation (71) implies that this distribution of forces
between particles, if it is nonzero, be repulsive (negative) for some values of
interparticle distance and attractive (positive) for others.

10 Material stability

Suppose that for a bounded body X! composed of a microekistic material, a
displacement field u satisfies the equilibrium equation (4) for some specified
b field. Define the potential energy functional H by

rIu=ilu–
J

b.udV (72)
%?

where @ is the total macroelastic energy defined in (27). Ifs is a scalar and
v is a vector field on T?, define a functional fi by

iiv(E) = ~u+cv. (73)

From (73), (27), and (26),

‘V(E) = ; ~R~R~((U’ – u) +&(V’ – V), x’ – X) dV’ dV–~~b. (u+sv) dV.

(74)

24



(a)

,9

*
xl

Figure 2(a) Computation of ~, and (b) Change of variables.
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To find a field u that makes H stationary, we set dfiv/d&(0) = O:

1// (~~ ~fu’–u, x’–x(v(v)dv)dv’dv–
/

b-vdV=O (75)
‘R

where (18) has been used. To obtain the Euler-Lagrange equation corre-
sponding to II, we take

v(x) = aA(x – X) Yx ~ 7? (76)

where a is an arbitrary non-null vector, X is an arbitrary point in R, and A
is the delta function for a vector variable. Applying this to (75) and using
the properties of the delta function to evaluate one of the double integrals
leads to

LU+b=O on%i! (77)

where the linear admissibilityy condition (6) has been used. Thus the equilib-
rium equation is the Euler-Lagrange equation for II. This result is of course
the well-known principle of stationary potential energy applied to peridy-
namic materials.

Now we go a step further and investigate the conditions required for II
to reach a minimum at u in addition to merely being stationary there. To
do this, we define .

d~2 ‘e)~v(&) . HE (78)

and require Xv(0) >0 for all choices of v. Differentiating (74) again,

J-J&’-+ (;( )U’– U,X’– X) (v’–v)dV’dV>O. (79)

This condition would apply to a large displacement field u as well as a small
one. However, since we have worked out the linear theory in Section 8 only
for linearization about the reference configuration, we will now assume that
displacements are small. Then, by (54) and (79), we have

x.(o) =JJp’-v)(c(x’-x)(V’ -v)) dv’dv> o (80)

or, in component form,

XV(0) = /R~RCZj(X’ – x)(~: – vz)(v; – Vj) dV’ dV >0. (81)
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A sufficient condition for this to hold for all choices of the field v is that C(g)
be positive definite for all <, i.e.,

Taking the specific case of a linear isotropic material, we see from (61) that
the eigenvalues of C(f) are

A(T)T-2+ FO(r) and FO(T-), r = I&l. (83)

Both these eigenvalues need to bepositiveif C(<) istobe positive definite.
Sothisimplies .FO(r)>Oforallr>O. But itwasshown in Section 9 that if
FOis positive over some interval and the reference configuration is unstressed,
llOmust also benegative oversome other interval. Therefore itisnot possible
for C(&) to be positive definite for all & in an unstressed configuration.

In particular, if F. a O, C cannot be positive definite regardless of A.
Consider a material with II. = O and A > 0 within some horizon. Physi-
cally, the material is a complex network of linear springs with positive spring
constants. In the reference configuration, there is zero force in each spring.
Surely this material is expected to be stable by any reasonable criterion for
material stability. (One hardly expects such a system to undergo unbounded
deformation in response to an infinitesimal load.) So we must seek a more
useful condition than (82), which is sufficient for an equilibrated deformation
to be a minimizer of H, but is not physically reasonable.

To do this, we search for a non-null field v that makes XV(0) a minimum.
If the value of XV(0) at this minimum turns out to be positive, then (80)
must be satisfied for all v. Since we are only interested in the “direction”
of v (in the sense of infinite dimensional vector spaces), it is necessary to
normalize x by defining

(84)

Now we seek an extremum for x by deriving its Euler-Lagrange equation.
Carrying out calculations similar to those leading up to (77), we find that
the Euler-Lagrange equation for xv is

p = xv(o)Lv = –@ on R., —
2“

(85)

This is an eigenvalue equation for v, since ~ is a scalar. So if all eigenvalues
~ are positive, then (80) must be satisfied for all v. The interpretation of
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this eigenvalue equation is as follows: if ~ reaches an
the instantaneous acceleration field that would result
to the body and then suddenly releasing it would be

pv = –~v on Z.

extremum at v, then
from applying this v

(86)

Since the system is linear, if (86) holds for some particular time, i.e., the
time at which it is released, it must hold for all times after this. Therefore,

(86) describes a system of standing waves of frequency /?/p. Such a systemJ__
is equivalent to the superposition of some combination bf propagating plane
waves. The conclusion is that we can get the entire material stability picture
by studying plane waves: if the wave speeds are real for all waves, then
the material must be stable in the sense of potential energy minimization.
In Section 12 it will be shown in detail how to translate this requirement
for wave transmission into specific conditions on A and FO for an isotropic
material.

A particular choice of v in (80) leads to an interesting necessary condition
for material stability that will come up again later. We choose

v(x) = aJ~ Vx E %? (87)

where a is an arbitrary non-null vector. Applying this to (80) leads to

a. Pa>O k’a #O, JP = ~c(t)q. (88)

Since C is symmetric, the condition (88) means P is positive definite. It is
interesting to look at the implications of (88) for A and F’. in a microelastic,
isotropic, linear material. Using (61), we find

(89)

The integral may be evaluated with the help of the spherical coordinate
system defined in (68). The result is

m A(T)r4

J[
P=41rl —

3 I
+ Fo(T)r2 dr. (90)

o

If (88) holds for all points in a body, the material will be said to possess single-
point stability. Its interpretation is that if we displace a single point while
holding all the others fixed, that point will experience a force that opposes its
displacement. Single-point stability is a necessary but not sufficient condition
for potential energy minimization.
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11

In this

Homogeneous deformations in the linear
theory

section we compute the elastic moduli, in the sense of the conven-
tional theory of linear elasticity, corresponding to a given isotropic microe-
Iastic peridynamic material. We assume the material is unstressed in the
reference configuration. The micromodulus tensor is given by C(&), which
we decompose according to (61). Let an orthonormal basis {el, ez, es } be
given. Let 7? be a body having an internal subregion 7?0, and let 73 undergo
the homogeneous deformation given by U1= ~11Xl, U2 s U3 - 0, where Cll
is a constant, 1~11I << 1. Hence VI = ell~l, q2 E q3 -0. Then, by (61), we
have

f, = E,,[A(T)C: + ~o(~)cl],

f2 = &w9&2,

f3 = @w&3 (91)

where the notation r = I~I is used. We now compute the “stress” component
all = ~1(el ) where r is defined in (41). Using the spherical coordinate system
(68), we find

~l(el) = E1l
lmlTr-l(s’r)12n

[~(r)(r cos 0)3 + Fo(r)(r cos o)] r2sin O do dO ds dr

= (A+ I)cll, (92)

where

A = ~ ~~ A(r)r6dr (93)

and V was defined in (70). Recall from (71) that V = Oin an unstressed ref-
erence configuration. Carrying out similar computations for the tractions in
the other directions, and comparing the result with the stress corresponding
to this deformation in the conventional theory of elasticity, we find

[0 o Ail=’’’+(p:!:![a]=e,,: A;3
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where 1 is the Lam6 modulus and p is the shear modulus. From this and the
standard relations among the elastic moduli, we conclude that

1l=p=;, ~_5A ~ 5A~=–
4’ 6’–9

(95)

where v is Poisson’s ratio, E is Young’s modulus, and k is bulk modulus.
Not surprisingly, this value for v is identical to Cauchy’s result for a solid
composed of a lattice of points that interact only through a central force
potential [4]. It will be shown in Section 15 how materials with other Pois-
son’s ratios can be modeled in the peridynamic approach, but this requires
fundamental changes to the functional L. For the present, we will pursue the
more restricted approach.

There is nothing to prevent us from carrying out the above computations
for CTin the case of a reference configuration that is not unstressed, in which
case IIImay be nonzero. However, the definitions of the elastic moduli be-
come ambiguous if the reference configuration is not unstressed, so to avoid
confusion, this approach is not pursued here.

The result in (95) is significant in applying the theory to real materials
because it relates a function that is not directly measurable, A, to easily
measurable quantities, v and E, based on experimental data. It will be
shown in the next section that we can make further progress in constraining
A.

12 Plane waves in a linear material

In an internal subregion of a homogeneous body composed of a linear mi-
croelast ic peridynamic material, we investigate the existence of plane waves
of the form

U(X, t) = aez(~N”x–Wt) (96)

where a is the constant amplitude vector, z = ~, K,is the constant pos-
itive wavenumber, N is a constant unit vector that gives the direction of

propagation, and u is the constant angular frequency. The following rela-

tions hold from the elementary kinematics of waves: K = 2m/wavelength,

w = 2~/period, and c = w/K, where c is the wave speed. The components
of a may be complex, but only the real part of the right hand side of (96)
represents a physical displacement.
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We assume that the material has an unstressed reference configuration.
We do not at the moment assume isotropy. Applying the equation of motion
(3) together with (56) to (96), we find that any wave of the assumed form
must be a solution to the following eigenvalue problem:

pu2a = M(N, ~)a (97)

where M(N, ~) is a tensor given by

M(N, ~) = ~ C(&) (1 – e“N”~) dVc. (98)

Since the material is assumed to be microelastic, the symmetry of M follows
from the symmetry of C (see (59)). Also, the components of M must be real-
valued because C is an even function, as shown in (57), so the imaginary part
of the exponential integrates to zero. This allows us to rewrite (98) in the
form

(99)

We now further restrict the material to being isotropic. In this case, (65)
shows that A and F. depend on ]~1only, and (98) becomes

For fixed N, define an orthonormal basis {el, e2, es} such that el = N. Once
again using the spherical coordinate system specified in (68), we carry out
the integration in (100) as follows:

-(1 – cos (~r cos O))r2 sintl d~ dll dr,

.(1 – cos (w- cosO))r2 sin 0 do de dr,

. . (101)

M~3= M22, M12 = M21 = M23 = M32 = M31 = M1~= O (102)
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where

1 sin(tw)
A1(~r) = ~ – –

2 Cos(w) + 2 sin (FW)

K’T’ (Kr)’ (Kr)’

A2(K,r) =
1 cos(~r)
~+

sin (w)

(w)’ - (w)’

B(w) = 1 –
sin (Kr)

m- “
(103)

The functions Al, A2, and Bare bounded asr-+Oin spite of the fact that
they contain terms that individually are unbounded. In the limit of long
wavelengths (small K), we can further simplify these integrals by using the
first three terms of the Taylor series for sin and COS:

z’ z’ z’ z’
‘lnz=z–~+~ –””” Cosz=l ——+— —.. .

2! 4! (104)

which yield

M~l(e~, K) = (A+ ~)K2,

where A is defined in (93)
c = w/~, and the fact that

M“(e~, K) = ~~’(e~, K) = (A/3+ ~)K2 (105)

and V in (70). Using the elementary relation
the pw’ are the eigenvalues of M according to

(97), the wave speeds for long dilatational and shear waves are given by

(106)

In the case of an unstressed reference configuration (V = O), these results are
consistent with the conventional formulation of solid mechanics for a linear
isotropic elastic solid with elastic moduli given by (95).

However, differences between the conventional formulation and the peri-
dynamic theory occur for shorter wavelengths (higher K). In the present
formulation, unlike the conventional theory, the wave speeds depend on wave-
length. For example, in the limit of very short waves, (102) and (103) show
that the diagonal components of M become equal and independent of ~ as
K+ Cc):

m A(r)r4

H
Mll(el, K) = M22(e1, K) = M~~(el, K) = f.17r —

3 1
+ F~(r)r2 dr

o
(107)
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hence the wave speeds become inversely proportional to K:

4T CQ A(r)r4
c;=&=-

J[ 1
+Fo(r)r2 clr.

pl$z o 3
(108)

The reduction inwave speed at smallwavelengths issuggestiveofthe inability
ofrealmaterials tosustain waves ofarbitrarily small wavelength. The explicit
relation that has been developed above in (102) between the eigenvalues of
M and the form of A suggests a way of fitting A and F. to experimental
wave dispersion curves for a given material, i.e., frequency measurements as
a function of wavenumber. As an illustration of how this process might work,
we compare the predicted dispersion curves for two materials:

Material 1: FO= O,
{

15E/m&2, r < ro
A(r) = o, r>ro (109)

Material 2: F. G O, A(r) = (8E/5~312r~r2)exp (–r2/r~),

where r. = 10–8m and E = 200 GPa. The density for both materials is
p = 8000 kg-m-3. Both these materials have the same Young’s modulus
E, which may be confirmed using (95). The micromodulus component C1l
is plotted for both- these materials in Figure 3(a). Material 1 has a sharp
cutoff at r = r. for interaction between particles, while material 2 has a
more gradual reduction. Figures 3(b) and (c) show the dispersion curves for
dilatational and shear waves in both materials. The wave speeds for long
waves are given by the slope of the dispersion curves near ~ = O. These
long wave speeds are identical between the two materials, as predicted by
(106), since the materials have the same Young’s modulus. Both materials
have dispersion curves that level off as wavenumber is increased past some
value that is on the order of 2m/ro. This feature is characteristic of real
materials. Yet the details of the predicted dispersion curves depend on the
details of the shapes of the A (and Fo) curves. This dependence provides a
basis for evaluating these functions, approximately, from dispersion data for
a real material [5]. (Other nonlocal models also predict nonlinear dispersion
curves, because they introduce a length scale for constitutive behavior [6].)

Recall from Section 10 that there is a close connection between real wave
speeds and material stability in linear materials. For long waves, (106) leads
to the material stability requirements

A+ W>O, and A/3 + W >0. (110)
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Figure 3. Effect of changing A on predicted dispersion curves. (a) Microelastic
modulus as a function of particle separationdistancefor thematerialsused in com-
puting the example dispersion curves. (b) Dispersion curves for Material 1.
(c) Dispersion curves for Material 3.
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If the reference configuration is unstressed, then T = O, so in this case (110)
and (95) state that the bulk modulus and shear modulus of conventional
elasticity theory must be positive. These are familiar requirements for ma-
terial stability in the conventional theory. For short waves, (108) and (90)
show that the requirement of real wave speeds is equivalent to single-point
stability, (88). The requirements for short and long waves, (110) and (88),
are necessary but not sufficient for material stability.

For sufficiency, the condition is that wave speeds be real at any wave-
length. This means that the integrals in (102) must be positive for all K. To
see what this implies for A and F., we examine the functions Al, A2, and F’.
in more detail. These functions are plotted in Figure 4(a). They are positive
for m- > 0. The ratios A1/13 and A2/B are plotted as functions of Kr in
Figure 4(b). Note that A1/Z3> 1/5 and A2/13 > 1/5 for Kr >0. Therefore,
the integrals in (102) will be positive if

A(r)r2
A(r) z O and —

5
+FO(r)>O, O<r<d (111)

where 6 is a horizon for the material. The first of (111) is a reasonable
requirement physically; by (64) it means that the spring constants must be
nonnegative. The second of (111) is also reasonable. It shows that we can
tolerate negative values of F. (repulsive forces in the reference configuration)
if the springs are sufficiently stiff to compensate for it. Note that this is a
stronger condition than single-point stability. But it is a weaker condition
than positive-definiteness of C, which, as discussed in Section 10, implies the
physically unreasonable requirement that F. be positive everywhere.

13 Loading conditions

So far nothing has been said about any boundary conditions that might be
required to solve practical problems using the peridynamic approach. In the
conventional theory of continuum mechanics, boundary conditions must be
supplied to make the partial differential equations yield specific solutions in
equilibrium problems. The boundaries of a body play a special role in the
conventional theory because the differential equations model forces between
particles that are in “direct contact” with each other. So, in the interior of a
body in the conventional theory, the differential equations form a complete
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description ofhowagiven particle interacts with thesystem~ a whole. On
the other hand, at boundaries, a particle is not surrounded by neighbors and
therefore additional conditions, namely boundary conditions, are required to
provide a complete description. Mathematically, the significance of boundary
conditions emerges when the Euler-Lagrange equations are evaluated from
the potential energy functional, in which case “natural boundary conditions”
appear automatically when one enforces the requirement that the functional
reach a stationary value.

The situation is very different in the peridynamic theory. In the derivation
of the equilibrium equation from the potential energy functional discussed
previously (see (77)), no natural boundary condition emerged. Also, there is
no traction vector that plays any natural role in the mechanics of a problem
(although we artificially introduced such a concept in Section 7 as a way of
making comparisons of constitutive models between the present formulation
and the conventional theory). Hence the concept of a traction boundary con-
dition, which appears naturally in the conventional theory, does not apply
in the present approach. Instead, external forces must be supplied through
the loading force density b. These can be made nonzero in some layer near
the boundary if one wishes to model loading on the surface. Such a condi-
tion, together with any external fields such as gravity that are modeled in a
problem, will be called force loading conditions.

Displacement boundary conditions do have an analogue in the present
theory. We continue to let Ii! be the region in which the equilibrium equa-
tion (4) or equation of motion (3) hold. We further imagine that in the
complement of R there is another set of points 7?” containing material in
which we specify the displacements. Call the specified displacement field u*,
a vector field defined on R*. Points in 7? interact with points in V through
the pairwise force function f. Therefore, if displacement loading conditions
are present, we modify the functional L as follows:

/
L.(x) = /n f(u’ – U,X’ – x)dv’ + ~. f(u” – U,X* – x)dv” (112)

where the shorthand u* = u*(x*), dV* = clVX.has been used. This analogue
to displacement boundary conditions will be called a displacement loading
condition, and the new term in L will be called the displacement load. Be-
cause the specified displacements interact with the points of 7? only through
f, the displacement load acts something like an elastic boundary condition
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in the conventional theory.
Note that assuming u* is bounded, W must contain a nonzero volume

in order for the displacement loading term to have any effect; otherwise it
would simply integrate to zero. (The requirements for W can be made more
precise using the concept of measure, but there appears to be little to be
gained in doing this.) Therefore, it does not suffice merely to specify u* on
the boundary of %L.

A nice feature of the present theory is that we no longer need to talk about
a displacement field satisfying the equilibrium equation and the boundary
conditions, as we would in the conventional theory. The loading conditions
are incorporated into the equations of equilibrium and motion and do not
represent something that must be applied separately.

14 Example of fracture

h this section we illustrate some capabilities of the peridynamic approach
in modeling fracture. For simplicity, we consider this in the setting of anti-
plane shear. Assume that the body R is infinitely long in the z3-direction.
All quantities are assumed to be independent of z~, and we write U(XI, ~z) =
U3(x) and

~(q, (1,(2) = ~’ ~S(TIes, &el + &ez + tses) d& Vq, <1>(2. (113)

where q = q3. Thus, the equation of equilibrium (4) becomes

where b = 63 and ~ is the cross-section of R in the X1-X2plane. Consider the
following (three-dimensional) microelastic, isotropic, peridynamic material:

{

P(P–T)(6+n)/P,if lP–rl S U. and r < J
f(n) c) = ~, otherwise

(115)

where p, 6, and u. are positive constants and, as before,

(116)
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Thus, the spring connecting any two particles is linear for small relative dis-
placements, but it breaks when the change in distance between the particles
exceeds U*. Only particles within a distance d from each other in the refer-
ence configuration interact. To simplify the algebra, assume that Iq] << F.
Evaluating ~ from (113) and (115) for this material, we find

(117)

where

‘“m
{

W*
z = min

m }

, ~n . (118)

Figure 5(a) shows the behavior of the three-dimensional interparticle force
function defined in (115). Figure 5(b) shows the anti-plane shear force func-
tion f that was derived from this material in (117) for a few values of F.
Oddly, the material described by (117) is harmonic (see Section 6) in the
sense of scalar-valued functions of two coordinates, although the underlying
three-dimensional material (115) from which it was derived is not harmonic.

A computer program was written to solve anti-plane shear problems in
equilibrium. The numerical method uses a relaxation method with a brute-
force integration scheme, i.e., the double integral in (114) is evaluated in each
integration step by summing over every node in the mesh. This program was
applied to the material described by (117) with displacement loading condi-
tons derived from the asymptotic mode-111crack tip field in the conventional
theory of linear elasticity. The same equations are applied regardless of
whether a node is on a discontinuityy or not. (This is the feature promised in
the Introduction.)

Figure 6(a) shows the resulting numerical solution near the crack tip
for the peridynamic model. The figure shows the shape into which a sheet
of material initially in the X1-Z2 plane is deformed. The vertical surface
represents a crack surface.

An interesting feature of the numerical solution is the cusp-like shape of
the crack surfaces. This differs from the analogous result in the conventional
theory of elasticity, which is parabolic in shape near a crack tip (Figure 6(b)).
To sustain this parabolic shape requires unbounded stresses near the tip (the
well-known r–1\2singularity of linear fracture mechanics). Since real mate-
rials cannot sustain infinite stresses, it is necessary to introduce additional
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au!hoc assumptions into the conventional theory, such as the models of Grif-
fith and Barenblatt, to get physically reasonable crack-tip fields [7]. After
modifying the conventional theory in this way, the result is a cusp-like defor-
mation like the one predicted by the peridynamic theory. The fact that the
peridynamic approach predicts this crack-tip shape without any additional
mechanisms is an encouraging result. Other approaches to nonlocal elasticity
can also have the property of avoiding the unbounded stresses near crack tips
[8]. However, because they use partial derivatives in space, they still require
special treatment of a crack surface or tip.

15 Generalization

It was shown in Section 11 that in the theory that has been developed so
far, the Poisson’s ratio obtained for homogeneous deformations of a linear
isotropic material is 1/4. Also, in Section (5), it was shown that structureless
materials, although essentially fluids, have a severely limited range of energy-
volume relations that they can represent. To provide a generalization, we
must alter the form of L assumed in (2) in a fundamental way. A brief
sketch of one way to do this will now be given.

First, we modify the macroelastic energy density so that

W(x) = W(x)+ e(ti(x)), (119)

where

O(X) = /’j(lOIC+d dv’, (120)

and where W is defined in (26), and e and j are scalar-valued functions.
The quantity 0 is a weighted average of the extension of all the springs
connecting x with all the other particles in the body. It may be thought of
as essentially giving the volume of a deformed sphere that was centered at x
in the reference configuration. The function e therefore represents, in effect,
a volume-dependent strain energy term. For convenience, we assume that j
is normalized so that q = O implies 0 = 1.

Note the fundamental way that the energy density has been altered here.
It is no longer merely the sum of the spring energies, although these energies
are still included through W. Instead, it includes a new term that depends
on how the particles deform together. This type of energy dependence is
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motivated by the behavior of real materials. In metals, for example, the
electrons are so mobile that they are often regarded as a “cloud.” In spite
of this mobility, the cloud as a whole is tied to the lattice. So, as the crystal
expands, the electron cloud also expands, and the resulting change in energy
of the cloud must be considered in computing the energy of the crystal at a
given deformation.

It is not obvious how the force density L should be modified for such a
material. To figure this out, we can use Hamilton’s principle in the following
form: we seek stationary values of the functional

J [J
. .

TU= ~ WdV–
0 72 /

~dV-&dV] d,.
722

(121)

Upon evaluation of the Euler-Lagrange equation associated with this func-
tional, we find that the force density ~ that gives the resulting acceleration
field is

where

P(x) = –*(O(X)) Vx G n. (123)

Here, P is something like the hydrostatic pressure in the conventional the-
ory, and the integral in (122) is something like the gradient of hydrostatic
pressure. It is easily shown that the admissibility conditions (6) and (7) are
satisfied by the force density LU defined in (122).

Linearization about an unstressed reference configuration alters (120),
(123), and (122) as follows. If x is any point in 7? sufficiently far from the
boundary,. .

<“v-
~(x)= ~j([t])~ dv’+ 1,

P(x) = ((o(x) – 1), ( = :(1)

~U(X) = Lu(x) – ~n(~(X’) + ~(x))j(l~l)fi dV’.

(124)

(125)

(126)

The form of (124) shows that ti = 1 in simple shear. By computing the areal
force density on any plane in a body undergoing isotropic expansion, using a
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method similar to that leading up to (95), the bulk and shear moduli in the
generalized system are found to be

(127)

So i can take on any value in the generalized system of equations, while P is
unchanged by the generalization. The modified Poisson’s ratio, making use
of the standard relations between the elastic moduli, is

‘=~(:fi?) =:(%).
(128)

where A is given by (93). From (128), evidently A = O> v = 1/2. Suitable
choices of A and ~ can be found that yield an arbitrary value of v using
(128). Presumably, material stability considerations would limit the admis-
sible range of ~ and possibly place restrictions on j, but this has not been
pursued.

So, the generalization has retained the property of not using partial
derivatives in space, but the some of the simplicity of the pairwise force
method has been lost.

16 Summary

We have shown that the
ous types to be modeled

peridynamic approach allows discontinuities of vari-
without the use of special mathematical techniques

at the points where the discontinuities occur. This has a potential advantage
for solving practical problems in which these discontinuities form sponta-
neously or grow along trajectories not known in advance.

It was shown that this theory makes contact with the conventional theory
of elasticity in the following ways. First, a legitimate strain energy density
for purposes of the conventional theory of elasticity may be derived from
a known pairwise potential function in the peridynamic theory. Second,
upon linearization, the peridynamic approach yields “large scale” behavior
consistent with that predicted by the conventional linear theory. Third, linear
elastic waves with large wavelengths are identical between the peridynamic
and convent ional theories.
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On the other hand, the peridynamic theory predicts different “small scale”
behavior than the conventional theory. This is shown by the nonlinearities in
the predicted dispersion curves. In contrast, the conventional linear theory
of elasticity predicts linear dispersion curves regardless of wavelength. The
nonlinear dispersion curves are similar to those found in real materials and
provide a possible means of evaluating, or at least approximating, the con-
stitutive function F. A given material in the conventional theory may have
multiple peridynamic materials that agree with it in the large-scale limit but
differ from each other in small-scale behavior. These differences may include
different material stability properties. This suggests that a properly formu-
lated function F in the peridynamic theory may contain “more information”
about material behavior than can be expressed in conventional constitutive
models.

Long-range forces, which are thought to be important in thin film me-
chanics and many other applications can be included in a natural way in the
peridynamic approach. The generalization discussed in the previous section
provides a way to get around the restriction v = 1/4, although there ap-
pear to be many interesting phenomena that can be modeled without this
enhancement.

There is a parallel between the present theory and molecular dynamics
(MD) computations, since in both approaches, the motion of any particle
is found by a process of summation of forces due to neighboring particles.
However, there are important differences as well. First, the peridynamic
approach is a continuum theory. This means that individual atoms need not
be modeled, and that a true, physically correct, interatomic potential need
not be known. Second, in MD, interaction between particles is analogous to
the structureless interactions described in Section 5, because particles in MD
have no memory of their position in any reference configuration. There is no
analogue in MD to materials that are not structureless.
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