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Analytical Project Goals
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Development of an understanding of the proces

• Particle acceleration

• Particle impact

• Coating buildup

Optimization

• Process costs
• gas and powder usage
• coating times

• Coating properties
• adhesion
• porosity
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Statistical Process
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• Powder feed
• powder size variation
• powder shape variation
• powder porosity varia-

tion
• powder chemistry

(phase content)

• Gas Stream
• Gas velocity variation
• Gas chemistry variation

(3 gas streams)

• Trajectory

riations result in changing impact orientations, velocities
gles. Goal is to design a robust process so that these var
t reduce the coating quality.
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Thermal Spray Optimization
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• Goal: Determination of spray parameters that will re
spray particles impacting substrate with optimal velo
thermal energy.

• Want them molten, but not too hot
• Want them traveling fast but not too fast

• Method:
• Develop a numerical model for the spray proce
• Find spray settings (chamber pressure, therma

gas flow rate, standoff, He/Ar mixture) that yield
impact conditions

• Find spray settings that are insensitive to powd
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3125 input parameter combinations
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 varying input parameters (gas flow, gas composition, p
e, electric power, etc.) almost any impact condition can 
tained:
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Sensitivity to Particle size
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• One “Optimal” condition only works for 30 and 33 m
ticles

• Another works for all particles from 20 to 40 microns

• Found automatically by creating an output function 
points for each size hitting target
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pact Simulation
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Transient Simulation Results
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otential JTST cover art)
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Experiments and Modeling Correlate Well
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Experimental Calculated

• Lots of scatter in the experimental due to various par
and velocities within an experiment.

• Calculated allows examination of trends without the
tions
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ptimal Nozzle Shape

• Nozzle design is an area of interest in many applica

• Engine - Optimize thrust

• Wind Tunnel - Optimize gas velocity uniformity

• Cold Spray - Optimize particle velocity
• Fastest particle velocity does not demand simp

est gas velocity
small particles
long nozzles
high density gas
high velocity gas
high specific heat ratio gas
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Analytical Model of Cold Spray
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like Thermal Spray which often include chemical reactio
ray can be modeled analytically:

e above equation is integrated numerically to yield nozz
 maximum acceleration
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Solve Equation for Area as a function of
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ozzle Length

sults show that an optimal helium nozzle is much differe
timal air nozzle

wever, the results show that the optimal nozzle is not sig
tter than non-optimal designs as long as reasonable des
e followed.
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Analytical Cold Spray Velocities
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omparison to Experiments

alytical result
ows that particle
locity increases
th gas temperature

periments do not
ow monotonically
reasing particle
locity with
reasing
perature

P
ar

tic
le

 V
el

oc
ity

 (
m

/s
)

Gas Temperatur



/home/rcdykhu/frame/cold.view

Two-dimensional Cold Spray Jet Impact
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as velocities and streamlines)

We obtain particle
from this output

This was done to
actual particle im
ties on a substrat
gas velocities at s
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Three dimensional HVOF Calculations
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ch Number distribution from a wire fed HVOF nozzle
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• Modeling aids our understanding of spray processe
• particle trajectories and acceleration
• chemical reactions
• droplet breakup
• particle impact

• Modeling allows easier examination of process tren
• experiments are forced to examine ensemble a

• Modeling allows easier optimization
• modeling can point to operational points that ha

been examined

• Modeling must be supported by experimental efforts
• modeling is only an approximation of reality
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	We obtain particle trajectories from this output
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