Radiation Dose Modeling in FLUENT®

Clifford K. Ho

Sandia National Laboratories
Albuquerque, NM

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modeling Approach

- Geometric Model
- Hydraulic Model
- UV Radiation Model
- Dose Model

Inactivation and Reduction Equivalent Dose
Overview
Radiation Dose Modeling in FLUENT®

• Discrete Ordinates Radiation Model
• Particle Tracking and Dose
• Calculation of RED
Discrete Ordinates Radiation Model

- Solves the radiative transfer equation over a domain of discrete solid angles

- Calculates radiation intensity as a function of absorption, scattering, reflection, and emission

- Integrated within FLUENT CFD/hydraulic model
 - Impacts of geometry within the reactor (shadowing, reflection) readily implemented
Step-by-Step Guide

www.sandia.gov/cfd-water
Turn on Radiation Model in FLUENT
DO Model Parameters

Radiation Model

- **Model**
 - Off
 - Rosseland
 - P1
 - Discrete Transfer (DTRM)
 - Surface to Surface (S2S)
 - Discrete Ordinates (DO)

- **Iteration Parameters**
 - Flow Iterations per Radiation Iteration: 10
 - Angular Discretization:
 - Theta Divisions: 5
 - Phi Divisions: 5
 - Theta Pixels: 3
 - Phi Pixels: 3

- **Non-Gray Model**
 - Number of Bands: 0

- **Solar Load**
 - Model
 - Off
 - Solar Ray Tracing
 - DO Irradiation

- **Solar Calculator...**
Impact of Theta x Phi Discretization on Simulated Incident Radiation Field

\[
\text{theta x phi = 2 x 2} \quad \text{theta x phi = 5 x 5}
\]

Calgon 12” Sentinel® UV Reactor
Specify UV Transmittance of Water

- Define > Materials...

\[
UVT = \frac{I}{I_o} = e^{-ax}
\]

\[I / I_o = \text{Intensity reduction at } x = 1\text{ cm}\]

\[a = \text{Absorption coefficient (1/m)}\]
Specify UV Radiation Boundary Condition

- Define > Boundary Conditions...
Applying Wall Reflection

- Define > Boundary Conditions...
Simulated UV radiation field with and without wall reflection
(Calgan 12” Sentinel® UV Reactor)

UV Intensity (W/m^2)

With Wall Reflection

No Wall Reflection

UVT = 88%

UVT=88%
Overview
Radiation Dose Modeling in FLUENT®

- Discrete Ordinates Radiation Model
- Particle Tracking and Dose
- Calculation of RED
Particle Tracking and Dose

- Define injection points
- Define particle tracking model
- Define user-defined function to accumulate dose for each particle
• Define > Injections...
Injection Pre-Processor

- Defines arbitrary number of injection points in a circular region (e.g., pipe inlet) and writes to a file for FLUENT
 - www.sandia.gov/cfd-water
Particle Tracking
Discrete Random Walk model

Calgon 12” Sentinel® UV Reactor
Calculating Dose from Particle Tracks
User-Defined Function (UDF)
Particle Dose Calculation

• Dose UDF (“libudf”) for Windows and Unix can be found at www.sandia.gov/cfd-water
 – Extract “libudf” directory into same directory as case and data files being used in FLUENT

• Load the Dose UDF into FLUENT
 – Define > User-Defined > Functions > Compiled...
 – Specify “libudf” for the library name

For each particle:

Dose (J/m²) = Incident radiation (W/m²) x Exposure time (s)
Dose UDF Settings

• Define > Models > Discrete Phase...
Display Particle Tracks

- Display > Particle Tracks...
Particle Tracks Colored by Dose

Calgon 12” Sentinel® UV Reactor
Particle Tracks Colored by Dose

Calgon 12” Sentinel® UV Reactor
Output Dose Results

- Report > Discrete Phase > Sample

- Generates “[outlet].dpm” file
 - Cumulative particle doses (J/m²) are contained in this file
 - Can be read by Excel
View Dose Histogram

- Report > Discrete Phase > Histogram
Overview
Radiation Dose Modeling in FLUENT®

- Discrete Ordinates Radiation Model
- Particle Tracking and Dose
- Calculation of RED
Calculate Reduction Equivalent Dose (RED)

- Use appropriate dose-response curve to calculate survival ratio (N/No) for each particle

- Sum particle survival ratios and divide by total number of particles to yield cumulative survival (and inactivation) ratios

- Use dose-response curve to get RED

\[\log \text{Inactivation} = \log \left(\frac{N_0}{N} \right) \]

\(N_0 = \) initial number of microbes
\(N = \) number of infectious microbes remaining after UV exposure

Detailed procedure outlined in Munoz et al. (2007)
RED Post-Processors

• Takes data from “[outlet].dpm” and calculates RED and log inactivation

• Available at www.sandia.gov/cfd-water
 – (1) Windows-based executable and source file
 – (2) Excel spreadsheet

<table>
<thead>
<tr>
<th>Realization, Particles, log_Inactivation(log(No/N)), RED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 781, 9.2072E-01, 1.6130E+01</td>
</tr>
<tr>
<td>2, 782, 9.5080E-01, 1.6719E+01</td>
</tr>
<tr>
<td>3, 780, 9.5016E-01, 1.6706E+01</td>
</tr>
<tr>
<td>4, 780, 9.4099E-01, 1.6526E+01</td>
</tr>
<tr>
<td>5, 780, 9.5880E-01, 1.6876E+01</td>
</tr>
</tbody>
</table>

Output from FluentRED.exe

Number of realizations = 5
\text{t-value} = 2.770
Mean RED = 1.6591E+01 \text{mJ/cm}^2\text{2}
Standard Deviation of RED = 2.8613E-01
Standard Error of RED = 1.2796E-01
95\% confidence interval (plus/minus) = 3.5452E-01
So now we have a simulated RED... Now what???

- Compare simulated RED to measured RED
 - Evaluate the model

- Use simulated RED as a metric to compare alternative reactor/piping designs
 - Installed vs. validated configurations
Measured RED vs. Simulated RED

\[y = 0.9535x \]

\[R^2 = 0.9279 \]
Summary

• Simulating UV dose distributions in FLUENT
 – Discrete ordinates radiation model in FLUENT generates UV incident radiation field
 • Honors geometry used in hydraulic CFD simulation (e.g., shadowing, reflection)
 – Particle tracking yields dose distribution
 – Dose distribution yields RED

• Tutorial and tools are available at:
 – www.sandia.gov/cfd-water
FluentUV

- Wizard-like template for generating models and grids of UV reactors and piping in FLUENT

- Muhammad.Sami @ansys.com
Acknowledgments

- AwwaRF (Project #4107)
 - Alice Fulmer, Project Manager

- Project Advisory Committee
 - Brian Bernados, Joel Ducoste, Steve Deem, Dennis Greene, Michael Montysko

- Calgon Carbon Corporation
 - Keith Bircher

- Infilco Degremont, Inc. (DENARD)
 - Robert Kelly and Bruno Ferran

- Trojan Technologies Inc.
 - Ted Mao

Sandia Corporation gratefully acknowledges that the Awwa Research Foundation is the joint owner of the technical information upon which this manuscript is based. Sandia thanks AwwaRF for their financial, technical, and administrative assistance in funding and managing the project through which this information was discovered. The comments and views detailed herein may not necessarily reflect the views of the Awwa Research Foundation, its officers, directors, affiliates, cofunding organizations, or agents.