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Abstract  

There is considerable interest in developing predictive capabilities for social diffusion processes, 

for instance to permit early identification of emerging contentious situations, rapid detection of 

disease outbreaks, or accurate forecasting of the ultimate reach of potentially “viral” ideas or be-

haviors. This paper proposes a new approach to this predictive analytics problem, in which 

analysis of meso-scale network dynamics is leveraged to generate useful predictions for complex 

social phenomena. We begin by deriving a stochastic hybrid dynamical systems (S-HDS) model 

for diffusion processes taking place over social networks with realistic topologies; this modeling 

approach is inspired by recent work in biology demonstrating that S-HDS offer a useful mathe-

matical formalism with which to represent complex, multi-scale biological network dynamics. 

We then perform formal stochastic reachability analysis with this S-HDS model and conclude 

that the outcomes of social diffusion processes may depend crucially upon the way the early dy-

namics of the process interacts with the underlying network’s community structure and core-

periphery structure. This theoretical finding  provides the foundations for developing a machine 

learning algorithm that enables accurate early warning analysis for social diffusion events. The 

utility of the warning algorithm, and the power of network-based predictive metrics, are demon-

strated through an empirical investigation of the propagation of political “memes” over social 

media networks. Additionally, we illustrate the potential of the approach for security informatics 

applications through case studies involving early warning analysis of large-scale protests events 

and politically-motivated cyber attacks.  

Keywords: social dynamics, predictive analysis, early warning, protest and mobilization, cyber 

security, security informatics.  

1. Introduction  

Understanding the way information, behaviors, innovations, and diseases propagate over so-

cial networks is of great importance in a wide variety of domains [e.g., 1-4], including national 

security [e.g., 5-13]. Of particular interest are predictive capabilities for social diffusion, for in-

stance to enable early warning concerning the emergence of a violent conflict or outbreak of an 
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epidemic. As a consequence, vast resources are devoted to the task of predicting the outcomes of 

diffusion processes, but the quality of such predictions is often poor. It is tempting to conclude 

that the problem is one of insufficient information. Clearly diffusion phenomena which “go vi-

ral” are qualitatively different from those that don’t or they wouldn’t be so dominant, the con-

ventional wisdom goes, so in order to make good predictions we must collect enough data to al-

low these crucial differences to be identified.  

Recent research calls into question this intuitively plausible premise and, indeed, indicates 

that intuition can be an unreliable guide to constructing successful prediction methods. For ex-

ample, studies of the predictability of popular culture indicate that the intrinsic attributes com-

monly believed to be important when assessing the likelihood of adoption of cultural products, 

such as the quality of the product itself, do not possess much predictive power [14-16]. This re-

search offers evidence that, when individuals are influenced by the actions of others, it may not 

be possible to obtain reliable predictions using methods which focus on intrinsics alone; instead, 

it may be necessary to incorporate aspects of social influence into the prediction process. Very 

recently a handful of investigations have shown the value of considering even simple and indi-

rect measures of social influence, such as early social media “buzz”, when forming predictions. 

This work has produced useful prediction algorithms for an array of social phenomena, including 

markets [16-21], political and social movements [17,22], mobilization and protest behavior 

[23,24], epidemics [17,25], social media dynamics [26,27], and the evolution of cyber threats 

[28].  

Recognizing the importance of accounting for social influence, this paper proposes a predic-

tive methodology which explicitly considers the way individuals influence one another through 

their social networks. It is expected that prediction algorithms which are based, in part, on net-

work dynamics metrics will outperform existing methods and be applicable to a wider range of 

diffusion systems. We begin by developing a stochastic hybrid dynamical systems (S-HDS) 

model for diffusion processes taking place over social networks with realistic topologies. This 

modeling approach is inspired by recent work in biology demonstrating that S-HDS offer a use-

ful mathematical formalism with which to represent multi-scale biological network dynamics 

[29-33]. An S-HDS is a feedback interconnection of a discrete-state stochastic process, such as a 

Markov chain, with a family of continuous-state stochastic dynamical systems [34]. Combining 

discrete and continuous dynamics in this way provides a rigorous, expressive, and computation-

ally-tractable framework for modeling the dynamics of the complex, highly-evolved networks 

that are ubiquitous in biological systems [35], and we show in this paper that the S-HDS frame-

work is also well-suited to the task of modeling the network dynamics which underlie social dif-

fusion.  
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With the S-HDS model in hand, we then perform formal stochastic reachability analysis and 

conclude that the outcomes of social diffusion processes may depend crucially upon the way the 

early dynamics of the process propagates with respect to the underlying network’s 1.) community 

structure, that is, densely connected groupings of individuals which have only relatively few 

links to other groups [36], and 2.) core-periphery structure, reflecting the presence of a small 

group of “core” individuals that are densely connected to each other and are also close to the re-

mainder of the network [36]. This theoretical finding leads to the identification of novel metrics 

for the community and core-periphery dynamics which should be useful early indicators of 

which diffusion events will propagate widely, ultimately affecting a substantial portion of the 

population of interest, and which will not. Prediction is accomplished with a machine learning 

algorithm [37] which is based, in part, on these network dynamics metrics.  

The paper makes three main contributions. First, we present a new S-HDS-based framework 

for modeling social diffusion on networks of real-world scale and complexity, enabling these dy-

namics to be appropriately represented as multi-scale phenomena. Second, we formulate predic-

tive analysis problems as questions concerning the reachability of diffusion events, and present a 

novel “altitude function” method for assessing reachability without simulating system trajecto-

ries. The altitude function technique is both mathematically rigorous and computationally tracta-

ble, thereby permitting the derivation of provably-correct assessments for complex, large-scale 

systems. Third, the S-HDS model and altitude function analytics are used to characterize the im-

portance of meso-scale network features, specifically network community and core-periphery 

structures, for understanding diffusion processes and predicting their fates. This characterization, 

in turn, forms the foundation for developing a new machine learning-based classification algo-

rithm which employs these network dynamics features for accurate early warning analysis. Addi-

tionally, we evaluate the efficacy of this early warning algorithm through three empirical case 

studies investigating: 1.) the propagation of political “memes” [38] over social media networks, 

2.) warning analysis for large-scale mobilization and protest events, and 3.) early warning for 

politically-motivated cyber attacks. These empirical studies illustrate the effectiveness of the 

proposed early warning methodology and demonstrate the significant predictive power of meso-

scale network metrics for social diffusion processes. Moreover, the results indicate that the pro-

posed algorithm provides a readily-implementable Web-based tool for early warning analysis for 

important classes of security-relevant diffusion events.  

2. Early Warning Methodology  

This section begins by defining the class of early warning problems of interest, then presents 

a brief, intuitive summary of the proposed social diffusion modeling and predictive analysis pro-

cedure, and finally describes the early warning indicators identified through this analytic proce-
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dure and the warning algorithm that is derived based on these results. A detailed mathematical 

presentation of the modeling and analysis methods is provided in Appendices One and Two.  

2.1 Problem Formulation  

The objective of this paper is to develop a scientifically-rigorous, practically-implementable 

methodology for performing early warning analysis for social diffusion events. Roughly speak-

ing, we suppose that some “triggering event” has taken place or contentious issue is emerging, 

and we wish to determine, as early as possible, whether this event or issue will ultimately gener-

ate a large, self-sustaining reaction, involving the diffusion of discussions and actions through a 

substantial segment of a population, or will instead quickly dissipate. An illustrative example of 

the basic idea is provided by the contrasting reactions to 1.) the publication in September 2005 of 

cartoons depicting Mohammad in the Danish newspaper Jyllands-Posten, and 2.) the lecture 

given by Pope Benedict XVI in September 2006 quoting controversial material concerning Is-

lam. While each event appeared at the outset to have the potential to trigger significant protests, 

the “Danish cartoons” incident ultimately led to substantial Muslim mobilization, including mas-

sive protests and considerable violence, while outrage triggered by the pope lecture quickly sub-

sided with essentially no violence. It would obviously be very useful to have the capability to 

distinguish these two types of reaction as early in the event lifecycle as possible.  

In order to state the early warning problem more precisely, we make a few assumptions:  

▪ We suppose that the triggering event or emerging situation is given. Note that this is often the 

case in national security settings, and that additionally there exist techniques for discovering 

such events or issues in an automated or semi-automated manner [e.g., 24,27].  

▪ It is assumed that data are available which provide a view of the early reaction of a relevant 

population to the trigger or issue of interest. These data can be only indirectly related to the 

event; for example, in this paper the primary data source is social media discussions (e.g., 

blog posts) while the events of interest are “real-world” activities such as protests.  

▪ It is expected that the “customer” for the analysis provides at least qualitative definitions of 

the population of interest and the scale of reaction for which a warning is desired. Thus, for 

instance, in the example above, it might be of interest to anticipate Muslim reaction to the 

triggering incident, and to obtain a warning alert if the reaction is likely to eventually include 

self-sustaining, violent protests.  

We formulate the early warning problem as a classification task. More specifically, given a 

triggering incident, one or more information sources which reflect (perhaps indirectly) the reac-

tion to this trigger by a population of interest (e.g., social media discussions, intelligence report-

ing), and a definition for what constitutes an “alarming” reaction, the goal is to design a classifier 
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which accurately predicts, as early as possible, whether or not reaction to the event will ulti-

mately become alarming. Note that a more mathematically precise statement of this warning 

problem is given in Appendix Two. Observe that this type of warning analysis is both important 

in applications and “easier” to accomplish than more standard prediction or forecasting goals. 

Consider, as a familiar non-security example, the case of movie success. It is shown in [14-16] 

that it is likely to be impossible to predict movie revenues, even very roughly, based on the in-

trinsic information available concerning the movie ex ante (e.g., personnel, genre, critic reviews). 

However, we have demonstrated that it is possible to identify early indicators of movie success, 

such as temporal patterns in pre-release “buzz”, and to use these indicators to accurately predict 

ultimate box office revenues [39]. Recent research indicates that this result holds more generally, 

so that it may be more scientifically-sensible in many domains to pursue early warning rather 

than ex ante prediction goals [14-28].  

2.2 S-HDS Social Diffusion Model  

In social diffusion, individuals are affected by what others do. This is easy to visualize in the 

case of disease transmission, with infections being passed from person to person. Information, 

innovations, behaviors, and so on can also propagate through a population, as individuals be-

come aware of a new piece of information or an activity and are persuaded of its relevance and 

utility through their social and information networks. The dynamics of social diffusion can there-

fore depend upon the topological features of the pertinent networks, such as the presence of 

highly connected blogs in a social media network (see, e.g., [4]). Indeed, social scientists have 

developed extensive theories explaining the role of social networks in the dynamics of social dif-

fusion and mobilization (see the books [2-4] and the references therein, and also Appendix One, 

for discussions of this work). This dependence suggests that, in order to understand the predict-

ability of social diffusion phenomena and in particular to identify features which possess predic-

tive power, it is necessary to conduct the analysis using social and information network models 

with realistic topologies.  

The social diffusion models examined in this study possess networks with three topological 

properties that are ubiquitous in real-world social and information networks and which have the 

potential to impact diffusion dynamics [36]:  

▪ transitivity – the property that the network neighbors of a given individual have a heightened 

probability of being connected to one another;  

▪ community structure – the presence of densely connected groupings of individuals which 

have only relatively few links to other groups;  

▪ core-periphery structure – the presence of a small group of “core” individuals which are 

densely connected to each other and are also close to the other individuals in the network.  
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Additionally, we permit our network models to possess right-skewed degree distributions, in 

which most individuals have only a few network neighbors while a few individuals have a great 

many neighbors, as such networks are common in online settings. The manner in which the 

communities and the core-periphery are arranged will be said to define the network’s meso-scale 

structure. For convenience of exposition, the subsets of individuals specified by a partitioning of 

the network into communities and into a core and periphery will sometimes be referred to as the 

partition elements, and the collection of these (community and core-periphery) subsets will be 

called the network partition.  

In order to deal effectively with networks possessing realistic topologies, and in particular to 

represent and analyze the way social dynamics is affected by the meso-scale structure, we model 

social diffusion in a manner which explicitly separates the individual, or “micro”, dynamics from 

the collective dynamics. More specifically, we adopt a multi-scale modeling framework consist-

ing of three network scales:  

▪ a micro-scale, for modeling the behavior of individuals;  

▪ a meso-scale, which represents the interaction dynamics of individuals within the same net-

work partition element (community or core/periphery);  

▪ a macro-scale, which characterizes the interaction between partition elements.  

The micro-scale quantifies the way individuals combine their own inherent preferences or attrib-

utes with the influences of others to arrive at their chosen courses of action. It is shown in Ap-

pendix One that separating the micro-scale dynamics from the meso- and macro-scale activity 

permits the dependence of this decision-making process on the social network to be character-

ized in a surprisingly straightforward way. The meso- and macro-scale components of the pro-

posed modeling framework together quantify the way the decision-making processes of indi-

viduals interact to produce collective behavior at the population level. The role of the meso-scale 

model is to quantify and illuminate the manner in which behaviors within each network partition 

element (communities, core or periphery), while the macro-scale model captures the interactions 

between these elements. The primary assumptions are that interactions between individuals be-

longing to the same network partition element can be modeled more simply than those between 

individuals from distinct partition elements, and that the latter interactions are constrained by the 

“meta-network” which defines the dependencies between the partition elements.  

This perspective offers a number of advantages. For example, at the micro-scale it is possi-

ble to unify behaviors which appear different phenomenologically but actually possess equiva-

lent dynamics. We show in Appendix One that the social dynamics associated with classical 

“utility-maximizing” behavior and those arising from individuals attempting to infer information 

by observing the actions of others can be represented with the same micro-scale model. Addi-
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tionally, separating the individual and collective dynamics supports efficient and flexible model 

building and simplifies the process of estimating model components from empirical data [39]. 

Dividing the collective dynamics into meso- and macro-scales also provides a mathematically-

tractable, sociologically-sensible means of representing complex social network dynamics. For 

instance, because network communities are topological structures corresponding to localized so-

cial settings in the real world, determined by workplace, family, physical neighborhood, and so 

on, it is natural both mathematically and sociologically to model the interactions of individuals 

within communities as qualitatively different (e.g., more frequent and homogeneous) than those 

between communities.  

Developing a mathematically-rigorous, expressive, scalable, and computationally-tractable 

framework within which multi-scale social network diffusion models can be constructed is, of 

course, a challenging undertaking. Recent work in systems biology has demonstrated that sto-

chastic hybrid dynamical systems (S-HDS) provide a useful mathematical formalism with which 

to represent biological network dynamics that possess multiple temporal and spatial scales [29-

33]. An S-HDS is a feedback interconnection of a discrete-state stochastic process, such as a 

Markov chain, with a family of continuous-state stochastic dynamical systems [34]. Thus the 

discrete system dynamics depends on the continuous system state, perhaps because different re-

gions of the continuous state space are associated with different matrices of Markov state transi-

tion probabilities, and the particular continuous system which is “active” at a given time depends 

on the discrete system state. Combining discrete and continuous dynamics in this way provides 

an effective framework for modeling the dynamics of the complex, highly-evolved networks that 

are ubiquitous in biological systems [35]. For example, the rigorous yet tractable integration of 

switching behavior with continuous dynamics enabled by the S-HDS model allows accurate and 

efficient representation of biological phenomena evolving over disparate temporal scales [29-31] 

and spatial scales [32,33].  

Inspired by this work, in this paper we apply the S-HDS framework to social diffusion dy-

namics evolving over multiple network scales. Appendix One provides a detailed discussion of 

the proposed S-HDS social diffusion model and demonstrates the effectiveness with which this 

formalism captures multi-scale network dynamics. As an intuitive illustration of the way S-HDS 

enable complex network phenomena to be efficiently represented, consider the task of modeling 

diffusion on a network that possesses community structure. As shown in Figure 1, this diffusion 

consists of two components: 1.) intra-community dynamics, involving frequent interactions be-

tween individuals within the same community and the resulting gradual change in the concentra-

tions of “infected” (red) individuals, and 2.) inter-community dynamics, in which the “infection” 

jumps from one community to another, for instance because an infected individual “visits” a new 

community. S-HDS models offer a natural framework for representing these dynamics, with the 



 
8 

S-HDS continuous system modeling the intra-community dynamics (e.g., via stochastic differen-

tial equations), the discrete system capturing the inter-community dynamics (e.g., using a 

Markov chain), and the interplay between these dynamics being represented by the S-HDS feed-

back structure. A detailed description of the manner in which S-HDS models can be used to cap-

ture social diffusion on networks with realistic topologies is given in Appendix One.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Predictability Assessment  

One hallmark of social diffusion processes is their ostensible unpredictability: phenomena 

from hits and flops in cultural markets to financial system bubbles and crashes to political up-

heavals appear resistant to predictive analysis (although there is no shortage of ex post explana-

tions for their occurrence!). It is not difficult to gain an intuitive understanding of the basis for 

this unpredictability. Individual preferences and susceptibilities are mapped to collective out-

comes through an intricate, dynamical process in which people react individually to an environ-

ment consisting largely of others who are reacting likewise. Because of this feedback dynamics, 

the collective outcome can be quite different from one implied by a simple aggregation of indi-

Figure 1. Modeling diffusion on networks with community structure via S-HDS. The cartoon 
at top left depicts a network with three communities. The cartoon at right illustrates diffusion 
within a community k and between communities i and j. The schematic at bottom left shows 
the basic S-HDS feedback structure; the discrete and continuous systems in this framework 
model the inter-community and intra-community diffusion dynamics, respectively.  
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vidual preferences; standard prediction methods, which typically are based on such aggregation 

ideas, do not capture these dynamics and therefore are often unsuccessful.  

This section provides a brief, intuitive introduction to a systematic approach to assessing the 

predictability of social diffusion processes and identifying process observables which have ex-

ploitable predictive power (see Appendix Two, and also [17,39], for the mathematical details). 

Consider a simple model for product adoption, in which individuals combine their own prefer-

ences and opinions regarding the available options with their observations of the actions of oth-

ers to arrive at their decisions about which product to adopt. As discussed above, it can be quite 

difficult to determine which characteristics of the process by which adoption decisions propa-

gate, if any, are predictive of things like the speed or ultimate reach of the propagation [15-17]. 

In Appendix Two we propose a mathematically rigorous approach to predictability assessment 

which, among other things, permits identification of features of social dynamics which should 

have predictive power. We now summarize this assessment methodology.  

The basic idea behind the proposed approach to predictability analysis is simple and natural: 

we assess predictability by answering questions about the reachability of diffusion events. To 

obtain a mathematical formulation of this strategy, the behavior about which predictions are to 

be made is used to define the system state space subsets of interest (SSI), while the particular set 

of candidate measurables under consideration allows identification of the candidate starting set 

(CSS), that is, the set of states and system parameter values which represent initializations that 

are consistent with, and equivalent under, the presumed observational capability. As a simple 

example, consider an online market with two products, A and B, and suppose the system state 

variables consist of the current market share for A, ms(A), and the rate of change of this market 

share, r(A) (ms(B) and r(B) are not independent state variables because ms(A)  ms(B)  1 and 

r(A)  r(B)  0); let the parameters be the advertising budgets for the products, bud(A) and 

bud(B). The producer of item A might find it useful to define the SSI to reflect market share 

dominance by A, that is, the subset of the two-dimensional state space where ms(A) exceeds a 

specified threshold (and r(A) can take any value). If only market share and advertising budgets 

can be measured then the CSS is the one-dimensional subset of state-parameter space consisting 

of the initial magnitudes for ms(A), bud(A), and bud(B), with r(A) unspecified (the one-

dimensional “uncertainty” in the CSS reflects the fact that r(A) is not measurable).  

Roughly speaking, the proposed approach to predictability assessment involves determining 

how probable it is to reach the SSI from a CSS and deciding if these reachability properties are 

compatible with the prediction goals. If a system’s reachability characteristics are incompatible 

with the given prediction question – if, say, “hit” and “flop” states in the online market example 

are both fairly likely to be reached from the CSS – then the situation is deemed unpredictable. 

This setup permits the identification of candidate predictive measurables: these are the measur-
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able states and/or parameters for which predictability is most sensitive (see Appendix Two). 

Continuing with the online market example, if trajectories with positive early market share rates 

r(A) are much more likely to yield market share dominance for A than are trajectories with nega-

tive early r(A), then the situation is unpredictable (because the outcome depends sensitively on 

r(A) and this quantity is not measured). Moreover, this analysis suggests that market share rate is 

likely to possess predictive power, so it may be possible to increase predictability by adding the 

capacity to measure this quantity.  

A key element of this approach to predictability assessment is the proposed method of esti-

mating the probability of reaching the SSI from a CSS. Note that in a typical assessment such 

estimates must be computed for several CSS in order to adequately explore the space of candi-

date predictive features, so that it is crucial to perform these estimates efficiently. In Appendix 

Two we develop an “altitude function” approach to this reachability problem, in which we seek a 

scalar function of the system state that permits conclusions to be made regarding reachability 

without computing system trajectories. We refer to these as altitude functions to provide an intui-

tive sense of their analytic role: if some measure of “altitude” is low on the CSS and high on an 

SSI, and if the expected rate of change of altitude along system trajectories is nonincreasing, then 

it is unlikely for trajectories to reach this SSI from the CSS. Moreover, the difference in altitudes 

between the CSS and SSI gives a measure of the probability of reaching the latter from the for-

mer. Because the reach probability is computed for sets of states without simulating system tra-

jectories, the altitude function method offers an extremely efficient way to explore the space of 

candidate predictive features.  

We have applied the predictability assessment methodology summarized above to the social 

diffusion prediction problem, and we now summarize the main conclusions of this study; a more 

complete discussion of this investigation is given in Appendix Two. The analysis uses the mathe-

matically rigorous predictability assessment procedure summarized above, in combination with 

empirically-grounded S-HDS models for social dynamics, to characterize the predictability of 

social diffusion on networks with realistic degree distributions, transitivity, community structure, 

and core-periphery structure. The main finding of the study, from the perspective of the present 

paper, is that the predictability of these diffusion models depends crucially upon social and in-

formation network topology, and in particular on the community and core-periphery structures of 

these networks. 

In order to describe these theoretical results more quantitatively and leverage them for pre-

diction, it is necessary to specify mathematical definitions for network communities and core-

periphery structure. There exist several qualitative and quantitative definitions for the concept of 

community structure in networks. Here we adopt the modularity-based definition proposed in 

[40], whereby a good partitioning of a network’s vertices into communities is one for which the 
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number of edges between putative communities is smaller than would be expected in a random 

partitioning. To be concrete, a modularity-based partitioning of a network into two communities 

maximizes the modularity Q, defined as  

Q  sT B s / 4m, 

where m is the total number of edges in the network, the partition is specified with the elements 

of vector s by setting si  1 if vertex i belongs to community 1 and si  1 if it belongs to com-

munity 2, and the matrix B has elements Bij  Aij  kikj / 2m, with Aij and ki denoting the net-

work adjacency matrix and degree of vertex i, respectively. Partitions of the network into more 

than two communities can be constructed recursively [40]. Note that modularity-based commu-

nity partitions can be efficiently computed for large social networks, and can be constructed even 

with incomplete network topology data [39].  

With this definition in hand, we are in a position to present the first candidate predictive fea-

ture nominated by the theoretical predictability assessment: the presence of early diffusion activ-

ity in numerous distinct network communities should be a reliable predictor that the ultimate 

reach of the diffusion will be large (see Appendix Two). In what follows, propagation dynamics 

which possess this characteristic will be said to exhibit significant early dispersion across net-

work communities. Note that this measure should be more predictive than the early volume of 

diffusion activity (the latter has recently become a fairly standard measure [e.g., 19,20]). A car-

toon illustrating the basic idea behind this result is given in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Early dispersion across communities is predictive. The cartoon illustrates the 
predictive feature associated with community structure: social diffusion initiated with 
five “seed” individuals is much more likely to propagate widely if these seeds are dis-
persed across three communities (left) rather than concentrated within a single commu-
nity (right). Note that in Appendix Two this result is established for networks of realis-
tic scale and not simply for “toy” networks like the one shown here.  
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Analogously to the situation with network communities, there exists a wide range of qualita-

tive and quantitative descriptions of the core-periphery structure found in real-world networks. 

Here we adopt the characterization of network core-periphery which results from k-shell decom-

position, a well-established technique in graph theory that is summarized in, for instance, [41]. 

To partition a network into its k-shells, one first removes all vertices with degree one, repeating 

this step if necessary until all remaining vertices have degree two or higher; the removed vertices 

constitute the 1-shell. Continuing in the same way, all vertices with degree two (or less) are re-

cursively removed, creating the 2-shell. This process is repeated until all vertices have been as-

signed to a k-shell. The shell with the highest index, the kmax-shell, is deemed to be the core of 

the network.  

Given this definition, we are in a position to report the second candidate predictive feature 

nominated by our theoretical predictability assessment: early diffusion activity within the net-

work kmax-shell should be a reliable predictor that the ultimate reach of the diffusion will be sig-

nificant (see Appendix Two). In particular, this measure should be more predictive than the early 

volume of diffusion activity. An intuitive illustration of this result is depicted in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Early Warning Method  

We are now in a position to present an early warning method which is capable of accurately 

predicting, very early in the lifecycle of a diffusion process of interest, whether or not the process 

will propagate widely. We adopt a machine learning-based classification approach to this prob-

Figure 3. Early diffusion within the core is predictive. The cartoon illustrates the pre-
dictive feature associated with k-shell structure: social diffusion initiated with three 
“seed” individuals is much more likely to propagate widely if these seeds reside 
within the network’s core (left) rather than at its periphery (right). Note that in Ap-
pendix Two this result is established for networks of realistic scale and not simply for 
“toy” networks like the one shown here.  
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lem: given a triggering incident, one or more information sources which reflect the reaction to 

this trigger by a population of interest, and a definition for what constitutes an “alarming” reac-

tion, the goal is to learn classifier that accurately predicts, as early as possible, whether or not 

reaction to the event will ultimately become alarming. The classifier used in the empirical studies 

described in this paper is the Avatar ensembles of decision trees (A-EDT) algorithm [42]. Other 

classification algorithm were also explored to allow the robustness of the proposed early warning 

approach to be evaluated, and these alternative methods produced qualitatively similar results 

[39]. Prediction accuracy in all tests is estimated using standard N-fold cross-validation, in which 

the set of diffusion events of interest is randomly partitioned into N subsets of equal size, and the 

A-EDT algorithm is successively “trained” on N1 of the subsets and “tested” on the held-out 

subset in such a way that each of the N subsets is used as the test set exactly once.  

A key aspect of the proposed approach to early warning analysis is determining which char-

acteristics of the social diffusion event of interest, if any, possess exploitable predictive power. 

We consider three classes of features:  

▪ intrinsics-based features – measures of the inherent properties and attributes of the “object” 

being diffused;  

▪ simple dynamics-based features – metrics which capturing simple properties of the diffusion 

dynamics, such as the early extent of the diffusion and the rate at which the diffusion is 

propagating;  

▪ network dynamics-based features – measures that characterize the way the early diffusion is 

progressing relative to topological properties of the underlying social and information net-

works (e.g., community structure).  

Consider, as an illustrative example, the diffusion of “memes”, that is, short textual phrases 

which propagate relatively unchanged online (e.g., ‘lipstick on a pig’). Suppose it is of interest to 

predict which memes will “go viral”, appearing in thousands of blog posts, and which will not. 

In this case, intrinsic-based features could include language measures, such as the sentiment or 

emotion expressed in the text surrounding the memes in blog posts or news articles. Simple dy-

namics-based features for memes might measure the cumulative number of posts or articles men-

tioning the meme of interest at some early time  and the rate at which this volume is increasing. 

Network dynamics-based features might count the cumulative number of network communities 

in a blog graph GB that contain at least one post which mentions the meme by time  and the 

number of blogs in the kmax-shell of GB that, by time , contain at least one post mentioning the 

meme. Alternatively, in the case of an epidemic, the intrinsic-based features could include the 

infectivity of the pathogen, simple dynamics-based features might capture the number of indi-

viduals infected by the disease in the early stages of the outbreak, and network dynamics-based 
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features could include metrics that characterize the way the epidemic is progressing over the 

communities of relevant social and transportation networks.  

The proposed approach to early warning analysis is to collect features from these classes for 

the event of interest, input the feature values to the (trained) A-EDT classifier, and then run the 

classifier to generate the warning prediction (i.e., a forecast that the event is expected to become 

‘alarming’ or remain ‘not alarming’). In the algorithm presented below this procedure in speci-

fied in general terms; more specific instantiations of the procedure are presented in the discus-

sions of the three case studies in Section 3. In what follows it is assumed that the primary source 

of information concerning the event of interest is social media, as that is emerging as a very use-

ful data source for predictive analysis [e.g., 17-24,26,27]. However, the analytic process is quite 

similar when other data sources (e.g., intelligence reporting) are employed [24].  

Thus we have the following early warning algorithm:  

Algorithm EW  

Given: a triggering incident, a definition for what constitutes an ‘alarming’ reaction, and a set of 

social media sites (e.g., blogs) B which are relevant to early warning task.  

Initialization: train the A-EDT classifier on a set of events which are qualitatively similar to the 

triggering event of interest and are labeled as ‘alarming’ or ‘not alarming’ according to the defi-

nition given above (see the case study discussions for additional details on this training process).  

Procedure:  

1. Assemble a lexicon of keywords L that pertain to the triggering event under study.  

2. Conduct a sequence of blog graph crawls and construct a time series of blog graphs GB(t). 

For the lexicon L and each time period t, label each blog in GB(t) as ‘active’ if it contains a 

post mentioning any of the keywords in L and ‘inactive’ otherwise.  

3. Form the union GB = tGB(t), partition GB into network communities and into k-shells, and 

map the partition element structure of GB back to each of the graphs GB(t).  

4. Compute the values of appropriate measures for the intrinsics, simple dynamics, and network 

dynamics features for each of the graphs GB(t).  

5. Apply the A-EDT classifier to the available time series of features, that is, the features ob-

tained from the sequence of blog graphs {GB(t0), …, GB(tp)}, where t0 and tp are the trigger-

ing event time and present time, respectively. Issue an early warning alert if the classifier 

output is ‘alarming’.  

We now offer additional details concerning this procedure; more application-specific discus-

sions of the methodology are provided in the case studies in Section 3. Identifying appropriate 

keywords in Step 1 can be accomplished with the help of subject matter experts and also through 
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various automated means (e.g., via meme analysis [38,27]). Step 2 is by now standard, and vari-

ous tools exist which can perform these tasks [e.g., 43]. In Step 3, blog network communities are 

identified with a modularity-based community extraction algorithm applied to the blog graph 

[40], while the decomposition of the graph into its k-shells is achieved through standard methods 

[41]. The particular choices of metrics for the intrinsics, simple dynamics, and network dynamics 

features computed in Step 4 tend to be problem specific, and typical examples are given in the 

case studies below. It is worth noting, however, that we have found it useful in a range of appli-

cations to quantify the dispersion of activity over the communities of GB(t) using a blog entropy 

measure BE:  

BE(t) = i fi(t) log(fi(t)),  

where fi(t) is the fraction of total posts containing one or more keywords and made during inter-

val t which occur in community i. Finally, in Step 5 the feature values obtained in Step 4 serve as 

inputs to the A-EDT classifier and the output is used to decide whether an alert should be issued.  

3. Case Studies  

This section applies Algorithm EW to three early warning case studies involving social phe-

nomena that have proved to be both practically important and challenging to analyze: 1.) diffu-

sion of information through social media, 2.) mobilization/protest events response to “triggering” 

incidents, and 3.) planning/coordination/execution of politically-motivated cyber attacks.  

3.1 Case Study One: Meme Diffusion  

The goal of this case study is to apply Algorithm EW to the task of predicting whether or not 

a given “meme”, that is, a short textual phrase which propagates relatively unchanged online, 

will “go viral”. Our main source of data on meme dynamics is the publicly available datasets ar-

chived at http://memetracker.org [44] by the authors of [38]. Briefly, the archive [44] contains 

time series data characterizing the diffusion of ~70 000 memes through social media and other 

online sites during the five month period between 1 August and 31 December 2008. We are in-

terested in using Algorithm EW to distinguish successful and unsuccessful memes early in their 

lifecycle. More precisely, the task of interest is to classify memes into two groups – those which 

will ultimately be successful (acquire more than S posts) and those that will be unsuccessful (at-

tract fewer than U posts) – very early in the meme lifecycle.  

To support an empirical evaluation of the utility of Algorithm EW for this problems, we 

downloaded from [44] the time series data for slightly more than 70 000 memes. These data con-

tain, for each meme M, a sequence of pairs (t1, URL1)M, (t2, URL2)M, …, (tT, URLT)M, where tk is 

the time of appearance of the kth blog post or news article that contains at least one mention of 
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meme M, URLk is the URL of the blog or news site on which that post/article was published, and 

T is the total number of posts that mention meme M. From this set of time series we randomly 

selected 100 “successful” meme trajectories, defined as those corresponding to memes which 

attracted at least 1000 posts during their lifetimes, and 100 “unsuccessful” meme trajectories, 

defined as those whose memes acquired no more than 100 total posts. It is worth noting that, in 

assembling the data in [44], all memes which received fewer than 15 total posts were deleted, 

and that ~50% of the remaining memes have 50 posts; thus the large majority of memes are un-

successful by our definition (as well as according to the criteria of most applications [38,27]).  

Two other forms of data were collected for this study: 1.) a large Web graph which includes 

websites (URLs) that appear in the meme time series, and 2.) samples of the text surrounding the 

memes in the posts which contain them. More specifically, we sampled the URLs appearing in 

the time series for our set of 200 successful and unsuccessful memes and performed a Web crawl 

that employed these URLs as “seeds”. This procedure generated a Web graph, denoted GB, that 

consists of approximately 550 000 vertices/websites and 1.4 million edges/hyperlinks, and in-

cludes essentially all of the websites which appear in the meme time series. To obtain samples of 

text surrounding memes in posts, we randomly selected ten posts for each meme and then ex-

tracted from each post the paragraph which contains the first mention of the meme. 

Recall that Algorithm EW employs three types of features: intrinsics-based, simple dynam-

ics-based, and network dynamics-based. We now describe the instantiation of each of these fea-

ture classes for the meme problem. Consider first the intrinsics-based features, which for the 

meme application become language-based measures. Each “document” of text surrounding a 

meme in its (sample) posts is represented by a simple “bag of words” feature vector x|V|, 

where the entries of x are the frequencies with which the words in the vocabulary set V appear in 

the document. A very simple way to quantify the sentiment or emotion of a document is through 

the use of appropriate lexicons. Let s|V| denote a lexicon vector, in which each entry of s is a 

numerical “score” quantifying the sentiment/emotion intensity of the corresponding word in the 

vocabulary V. The aggregate sentiment/emotion score of document x can be computed as  

score(x)  sTx / sT1, 

where 1 is a vector of ones. Thus score(.) estimates the sentiment or emotion of a document as a 

weighted average of the sentiment or emotion scores for the words comprising the document. 

(Note that if no sentiment or emotion information is available for a particular word in V then the 

corresponding entry of s is set to zero.)  

To characterize the emotion content of a document we use the Affective Norms for English 

Words (ANEW) lexicon, which consists of 1034 words that were assigned numerical scores with 

respect to three emotional “axes” – happiness, arousal, and dominance – by human subjects [45]. 
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Previous work had identified this set of words to bear meaningful emotional content [45]. Posi-

tive or negative sentiment is quantified by employing the “IBM lexicon”, a collection of 2968 

words that were assigned {positive, negative} sentiment labels by human subjects [46]. This 

simple approach generates four language features for each meme: the happiness, arousal, domi-

nance, and positive/negative sentiment of the text surrounding that meme in the (sample) posts 

containing it. As a preliminary test, we computed the mean emotion and sentiment of content 

surrounding the 100 successful and 100 unsuccessful memes in our dataset. On average the text 

surrounding successful memes is happier, more active, more dominant, and more positive than 

that surrounding unsuccessful memes, and this difference is statistically significant (p0.0001). 

Thus it is at least plausible that these four language features may possess some predictive power 

regarding meme success.  

Consider next two simple dynamics-based features, defined to capture the basic characteris-

tics of the early evolution of meme post volume:  

▪ #posts() – the cumulative number of posts mentioning the given meme by time  (where  is 

small relative to the typical lifespan of memes);  

▪ post rate() – a simple estimate of the rate of accumulation of such posts at time .  

Here we adopt a simple finite difference definition for post rate given by post rate()  (#posts() 
 #posts(/2)) / (/2); of course, more robust rate estimates could be used.  

The simple dynamics-based measures of early meme diffusion defined above, while poten-

tially useful, do not characterize the manner in which a meme propagates over the underlying 

social or information networks. Recall that the predictability assessment summarized in Section 

2.3 suggests that both early dispersion of diffusion activity across network communities and 

early diffusion activity within the network core ought to be predictive of meme success. The in-

sights offered by this theoretical analysis motivate the definition of two network dynamics-based 

features for meme prediction:  

▪ community dispersion() – the cumulative number of network communities in the blog graph 

GB that, by time , contain at least one post which mentions the meme;  

▪ #k-core blogs() – the cumulative number of blogs in the kmax-shell of blog graph GB that, by 

time , contain at least one post which mentions the meme.  

These quantities can be efficiently computed using fast algorithms for partitioning a graph into 

its communities and for identifying a graph’s kmax-shell [39]. Thus these features are readily 

computable even for very large graphs.  

We now summarize the results of this case study. First, using only the four language features 

with the A-EDT classifier to predict which memes will be successful yields a prediction accuracy 
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of 66.5% (ten-fold cross-validation). Since simply guessing “successful” for all memes gives an 

accuracy of 50%, it can be seen that these simple language intrinsics are not very predictive. For 

completeness it is mentioned that the ANEW score for “arousal” and the IBM measure of senti-

ment are the most predictive of these four features. In contrast, the features characterizing the 

early network dynamics of memes possess significant predictive power, and in fact are useful 

even if only very limited early time series is available for use in prediction. More quantitatively, 

applying Algorithm EW with the four meme dynamics features produces the following results 

(ten-fold cross-validation):  

▪   12hr, accuracy = 84%, most predictive features: 1.) community dispersion, 2.) #k-core 

blogs, 3.) #posts;  

▪   24hr, accuracy = 92%, most predictive features: 1.) community dispersion, 2.) post rate, 

3.) #posts;  

▪   48hr, accuracy = 94%, most predictive features: 1.) community dispersion, 2.) post rate, 

3.) #posts.  

These results show that useful predictions can be obtained within the first twelve hours after 

a meme is detected (this corresponds to 0.5% of the average meme lifespan), and that accurate 

prediction is possible after about a day or two. Note also that, as has been found with other social 

dynamics phenomena [e.g., 16-18], dynamics features appear to be more predictive than “intrin-

sics”, at least for the features employed here.  

It is worth mentioning that the fact that a particular meme goes viral does not imply that it 

will influence behavior in the real world. The next two case studies focus on the important issue 

of behavioral consequences of information diffusion.  

3.2 Case Study Two: Mobilization and Protest  

There is considerable interest to develop methods for distinguishing successful mobilization 

and protest events, that is, mobilizations that become large and self-sustaining, from unsuccess-

ful ones early in their lifecycle. It is natural to pose this question as an early warning problem 

and to approach it using Algorithm EW. In order to examine the efficacy of this approach, we 

collected together fourteen recent events, each of which appeared at the outset to have the poten-

tial to trigger significant protests. This set of events contains seven triggering incidents which 

ultimately led to substantial mobilization, including massive protests and significant violence, 

and seven triggers with reactions that subsided quickly with essentially no violence. Taken to-

gether, these events provide a useful setting for testing the applicability of Algorithm EW to mo-

bilization/protest phenomena.  

The events employed in this study are listed below.  
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Triggers leading to significant mobilization/protest:  

▪ Quran desecration, May 2005;  

▪ first Danish cartoons, September 2005 to March 2006;  

▪ Egypt DVD release, October 2005;  

▪ France riots, October and November 2005;  

▪ anti-Ahmadiyya protests, June and July 2008;  

▪ U.S Republican National Convention, September 2008;  

▪ Israel/Gaza event, December 2008 to January 2009.  

Triggers not leading to significant mobilization/protest:  

▪ Abu Ghraib news release, April and May 2004;  

▪ Pope lecture, September 2006;  

▪ Salman Rushdie knighting, June 2007;  

▪ second Danish cartoons, February 2008;  

▪ U.S. Democratic National Convention, August 2008,  

▪ Bali bombers execution, November 2008;  

▪ Jakarta bombings/NM Top blog post, July 2009.  

This list is intended merely to identify the fourteen events under study; additional information 

concerning each incident is given in [39] and the references therein.  

As a preliminary examination of the possibility to obtain useful early warning indicators from 

analysis of social media discussions of these events, we performed Steps 1-4 of Algorithm EW 

and then plotted the time series for two quantities: 1.) the volume of blog posts mentioning key-

words relevant to the events (these keywords were obtained through a simple news search [39]), 

and 2.) the blog entropy measure BE(t) = i fi(t) log(fi(t)) associated with the way online men-

tions of the keywords diffused over the blog graph. Illustrative time series plots are shown in 

Figure 4. Observe that in the case of the first Danish cartoons event (plot at right) the BE of rele-

vant discussions (blue curve) experiences a dramatic increase a few weeks before the corre-

sponding increase in volume of blog discussions (red curve); this latter increase, in turn, takes 

place before any violence. In contrast, in the case of the pope event (plot at left), BE of blog dis-

cussions is small relative to the cartoons event, and any increase in this measure lags discussion 

volume. Similar time series plots are obtained for the other twelve events, suggesting that net-

work dynamics-based features, such as dispersion of discussions across blog network communi-

ties, may be a useful early indicator for large mobilization events.  

To examine this possibility more carefully, we applied Algorithm EW to the task of distin-

guishing triggers which led to large protests from those that did not. For simplicity, in this case 

study we did not use any intrinsics-based features (e.g., language metrics) in the A-EDT classi-
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fier, and instead relied upon the four dynamics-based features defined in Case Study One. In the 

case of the seven triggering events which led to protest behavior, the blog data made available to 

Algorithm EW was limited to posts made during the eight week period which ended two weeks 

before the protests began. For the seven triggers which did not lead to protests, the blog data in-

cluded all posts collected during the eight week period immediately following the triggering 

event.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because the set of events in this case study included only fourteen incidents, we applied Al-

gorithm EW with two-fold cross-validation. More specifically, the set of incidents was randomly 

partitioned into two equal subsets, the algorithm was trained on one subset of seven incidents and 

tested on the other subset, and then the roles of the two data sets were switched. In this evalua-

tion Algorithm EW achieved perfect accuracy, correctly distinguishing the ‘protest’ and ‘non-

protest’ triggers. An examination of the predictive power of the four features used as inputs to 

the A-EDT classifier reveals that, as suggested by Figure 4, the community dispersion feature 

was the most predictive measure.  

3.2 Case Study Three: Cyber Attack Early Warning  

This case study explores the ability of Algorithm EW to provide reliable early warning for 

politically-motivated distributed denial-of-service (DDoS) attacks. Toward this end, we first 

identified a set of Internet “disturbances” that included examples from three distinct classes of 

events:  

Figure 4. Sample results for mobilization/protest case study. The illustrative time series plots 
shown correspond to the pope event (left) and first Danish cartoons event (right). In each plot, 
the red curve is blog volume and the blue curve is blog entropy; the Danish cartoon plot also 
shows two measures of violence (cyan and magenta curves). Note that while the volume and 
violence data are scaled to allow multiple data sets to be graphed on each plot, the scale for 
entropy is consistent across plots to enable cross-event comparison.  
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1. successful politically-motivated DDoS attacks – these are the events for which Algorithm 

EW is intended to give warning with sufficient lead time to allow mitigating actions to be 

taken;  

2. natural events which disrupt Internet service – these are disturbances, such as earthquakes 

and electric power outages, that impact the Internet but for which it is known that no early 

warning signal exists in social media;  

3. quiet periods – these are periods during which there is social media “chatter” concerning im-

pending DDoS attacks but ultimately no (successful) attacks occurred.  

Including in the case study events selected from these three classes is intended to afford a fairly 

comprehensive test of Algorithm EW. For instance, these classes correspond to 1.) the domain of 

interest (DDoS attacks), 2.) a set of disruptions which impact the Internet but have no social me-

dia warning signal, and 3.) a set of “non-events” which do not impact the Internet but do possess 

putative social media warning signals (online discussion of DDoS attacks).  

We selected twenty events from these three classes:  

Politically-motivated DDoS attacks:  

▪ Estonia event in April 2007;  

▪ CNN/China incident in April 2008;  

▪ Israel/Palestine conflict event in January 2009;  

▪ DDoS associated with Iranian elections in June 2009;  

▪ WikiLeaks event in November 2010;  

▪ Anonymous v. PayPal, etc. attack in December 2010;  

▪ Anonymous v. HBGary attack in February 2011.  

Natural disturbances:  

▪ European power outage in November 2006;  

▪ Taiwan earthquake in December 2006;  

▪ Hurricane Ike in September 2008;  

▪ Mediterranean cable cut in January 2009;  

▪ Taiwan earthquake in March 2010;  

▪ Japan earthquake in March 2011.  

Quiet periods:  

Seven periods, from March 2005 through March 2011, during which there were discussions 

in social media of DDoS attacks on various U.S. government agencies but no (successful) at-

tacks occurred.  

For brevity a detailed discussion of these twenty events is not given here; the interested reader is 
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referred to [39] and the references therein for additional information on these disruptions.  

We collected two forms of data for each of the twenty events: cyber data and social data. 

The cyber data consist of time series of routing updates which were issued by Internet routers 

during a one month period surrounding each event. More precisely, these data are the Border 

Gateway Protocol (BGP) routing updates exchanged between gateway hosts in the Autonomous 

System network of the Internet. The data was downloaded from the publicly-accessible RIPE 

collection site [47] using the process described in [48] (see [48] for additional details and back-

ground information on BGP routing dynamics). The temporal evolution of the volume of BGP 

routing updates (e.g., withdrawal messages) gives a coarse-grained measure of the timing and 

magnitude of large Internet disruptions and thus offers a simple and objective way to character-

ize the impact of each of the events in our collection. The social data consist of time series of so-

cial media mentions of cyber attack-related keywords and memes detected during a one month 

period surrounding each of the twenty events. These data were collected using the procedure 

specified in Algorithm EW.  

As in the preceding case study, we performed a preliminary examination of the possibility to 

obtain useful early warning indicators from analysis of social media discussions by completing 

Steps 1-4 of Algorithm EW and plotting the time series for two quantities: 1.) the volume of blog 

posts mentioning keywords relevant to the events (these keywords were obtained through a sim-

ple news search [39]), and 2.) the blog entropy measure BE(t) = i fi(t) log(fi(t)) associated with 

the way online mentions of the keywords diffused over the blog graph. Illustrative time series 

plots corresponding to two events in the case study, the WikiLeaks DDoS attack in November 

2010 and Japan earthquake in March 2011, are shown in Figure 5. Observe that the time series of 

BGP routing updates are similar for the two events, with each experiencing a large “spike” at the 

time of the event. The time series of blog post volume are also similar across the two events, 

with each showing modest volume prior to the event and displaying a large spike in activity at 

event time. However, the time series for blog entropy are quite distinct for the two events. Spe-

cifically, in the case of the WikiLeaks DDoS the blog entropy (blue curve in Figure 5) experi-

ences a dramatic increase several days before the event, while in the case of the Japan earthquake 

blog entropy is small for the entire collection period. Similar social media behavior is observed 

for all events in the case study, suggesting that network dynamics-based features, such as disper-

sion of discussions across blog network communities, may be a useful early indicator for large 

mobilization events.  

To examine this possibility more carefully, we applied Algorithm EW to the task of distin-

guishing the seven DDoS attacks from the thirteen other events in the set. For simplicity, in this 

case study we did not use any intrinsics-based features (e.g., language metrics) in the A-EDT 

classifier, and instead relied upon the four dynamics-based features defined in Case Study One. 
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Because the set of events in this case study included only twenty incidents, we applied Algorithm 

EW with two-fold cross-validation, exactly as described in Case Study Two. In the case of DDoS 

events, the blog data made available to Algorithm EW was limited to posts made during the five 

week period which ended one week before the attack. For the six natural disturbances, the blog 

data included all posts collected during the six week period immediately prior to the event, while 

in the case of the seven non-events, the blog data included the posts collected during a six week 

interval which spanned discussions of DDoS attacks on U.S. government agencies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Sample results for the DDoS early warning case study. The illustrative time series 
plots shown correspond to the WikiLeaks event in November 2010 (top row) and the Japan 
earthquake in March 2011 (bottom row). For each event, the plot at left is the time series of 
BGP routing updates (note the large increase in updates triggered by the event). The plot at 
the right of each row is the time series of the social media data, with the red curve showing 
blog post volume and the blue curve depicting blog entropy. Note that while post volume is 
scaled for convenient visualization, the scale for entropy is consistent across plots to allow 
cross-event comparison.      
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In this evaluation, Algorithm EW achieved perfect accuracy, correctly distinguishing the ‘at-

tack’ and ‘non-attack’ events. If the test is made more difficult, so that the blog data made avail-

able to Algorithm EW for attack events is limited to a four week period that ends two weeks be-

fore the attack, the proposed approach still achieves 95% accuracy, An examination of the pre-

dictive power of the four features used as inputs to the A-EDT classifier reveals that, as sug-

gested by Figure 5, the community dispersion feature was the most predictive measure. It is 

worth emphasizing that, in this case study, accurately distinguishing ‘attack’ from ‘non-attack’ 

events is equivalent to providing practically-useful early warning for attack events, because the 

data which serves as input to Algorithm EW reflects online discussions that took place prior to 

the events under investigation.  

4. Conclusions  

This paper presents a new approach to early warning analysis for social diffusion events. We 

begin by introducing a biologically-inspired S-HDS model for social dynamics on multi-scale 

networks, and then perform stochastic reachability analysis with this model to show that the out-

comes of social diffusion processes may depend crucially upon the way the early dynamics of 

the process interacts with the underlying network’s meso-scale topological structures. This theo-

retical finding provides the foundations for developing a machine learning algorithm that enables 

accurate early warning analysis for diffusion events. The utility of the warning algorithm, and the 

power of network-based predictive metrics, are demonstrated through empirical case studies in-

volving meme propagation, large-scale protests events, and politically-motivated cyber attacks.  

5. Acknowledgements  

This research was supported by the U.S. Department of Defense, the U.S. Department of 

Homeland Security, The Boeing Company, and the Laboratory Directed Research and Develop-

ment program at Sandia National Laboratories. Fruitful discussions regarding aspects of this 

work with Curtis Johnson of Sandia National Laboratories, Paul Ormerod of Volterra Partners, 

and Anne Kao of Boeing are gratefully acknowledged.  

6. References 

1. Anderson, R. and R. May, Infectious Diseases of Humans, Oxford University Press, 1992.  

2. Rogers, E., Diffusion of Innovations, Fifth Ed., Free Press, NY, 2003.  

3. Della Porta, D. and M. Diani, Social Movement, Second Ed., Blackwell, Oxford, UK, 2006.  

4. Easley, D. and J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly 
Connected World, Cambridge University Press, 2010.  



 
25 

5. Moghadam, A., The Globalization of Martyrdom: Al Qaeda, Salafi Jihad, and the Diffusion 
of Suicide Attacks, Johns Hopkins University Press, Baltimore, 2008.  

6. Myers, D. and P. Oliver, “The opposing forces diffusion model: The initiation and repression 
of collective violence”, Dynamics of Asymmetric Conflict, Vol. 1, pp. 164-188, 2008.  

7. Ackerman, G., et al., “Anticipating rare events: Can acts of terror, use of weapons of mass 
destruction, or other high profile acts be anticipated?”, DoD White Paper, November 2008.  

8. Krueger, A. and J. Maleckova, “Attitudes and action: Public opinion and the occurrence of 
international terrorism”, Science, Vol. 325, pp. 1535-1536, 2009.  

9. Bergin, A., S. Osman, C. Ungerer, and N. Yasin, “Countering internet radicalization in 
Southeast Asia”, ASPI Special Report, March 2009.  

10. Chen, H., C. Yang, M. Chau, and S. Li (Editors), Intelligence and Security Informatics, Lec-
ture Notes in Computer Science, Springer, Berlin, 2009.  

11. Proc. 2010 IEEE International Conference on Intelligence and Security Informatics, Van-
couver, BC, Canada, May 2010.  

12. O’Brien, S., “Crisis early warning and decision support: Contemporary approaches and 
thoughts on future research”, International Studies Review, Vol. 12, pp. 87-104, 2010.  

13. Ward, M., B. Greenhill, and K. Bakke, “The perils of policy by p-value: Predicting civil con-
flict”, J. Peace Research, Vol. 47, pp. 363-375, 2010.  

14. Walls, W., “Modeling movie success when ‘nobody knows anything’: Conditional stable-
distribution analysis of film returns”, J. Cultural Economics, Vol. 29, pp. 177-190, 2005.  

15. Salganik, M., P. Dodds, and D. Watts, “Experimental study of inequality and unpredictability 
in an artificial cultural market”, Science, Vol. 311, pp. 854-856, 2006.  

16. Colbaugh, R. and K. Glass, “Predictability and prediction of social processes”, Proc. 4th 
Lake Arrowhead Conference on Human Complex Systems, Arrowhead, CA, April 2007.  

17. Colbaugh, R. and K. Glass, “Predictive analysis for social processes I: Multi-scale hybrid 
system modeling, and II: Predictability and warning analysis”, Proc. 2009 IEEE Multi-
Conference on Systems and Control, Saint Petersburg, Russia, July 2009.  

18. Colbaugh, R., K. Glass, and P. Ormerod, “Predictability of ‘unpredictable’ cultural markets”, 
Proc. 105th Annual Meeting of the American Sociological Association, Atlanta, GA, August 
2010.  

19. Asur, S. and B. Huberman, “Predicting the future with social media”, Proc. IEEE/WIC/ACM 
International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, 
Ontario, Canada, September 2010.  

20. Goel, S., J. Hofman, S. Lahaie, D. Pennock, and D. Watts, “Predicting consumer behavior 
with Web search”, Proc. National Academy of Sciences USA, Vol. 107, pp. 17486-17490, 
2010.  

21. Bollen, J., H. Mao, and X. Zeng, “Twitter mood predicts the stock market”, arXiv preprint, 
October 2010.  

22. Tumasjan, A., T. Sprenger, P. Sandner, and I. Welpe, “Predicting elections with Twitter: 
What 140 characters reveal about political sentiment”, Proc. 4th International AAAI Confer-
ence on Weblogs and Social Media, Washington, DC, May, 2010.  

23. Colbaugh, R. and K. Glass, “Early warning analysis for social diffusion events”, Proc. 2010 
IEEE International Conference on Intelligence and Security Informatics, Vancouver, BC 
Canada, May 2010.  



 
26 

24. Colbaugh, R., K. Glass, and J. Gosler, “Some intelligence analysis problems and their graph 
formulations”, J. Intelligence Community Research and Development, Paper 315, Perma-
nently available on Intelink, June 2010.  

25. Christakis, N. and J. Fowler, “Social network sensors for early detection of contagious out-
breaks”, PLoS ONE, Vol. 5, e12948, 2010.  

26. Lerman, K. and T. Hogg, “Using stochastic models to describe and predict social dynamics 
of Web users”, arXiv preprint, October 2010.  

27. Colbaugh, R. and K. Glass, “Detecting emerging topics and trends via predictive analysis of 
‘meme’ dynamics”, Proc. 2011 AAAI Spring Symposium Series, Palo Alto, CA, March 2011.  

28. Colbaugh, R. and K. Glass, “Proactive defense for evolving cyber threats”, Proc. 2011 IEEE 
International Conference on Intelligence and Security Informatics, Beijing, China, July 2011.  

29. Uhrmacher, A., D. Degering, and B. Zeigler, “Discrete event multi-level models for systems 
biology”, in Trans. Computational Systems Biology, LNBI 3380, Springer, 2005.  

30. El-Samad, H., S. Prajna, A. Papachristodoulou, J. Doyle, and M. Khammash, “Advanced 
methods and algorithms for biological networks analysis”, Proc. IEEE, Vol. 94, pp. 832-853, 
2006.  

31. Julius, A., A. Halasz, M. Sakar, H. Rubin, V. Kumar, and G. Pappas, “Stochastic modeling 
and control of biological systems: The lactose regulation system of Escherichia coli ”, IEEE 
Trans. Automatic Control, Vol. 53, pp. 51-65, 2008.  

32. Lygeros, J.,  et al., “Stochastic hybrid modeling of DNA replication across a complete ge-
nome”, Proc. National Academy of Sciences USA, Vol. 105, pp. 12295-12300, 2008. 

33. Yuan, C., X. Mao, and J. Lygeros, “Stochastic hybrid delay population dynamics: Well-
posed models and extinction”, J. Biological Dynamics, Vol. 3, pp. 1-21, 2009.  

34. Bujorianu, M., J. Lygeros, and M. Bujorianu, “Toward a general theory of stochastic hybrid 
systems”, e-print, University of Twente, The Netherlands, March 2008.  

35. Doyle, J. and M. Csete, “Architecture, constraints, and behavior”, Proc. National Academy of 
Sciences USA, in press.  

36. Newman, M., “The structure and function of complex networks”, SIAM Review, Vol. 45, pp. 
167-256, 2003.  

37. Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Second Edi-
tion, Springer, New York, 2009. 

38. Leskovec, J., L. Backstrom, and J. Kleinberg, “Meme-tracking and the dynamics of the news 
cycle”, Proc. 15th ACM International Conference on Knowledge Discovery and Data Min-
ing, Paris, France, June 2009.  

39. Colbaugh, R. and K. Glass, “Prediction of social dynamics via social media analytics”, San-
dia National Laboratories SAND Report, January 2011.  

40. Newman, M., “Modularity and community structure in networks”, Proc. National Academy 
of Sciences USA, Vol. 103, pp. 8577-8582, 2006.  

41. Carmi, S., S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model of Internet topology 
using the k-shell decomposition”, Proc. National Academy of Sciences USA, Vol. 104, pp. 
11150-11154, 2007.  

42. http://www.sandia.gov/avatar/, accessed July 2010.  

43. Glass, K. and R. Colbaugh, “Web analytics for security informatics”, Proc. European Intelli-
gence and Security Informatics Conference, Athens, Greece, September 2011.  



 
27 

44. http://memetracker.org, accessed January 2010.  

45. Bradley, M. and P. Lang, “Affective norms for English words (ANEW): Stimuli, instruction 
manual, and affective ratings”, Technical Report C1, University of Florida, 1999.  

46. Ramakrishnan, G., A. Jadhav, A. Joshi, S. Chakrabarti, and P. Bhattacharyya, “Question an-
swering via Bayesian inference on lexical relations”, Proc. Annual Meeting of the Associa-
tion for Computational Linguistics, Sapporo, Japan, July 2003.  

47. http://data.ris.ripe.net/, last accessed July 2011.  

48. Glass, K., R. Colbaugh, and M. Planck, “Automatically identifying the sources of large 
Internet events”, Proc. IEEE International Conference on Intelligence and Security Informat-
ics, Vancouver, Canada, May 2010.  

49. Hedstrom, P., “Explaining the growth patterns of social movements”, Understanding Choice, 
Explaining Behavior, Oslo University Press, 2006.  

50. Hedstrom, P., R. Sandell, and C. Stern, “Mesolevel networks and the diffusion of social 
movements: The case of the Swedish Social Democratic Party”, American J. Sociology, Vol. 
106, pp. 145-172, 2000.  

51. Bettencourt, L., A. Cintron-Arias, D. Kaiser, and C. Castillo-Chavez, “The power of a good 
idea: Quantitative modeling of the spread of ideas from epidemiological models”, Physica A, 
Vol. 364, pp. 513-536, 2006.  

52. Candia, J. and K. Mazzitello, “Mass media influence spreading in social networks with 
community structure”, J. Statistical Mechanics, Vol. 7, P07007, 2008.  

53. Kushner, H., Stochastic Stability and Control, Academic Press, NY, 1967.  

54. Papachristodoulou, A., Personal communication, November 2008.  

55. Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Ro-
bustness and Optimization, PhD dissertation, California Institute of Technology, 2000.  

56. http://www.cds.caltech.edu/sostools/, accessed July 2007.  

 

 

 

 

 

 

 

 

 

 

 

 



 
28 

A1. Appendix One: S-HDS Social Diffusion Model  

In this Appendix we propose a multi-scale structure for modeling social network dynamics, 

establish a few facts concerning this representation, and introduce an S-HDS formulation of the 

model that is well-suited for predictive analysis.  

A1.1 Multi-Scale Social Dynamics Model  

In many social situations, people are influenced by the behavior of others, for instance be-

cause they seek to obtain the benefits of coordinated actions, infer otherwise inaccessible infor-

mation, or manage complexity in decision-making. Processes in which observing a certain be-

havior increases an individual’s probability of adopting that behavior are often referred to as 

positive externality processes (PEP), and we use that term here. PEP have been widely studied in 

the social and behavioral sciences and, more recently, by the informatics and physical sciences 

communities [e.g., 4]. In particular, social scientists have constructed theories which qualita-

tively and quantitatively explain these processes and their dependence on social networks [e.g., 

2-4, 6, 18, 36, 49-52]. One result of this research is a recognition that the process by which pref-

erences and opinions of individuals become the collective outcome for a group can be complex 

and subtle, and thus challenging to model and predict. People arrive at their decisions by reacting 

individually to an environment consisting largely of others who are reacting likewise, and one 

consequence of this feedback dynamics is that the collective outcome can be quite different from 

one implied by a simple aggregation of individual preferences.  

We model PEP in a manner which explicitly separates the individual, or “micro”, dynamics 

from the collective dynamics. More specifically, we adopt a modeling framework consisting of 

three modeling scales:  

▪ a micro-scale, for modeling the behavior of individuals;  

▪ a meso-scale, which represents the interaction dynamics of individuals within the same net-

work partition element (community or core/periphery);  

▪ a macro-scale, which characterizes the interaction between partition elements.  

We now derive a few properties of the multi-scale model. The micro-scale quantifies the way 

individuals combine their own inherent preferences regarding the available options with their 

observations of the behaviors of others to arrive at their chosen courses of action. Interestingly, 

the dependence of this decision-making process on the social network admits a straightforward 

characterization. Consider the common and important binary choice setting, in which N agents 

choose from a set O = {0,1} of options based in part on the choices made by others. Let oi  

{0,1} denote the selection of agent i and o = [o1 … oN]T  ON represent the vector of choices 

made by the group. It is reasonable to suppose that agent i chooses between the options probabil-
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istically according to some map POi: Ai  ON  [0,1], where POi is the probability that agent i 

chooses option 1, Ai measures i’s inherent preference for option 1, and POi is nondecreasing in 

Ai. In positive externality situations POi should also be “nondecreasing in o” in some sense, and 

we now make this notion precise. (For notational simplicity in what follows we suppress the de-

pendence of POi on Ai.)  

Because it is defined in such general terms it may appear that the map POi could be a very 

complicated function of the choices of the other agents. In fact, Theorem 1 indicates that this 

map must be tractable.  

Theorem 1: Given any POi there exists a vector wi = [wi1 … wiN]T  N, with wij  0 and j wij 

= bi, and a scalar function ri: [0, bi]  [0,1] such that POi(o) = ri(o
Twi).  

Proof: It is enough to prove that the wij can be chosen so oTwi: O
N  [0, bi] is injective, since 

then ri can be constructed to recover any POi. One such choice for wi is wi = [20 21 … 2N1]T, as 

then oTwi provides a unique (binary number) representation for each o.                                        

We call ri the agent decision function and si = oTwi agent i’s social signal, and interpret the wij as 

defining a weighted social network for the group of N agents. Observe that Theorem 1 quantifies 

the way social influence is transmitted to an agent by her neighbors and highlights the impor-

tance of this signal in the decision-making process. The result also allows a simple characteriza-

tion of positive externality agent behavior: for such behavior, ri is nondecreasing in si.  

The micro-scale model structure allows PEP behaviors which appear to be distinct to be rep-

resented within a unified setting. For example, the basic model readily accommodates two of the 

most common sources of PEP: 1.) utility-oriented externalities, in which the utility or value of an 

option is a direct function of the number of others choosing it, and 2.) information externalities, 

which arise from inferences made by an individual about decision-relevant information pos-

sessed by others.  

Example A1.1: utility-oriented externalities. Suppose each agent i has a utility function ui: O  

[0, bi]  + which depends explicitly on i’s social signal si. The standard, albeit dated, example 

here is the fax machine, with the utility of owning a fax machine increasing with the number of 

others who own one. The key quantity considered by agent i when selecting between options 0 

and 1 is the utility difference between the options, ui(si) = ui(1,si) − ui(0,si). In positive external-

ity situations ui is increasing in si, and there exists a threshold social signal value s*, possibly 

with s*  0 or s* > bi, such that a utility maximizing agent will choose option 0 if si < s* and op-

tion 1 if si  s*.  

Example A1.2: information externalities. Suppose the utility to agent i of each option is inde-

pendent of the number of other agents choosing that option but there exists uncertainty regarding 
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this utility. To be concrete, assume that agent i’s utility depends on the “state of world” w  {w0, 

w1}, so that ui = ui(oi,w), and there exists uncertainty regarding w. In this case, agent i may ob-

serve others’ decisions in order to infer w and then choose the option which maximizes his utility 

for this world state (as when a tourist chooses a crowded restaurant over an empty one in an un-

familiar city). Consider, for instance, the decision of whether to adopt an innovation of uncertain 

quality, and let the world state w1 signify that innovation quality is such that adopting maximizes 

utility. In this situation it is reasonable for agent i to maximize expected utility and choose the 

option (adopt or not) oi* = argmaxoO wW P(w | si) ui(oi,w). If agent i uses Bayesian inference 

to estimate P(w1 | si) then we have a positive externality decision process and there exists a 

threshold value s* for the social signal such that agent i will choose option 0 if si < s* and option 

1 if si  s* [17].  

It can be seen that in these examples, different positive externality “drivers” lead to equivalent 

(threshold) micro-scale models.  

Taken together, the meso- and macro-scale components of the proposed modeling frame-

work quantify the way agent decision functions interact to produce collective behavior at the 

population level. For convenience of exposition, in this Appendix we focus on network commu-

nities as the meso-scale structure of interest; however, all of the modeling results derived here 

also hold for the case of core-periphery structure . The role of the meso-scale model is to quan-

tify and illuminate the manner in which agent decision functions interact within social network 

communities, while the macro-scale model characterizes the interactions of agents between 

communities. The primary assumption is that interactions between individuals within social net-

work communities can be modeled as “fully-mixed” – all pairwise interactions between indi-

viduals within a network community are equally likely – while interactions between communi-

ties are constrained by the network defining the relationships between the communities. We ar-

gue below that this assumption is reasonable and useful.  

One advantage of identifying a scale at which agent interaction is (approximately) homoge-

neous is that this enables the leveraging of an extensive literature on collective dynamics. To be 

concrete, we derive two examples. Consider first the social movement model proposed in 

[49,50]. In this model, each individual can be in one of three states: member (of the movement), 

potential member, and ex-member. Individuals interact in a fully-mixed way, with each interac-

tion between a potential member and a member resulting in the potential member becoming a 

member with probability , and each interaction between a member and an ex-member resulting 

in the member becoming an ex-member with probability 1; members also “spontaneously” be-

come ex-members with probability 2. The connection between this representation and standard 

epidemiological models [1] is clear.  
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Under the assumption of fully-mixed interactions at the meso-scale, standard manipulations 

yield the following representation for the social dynamics within network communities:  

                       dP/dt  =  PM(PM)1/21(t), 

H:                 dM/dt  =  PM(PM)1/21(t)1ME−(1ME)1/22(t) −2M−(2M)1/23(t), 

                       dE/dt  =  1ME(1ME)1/22(t)2M(2M)1/23(t), 

where P, M, and E denote the fractions of potential members, members, and ex-members in the 

community population, , 1, and 2 are nonnegative constants related to the probabilities , 1, 
and 2 defined above, and the i(t) are appropriate random processes [e.g., 17]. The determinis-

tic version of this basic model (i.e., with 1(t)2(t)3(t)0) is discussed by Hedstrom and co-

authors in [49,50], and therefore we denote the model H. The deterministic version is shown in 

[49] to provide a useful description for the local growth of a real world social movement.  

The second example incorporates the fact that innovations often have both enthusiasts and 

skeptics, each of whom may actively attempt to recruit the uncommitted. The model H can be 

modified to account for this competition in recruitment:  

dP/dt = 1PM1  2PM2, 

B:                                                  dM1/dt = 1PM1  1M1, 

                                                       dM2/dt = 2PM2  2M2, 

                                                         dE/dt = 1M1  2M2, 

where P and E denote the fractions of potential members and ex-members, as before, M1 and M2 

are members of the competing groups or movements, and 1, 2, 1, and 1 are nonnegative con-

stants. A model of this basic form is proposed in Bettencourt and coworkers in [51] and thus we 

label it B. The model can be fitted, with good agreement, to empirical data for the diffusion of 

Feynman diagrams (an innovation in physics) in the post World War II era [51]. Developing a 

stochastic version of B, analogous to the representation H, is straightforward [39].   

The meso-scale model describes the way individual agent decision functions interact to pro-

duce collective behavior within social network communities. Individuals also interact with peo-

ple from other communities, of course, and receive information from channels that transmit to 

many communities simultaneously (e.g., mass media). These inter-community interactions and 

“global” social signals are quantified at the macro-scale level of the multi-scale modeling 

framework. The basic idea is simple and natural: we model interdependence between social net-

work communities with a graph Gsc = {Vsc, Esc}, where Vsc and Esc are the vertex and edge sets, 

respectively, |Vsc| = K, each vertex v  Vsc is a community, and each directed edge e = (v,v)  

Esc represents a potential inter-community interaction. More specifically, an edge (v,v) indicates 

that an agent in community v can receive decision-relevant information from one in community 
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v. The way agents act upon this information is specified by their decision functions ri. The 

broadcast of global social signals to individuals is modeled as a community-dependent input uv 

to each individual in community v. Thus Gsc and the uv define the macro-scale model structure.  

A key task in deriving a macro-scale model is specifying the topology of Gsc, as this graph 

encodes the social network structure for the phenomenon of interest. The most direct approach to 

constructing Gsc is to infer communities directly from social network data, by partitioning the 

network so as to maximizing the graph modularity Qm. The main challenge with this method for 

building social community graphs is obtaining the requisite social network data. While this task 

is certainly nontrivial, availability of such data has increased dramatically over the past decade. 

For instance, social relationships and interactions increasingly leave “fingerprints” in electronic 

databases (e.g., communication via email and cell phones, financial transactions), making con-

venient the acquisition, manipulation, storage, and analysis of these records [e.g., 4].  

Alternatively, demographics data can sometimes be used to define both the communities 

themselves (e.g., families, physical neighborhoods) and their proximity. The basic idea is famil-

iar: individuals belong to social groups, which in turn belong to “groups of groups”, and so on, 

giving rise to a hierarchical organization of communities. For instance, in academics, research 

groups often belong to academic departments, which are organized into colleges, which in turn 

form universities, and so on. The proximity of two communities is specified by their relationship 

within the hierarchy, and this distance defines the likelihood that individuals from the two com-

munities will interact. The probability of inter-community interaction, in turn, can be used to de-

fine the network community graph Gsc [39].  

A1.2 S-HDS Model Formulation  

We now show that the stochastic hybrid dynamical system formalism provides a rigorous, 

tractable, and expressive framework within which to represent multi-scale social dynamics mod-

els. Consider the following  

Definition A1.1: A stochastic hybrid dynamical system (S-HDS) is a feedback interconnection 

of a continuous-time, continuous state-dependent Markov chain {Q, (x)} and a collection of 

stochastic differential equations indexed by the Markov chain state q:  

{Q, (x)}, 

S-HDS:                                             dx = fq(x,p)dt + Gq(x,p)dw, 

where qQ is the discrete state, xXn is the continuous state, pp is a vector of system pa-

rameters, {fq} and {Gq} are sets of vector and matrix fields characterizing the continuous system 

dynamics, w is an m-valued Weiner process, and (x) is the matrix of (x-dependent) Markov 
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chain transition rates; the entries of (x) satisfy qq(x)  0 if q  q and q qq(x) = 0 q, and 

are related to the standard Markov state transition probabilities as follows [e.g., 34]:  
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A general discussion of S-HDS theory and applications is beyond the scope of this paper and 

may be found in, for instance, [34] and the references therein.  

We now develop an S-HDS representation for multi-scale social diffusion processes. It is as-

sumed that:  

▪ the social system consists of N individuals distributed over K network communities;  

▪ individuals can influence each other via positive externalities;  

▪ intra-community interactions are fully-mixed;  

▪ inter-community interactions involve the (possibly temporary) migration of individuals from 

one community to another.  

The phenomenon of interest is the diffusion of innovations, in which an innovation of some kind 

(e.g., a new technology or idea) is introduced into a social system, and individuals may learn 

about the innovation from others and decide to adopt it [e.g., 2]. By definition an innovation is 

“new”, and therefore it is supposed that initially only a few of the network communities have 

been exposed to it. An important task in applications is to be able to characterize the likelihood 

that the innovation will spread to a significant fraction of the population [17].  

We model social diffusion as follows:  

Definition A1.2: The multi-scale S-HDS diffusion model is a tuple  

S-HDS, diff = {Gsc, QX, {fq(x),Gq(x),Hq(x)}qQ, Par, W, U, {Q, (x)}} 

where  

▪ Gsc = {Vsc, Esc} is the social network community graph;  

▪ QX is the system state set, with Q and X  n denoting the (finite) discrete and (bounded) 

continuous state sets, respectively;  

▪ {fq(x),Gq(x),Hq(x)}qQ, Par, W, U is the S-HDS continuous system, a family of stochastic 

differential equations which characterizes the intra-community dynamics via vector field/ 

matrix families {fq},{Gq},{Hq}, system parameter vector pParp, and system inputs 

wWm, uUr;  

▪ {Q, (x)} is the S-HDS discrete system, a continuous-time Markov chain which defines in-

ter-community interactions via state set Q and transition rate matrix (x).  
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The social community graph Gsc defines the feasible community-community innovation dif-

fusion pathways: if (v,v)  Esc then it is not possible for the innovation to spread directly from 

community v to community v. The discrete state set Q = {0,1}K specifies which communities 

contain at least one adopter of the innovation by labeling such communities with a ‘1’ (and a ‘0’ 

otherwise). Thus, for example, state q = [1  0  0  … ]T indicates that community 1 has at least one 

adopter, community 2 and 3 do not, and so on. The continuous state space X has coordinates xij 

 [0,1], where xij is the ith state variable for the continuous system dynamics evolving in com-

munity j. For consistency we use the first coordinate for each community, x1j, to refer to the frac-

tion of adopters for that community. The continuous system dynamics is defined by a family of 

q-indexed stochastic differential equations {cs, q}qQ, with  

cs, q:                                          dx = fq(x,p)dt + Gq(x,p)dw + Hq(x,p)du, 

where wW is a standard Weiner process and uU is the exogenous input. Ordinarily w is inter-

preted as a stochastic “disturbance”, while u is employed to represent influences from “global” 

sources such as mass media. These dynamics quantify intra-community diffusion of the innova-

tion of interest, for instance through models of the form H. The Markov chain matrix (x) 

specifies the transition rates for discrete state transitions q  q and depends on both Gsc and x 

(e.g., the rate at which community v will “infect” other communities depends upon the fraction 

of adopters in v). It is worth noting that the model S-HDS, diff naturally accommodates both prob-

abilistic (via w and the Markov chain dynamics) and set-bounded (through parameter set Par) 

uncertainty descriptions, as this expressiveness is desirable in applications.  

A1.3 A Simple Example  

We now demonstrate the implementation of the proposed multi-scale S-HDS diffusion mod-

eling framework, and illustrate its efficacy, through a simple example; a more complex example, 

with more interesting analytic goals, is investigated in Appendix Two below. Consider a social 

network consisting of two communities and a social movement process playing out on this net-

work. We construct the social network using the method given in [52]. Briefly, a collection of N 

vertices is divided into two communities of equal size, denoted L and R (for ‘left’ and ‘right’, see 

Figure 6). For all vertex pairs, if both vertices belong to the same community then an edge is 

placed between them with probability pi, and if the vertices belong to different communities then 

they are connected with probability pe  pi. Increasing the ratio pi / pe makes the resulting net-

work more “community-like” by increasing the relative intra-community edge density. Figure 6 

shows two small example networks built in this way, with the network on the left corresponding 

to a larger pi / pe ratio.  

 



 
35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The social movement dynamics evolving on this network is a “network version” of the 

model proposed in [49]. Thus each individual can be in one of three states – member, potential 

member, and ex-member – and individuals can change states in one of three ways: 1.) members 

persuade potential members to whom they are linked to become members with probability , 2.) 

ex-members likewise influence neighboring members to become ex-members with probability 

1, and 3.) members can spontaneously become ex-members with probability 2. For conven-

ience of reference this “agent-based” system representation is denoted ABM. 

Figure 6. Sample results for ABM/S-HDS comparison study. The visualization at top is a cartoon 
of the basic setup, in which an innovation is introduced into one of the two network communities 
comprising a social system; possible outcomes include diffusion of the innovation throughout the 
community initially “infected” (left network, blue vertices are in state M) or across both communi-
ties (right network). The plot at bottom shows the probability of “global” diffusion as a function of 
inter-community interaction intensity for the models ABM (blue curve) and S-HDS, diff (red curve).  
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It is straightforward to derive an S-HDS version of the social movement model ABM. Con-

sider the diffusion model S-HDS, diff  {Gsc, QX, {fq(x), Gq(x), Hq(x)}qQ, Par, W, U, {Q, (x)}} 

specified in Definition A1.2. Note first that in this case the social network community graph Gsc 

is very simple, consisting of two vertices corresponding to communities L and R and an undi-

rected edge connecting them. The continuous system state is x = [PL  ML  PR  MR]TX, where 

the subscripts indicate communities (note that the concentrations of ex-members, EL and ER, are 

not independent states because the total concentration sums to one on each community). We ap-

proximate the agent-based social movement dynamics within each network community with the 

fully-mixed model H, that is, with a set of stochastic differential equations governing the evolu-

tion of the concentrations of members M and potential members P.  

It can be seen that H together with the preceding discussion defines the model components 

X, {fq(x),Gq(x),Hq(x)}qQ, Par, W, U that make up the continuous system portion of S-HDS, diff. 

Thus all that remains is to specify the discrete system {Q, (x)}. The discrete state set Q = {00, 

10, 01, 11} indicates which communities contain at least one movement member, so that for in-

stance state q = 10 indicates that community L has at least one member and community R has no 

members. The Markov chain matrix (x) specifies the transition rates for discrete state transi-

tions q  q. These rates depend on the continuous system state x because the likelihood that one 

community will “infect” the other depends upon the current concentrations of members, potential 

members, and ex-members in that community.  

We examine the utility of the S-HDS social diffusion model constructed above by using this 

model to estimate the probability that a small set of “seed” members introduced into community 

L will lead to the movement growing and eventually propagating to community R. Because the 

model S-HDS, diff is derived from ABM, ABM is taken to be ground truth and S-HDS, diff is deemed 

a useful approximation if the cascade probability estimates obtained using the S-HDS representa-

tion are in good agreement with those computed based on ABM. The following parameter values 

are chosen for ABM: N  2000,   0.5, 1  0.01, 2  0.1 (the results reported are not sensi-

tive to variation in these values). We build 50 random realizations of the social network for each 

of 15 pi / pe ratios. The values for pi / pe are selected to generate a collection of 15 network sets 

whose topologies interpolate smoothly between networks with essentially disconnected commu-

nities (large pi / pe) and networks whose two communities are tightly coupled (small pi / pe). A 

“global” cascade is said to occur if an initial seed set of five movement members in community 

R, chosen at random, results in the diffusion of the movement to community L. The probability 

of global cascade at a given pi / pe ratio is computed by running 20 simulations on each of the 50 

social network realizations associated with that pi / pe, and counting up those for which the inno-

vation propagates to community L. The results of this simulation study are presented in the plot 
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at the bottom of Figure 6, with the blue curve showing the probability estimates as a function of 

pi / pe ratio and the error bars corresponding to  2 standard errors.  

We now investigate the efficacy of the S-HDS social diffusion model by using this model to 

estimate the probability of global cascade. The social diffusion model S-HDS, diff is instantiated to 

be equivalent to the agent-based representation ABM described above. Note that, in particular, 

there are no free parameters available to permit the response of S-HDS, diff to be “tuned” to match 

ABM. For instance, the ABM parameters , 1, 2 uniquely define S-HDS, diff parameters , 1, 

2, and specifying values for the pi / pe ratios gives corresponding values for the S-HDS transi-

tion matrices (x) (to within a single “offset” parameter, see [39]). A Matlab program imple-

menting the resulting model S-HDS, diff is given in [39].  

In order to compute the probability of global cascade using the S-HDS model S-HDS, diff, we 

employ the “altitude function” method described in Appendix Two below. This method calcu-

lates provably-correct upper bounds on the probability of the social movement propagating to 

community L. The results of this analysis are given at the plot of the bottom of Figure 6 (red 

curve). Observe that the global cascade probability estimates obtained using the two models 

ABM and S-HDS, diff are in close agreement. As it is challenging to model “discontinuous” phe-

nomena such as diffusion across social network communities, this agreement represents impor-

tant evidence that the S-HDS provides a useful characterization of social diffusion on networks.  

While the models ABM and S-HDS, diff generate similar results in this example, the S-HDS 

representation is much more efficient computationally. For instance, estimating the desired 

global cascade probabilities using the S-HDS model requires less than one percent of the com-

puter time needed to obtain these estimates with the equivalent agent-based model. Moreover, 

this difference on efficiency increases with network size, which is important because realistic 

social networks have hundreds or thousands of communities rather than just two. This computa-

tional tractability hints at a more general, and more significant, mathematical tractability enjoyed 

by the S-HDS framework, a property we now leverage to develop a rigorous predictive analysis 

methodology for social diffusion events.  

A2. Appendix Two: Predictive Analysis  

In this Appendix we formulate the predictive analysis problem in terms of reachability as-

sessment, show that these reachability questions can be addressed through an “altitude function” 

analysis without computing system trajectories, and apply this theoretical framework to demon-

strate that predictability of a broad class of social diffusion models depends crucially upon the 

meso-scale topological structures of the underlying networks. For convenience of exposition, in 

this Appendix we focus on network communities as a representative meso-scale structure; how-
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ever, all results derived here are also applicable to the more general case in which the “network 

partition” (see Section 2.2) includes both community and core-periphery structures.  

A2.1 Predictive Analysis as Reachability Assessment  

We propose that accurate prediction requires careful consideration of the interplay between 

the intrinsics of a process and the social dynamics which are its realization. We therefore adopt 

an inherently dynamical approach to predictive analysis: given a social process, a set of measur-

ables, and the behavior of interest, we formulate prediction problems as questions about the 

reachability properties of the system. Toward that end, the behavior about which predictions are 

to be made is used to define the system state space subsets of interest (SSI), while the particular 

set of candidate measurables under consideration allows identification of the candidate starting 

set (CSS), that is, the set of states and system parameter values which represent initializations 

that are equivalent under the assumed observational capability. This setup permits predictability 

assessment, and the related task of identifying useful measurables, to be performed in a system-

atic manner. Roughly speaking, the proposed approach to predictability assessment involves de-

termining how probable it is to reach the SSI from a CSS and deciding if these reachability prop-

erties are compatible with the prediction goals. If a system’s reachability characteristics are in-

compatible with the given prediction question – if, say, “hit” and “flop” in a cultural market are 

both likely to be reached from the CSS – then the prediction objectives should be refined in some 

way. Possible refinements include relaxing the level of detail to be predicted or introducing addi-

tional measurables.  

We now make these notions more precise. Consider the multi-scale S-HDS social diffusion 

model S-HDS, diff specified in Definition A1.2. Let P0 be a subset of the parameter set Par and X0, 

Xs1, Xs2 be subsets of the (bounded) continuous system state space X. Suppose X0  P0 and {Xs1, 

Xs2} are the CSS and SSI, respectively, corresponding to the prediction question. Let a specifica-

tion   0 be given for the minimum acceptable level of variation in system behavior relative to 

{Xs1, Xs2}. Consider the following  

Definition A2.1: A situation is eventual state (ES) predictable if |1  2|  , where 1 and 2 are 

the probabilities of S-HDS, diff reaching Xs1 and Xs2, respectively, and is ES unpredictable other-

wise.  

Note that in ES predictability problems it is expected that the two sets {Xs1, Xs2} represent quali-

tatively different system behaviors (e.g., hit and flop in a cultural market), so that if the prob-

abilities of reaching each from X0  P0 are similar then system behavior is unpredictable in a 

sense that is meaningful for many applications. Other useful forms of predictability are defined 

and investigated in [39].  



 
39 

The notion of predictability forms the basis for our definition of useful measurables:  

Definition A2.2: Let the components of the vectors (x0, p0)  X0  P0 which comprise the CSS 

be denoted x0 = [x01 … x0n]
T and p0 = [p01 … p0p]

T. The measurables with most predictive power 

are those state variables x0j and/or parameters p0k for which predictability is most sensitive.  

Intuitively, those measurables for which predictability is most sensitive are likely to be the ones 

that can most dramatically affect the predictability of a given problem. Note that we do not spec-

ify a particular measure of sensitivity to be used when identifying measurables with maximum 

predictive power, as such considerations are ordinarily application-dependent (see [39] for some 

useful specifications). Definitions A2.1 and A2.2 focus on the role played by initial states in the 

predictability of social processes. In some cases it is useful to expand this formulation to allow 

consideration of states other than initial states. For instance, we show in [18] that very early time 

series are often predictive for PEP, suggesting that it can be valuable to consider initial state tra-

jectory segments, rather than just initial states, when assessing predictability. This extension can 

be naturally accomplished by redefining the CSS, for instance by augmenting the state space X 

with an explicit time coordinate [18].  

We now turn our attention to the “early warning” problem.  

Definition A2.3: Let the event of interest be specified in terms of S-HDS, diff reaching or escaping 

some SSI Xs, and suppose a warning signal is to be issued only if the probability of event occur-

rence exceeds some specified threshold . Reach warning analysis involves identifying a state 

set Xw, where Xs  Xw necessarily, with the property that if the system trajectory enters Xw then 

the probability that S-HDS, diff will eventually reach Xs is at least . Analogously, escape warning 

analysis involves identifying a state set Xw, where X \ Xw  Xs necessarily, with the property 

that if the system trajectory enters Xw then the probability that S-HDS, diff will eventually escape 

from Xs is at least .  

A2.2 Stochastic Reachability Assessment  

The previous section formulates predictive analysis problems as reachability questions. Here 

we show that these reachability questions can be addressed through an “altitude function” analy-

sis, in which we seek a scalar function of the system state that permits conclusions to be made 

regarding reachability without computing system trajectories. We refer to these as altitude func-

tions to provide an intuitive sense of their analytic role: if some measure of “altitude” is low on 

the CSS and high on an SSI, and if the expected rate of change of altitude along system trajecto-

ries is nonincreasing, then it is unlikely for trajectories to reach this SSI from the CSS.  

Consider the S-HDS social diffusion model S-HDS, diff evolving on a bounded state space Q  

X. We quantify the uncertainty associated with S-HDS, diff by specifying bounds on the possible 
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values for some system parameters and perturbations and giving probabilistic descriptions for 

other uncertain system elements and disturbances. Given this representation, it is natural to seek 

a probabilistic assessment of system reachability.  

We begin with an investigation of probabilistic reachability on infinite time horizons. The 

following “supermartingale lemma” is proved in [53] and is instrumental in our development:  

Lemma SM: Consider a stochastic process s with bounded state space X, and let x(t) denote the 

“stopped” process associated with s (i.e., x(t) is the trajectory of s which starts at x0 and is 

stopped if it encounters the boundary of X). If A(x(t)) is a nonnegative supermartingale then for 

any x0 and  > 0  

P{sup A(x(t))   | x(0) = x0}  A(x0) / . 

Denote by X0  X and Xs  X the initial state set and SSI, respectively, for the continuous 

system component of S-HDS, diff, and assume that X and the parameter set Par  p are both 

bounded. Thus, for instance, the SSI is a subset of the continuous system state space X alone; 

this is typically the case in applications and is easily extended if necessary. We are now in a po-

sition to state our first stochastic reachability result:  

Theorem 2:  is an upper bound on the probability of trajectories of S-HDS, diff reaching Xs from 

X0, while remaining in Q  X, if there is a family of differentiable functions {Aq(x)}qQ such that  

▪ Aq(x)   xX0, qQ;  

▪ Aq(x)  1 xXs, qQ;  

▪ Aq(x)  0 xX, qQ;  

▪ (Aq/x) (fq + Hq u) + (1/2) tr [Gq
T (2Aq/x2) Gq] + qQ qq Aq  0 xX, qQ, uU, 

pPar.  

Proof: Note first that BAq(x)  (Aq/x) (fq + Hq u) + (1/2) tr [Gq
T (2Aq/x2) Gq] + qQ qq Aq 

is the infinitesimal generator for S-HDS, diff, and therefore quantifies the evolution of the expecta-

tion of Aq(x) [53,34]. As a consequence, the third and fourth conditions of the theorem imply 

that A(q(t),x(t)) is a nonnegative supermartingale [53]. Thus, from Lemma SM, we can conclude 

that P{x(t)Xs for some t}  P{sup A(q(t),x(t))  1 | x(0)=x0}  A(q,x0)   x0X0, qQ, 

uU, pPar.                                                                                                                               

The preceding result characterizes reachability of S-HDS on infinite time horizons. In some 

situations, including important applications involving social systems, it is of interest to study sys-

tem behavior on finite time horizons. The following result is useful for such analysis:  
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Theorem 3:  is an upper bound on the probability of trajectories of S-HDS, diff reaching Xs from 

X0 during time interval [0,T], while remaining in Q  X, if there exists a family of differentiable 

functions {Aq(x,t)}qQ such that  

▪ Aq(x,t)   (x,t)X00, qQ;  

▪ Aq(x,t)  1 (x,t)Xs[0,T], qQ;  

▪ Aq(x,t)  0 (x,t)X, qQ;  

▪ BAq(x,t)  0 (x,t)X, qQ, uU, pPar.  

Proof: The proof follows immediately from that of Theorem 2 once it is observed that P{x(t)Xs 

for some t[0,T]} = P{(x(t),t)Xs[0,T]}.                                                                                     

The idea for the proof of Theorem 3 was suggested in [54].  

Having formulated predictability assessment for social processes in terms of system reach-

ability and presented a new theoretical methodology for assessing reachability, we are now in a 

position to give our approach to deciding predictability. Observe first that Theorems 2 and 3 are 

of direct practical interest only if it is possible to efficiently compute a tight probability bound  
and associated altitude function A(x) which satisfy the theorem conditions. Toward that end, ob-

serve that the theorems specify convex conditions to be satisfied by altitude functions: if A1 and 

A2 satisfy the theorem conditions then any convex combination of A1 and A2 will also satisfy the 

conditions. Thus the search for altitude functions can be formulated as a convex programming 

problem [55]. Moreover, if the system of interest admits a polynomial description (e.g., the sys-

tem vector and matrix fields are polynomials) and we search to polynomial altitude functions, 

then the search can be carried out using sum-of-squares (SOS) optimization [56].  

SOS optimization is a convex relaxation framework based on SOS decomposition of the 

relevant polynomials and semidefinite programming. SOS relaxation involves replacing the non-

negative and nonpositive conditions to be satisfied by the altitude functions with SOS conditions. 

For example, the conditions for Aq(x) given in Theorem 2 can be relaxed as follows:  

                        A(x)   xX0    
                − A(x) − 0

T(x) g0(x) is SOS 

                 A(x)  1 xXs                   A(x) − 1 − s
T(x) gs(x) is SOS  

                 A(x)  0 xX                    A(x) − X1
T(x) gX1(x) is SOS 

BA(x)  0 xX, pPar         BA(x)X2
T(x) gX2(x)P

T(p) gP(p) is SOS 

where the entries of the vector functions 0, s, X1, X2, P are SOS, the vector functions g0, gs, 

gX1, gX2, gP satisfy g()  0 (entry-wise) whenever xX or pPar, respectively, and we assume 

|Q|  1 for notational convenience. The conditions on Aq(x,t) specified in Theorem 3 can be re-

laxed in exactly the same manner. The relaxed SOS conditions are clearly sufficient and in prac-

tice are typically not overly-conservative [56,39].  
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Once the set of conditions to be satisfied by A(x) are relaxed in this way, SOS programming 

can be used to compute min, the minimum value for the probability bound , and A(x), the asso-

ciated altitude function which certifies the correctness of this bound. Software for solving SOS 

programs is available as the third-party Matlab toolbox SOSTOOLS [56], and example SOS pro-

grams are given in [39]. Importantly, the approach is tractable: for fixed polynomial degrees, the 

computational complexity of the associated SOS program grows polynomially in the dimension 

of the continuous state space, the cardinality of the discrete state set, and the dimension of the 

parameter space.  

For completeness, we outline an algorithm for computing the pair (min, A(x)):  

Algorithm A2.1: altitude functions via SOS programming (outline)  

1. Parameterize A as A(x) = k ck ak(x), where {a1, …, aB} are monomials up to a desired de-

gree bound and {c1, …, cB} are to-be-determined coefficients.  

2. Relax all A(x) criteria in the relevant theorem to SOS conditions.  

3. Formulate an SOS program with decision variables , {c1, …, cB}, where the desired bound 

on altitude function polynomial degree is reflected in the specification of the set {c1, …, cB}. 

Compute the minimum probability bound min and values for the coefficients {c1, …, cB} that 

define A(x) using SOSTOOLS.  

It is emphasized that, although the computation of (min, A(x)) is performed numerically, the re-

sulting function A(x) is guaranteed to satisfy the conditions of the relevant theorem and therefore 

represents a proof of the correctness of the probability upper bound min. Note also that the prob-

ability estimate is obtained without computing system trajectories, and is valid for entire sets of 

initial states X0, parameter values Par, and exogenous inputs U.  

Having given a method for efficiently computing pairs (min, A(x)), and thereby characteriz-

ing reachability, we are now in a position to sketch an algorithm for assessing ES predictability:  

Algorithm A2.2: ES predictability (outline)  

Given: social diffusion process of interest is S-HDS, diff, CSS = X0  P0, SSI = {Xs1, Xs2}, and 

minimum acceptable level of variation = .  

Procedure:  

1. compute (upper bound for) probability 1 of S-HDS, diff reaching Xs1 from X0  P0;  

2. compute (upper bound for) probability 2 of S-HDS, diff reaching Xs2 from X0  P0;  

3. if |1  2|   then problem is ES predictable, else problem is ES unpredictable.  

Note: 1, 2 can be computed using Theorem 2 (infinite time horizon) or Theorem 3 (finite time 

horizon) together with Algorithm3.1 and SOSTOOLS [56].  
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A2.3 Application to Social Diffusion  

The theoretical framework developed in the preceding sections is now used, in combination 

with empirically-grounded models for social diffusion [e.g., 17,49-51], to demonstrate that pre-

dictability of this class of diffusion models depends crucially upon network community structure. 

We investigate the following predictability question: Is the diffusion of social movements and 

mobilizations ES predictable and, if so, which measurable quantities have predictive power?  

We adopt a specific version of the S-HDS social diffusion model proposed in Definition 2.2:  

S-HDS, diff = {Gsc, QX, {fq(x),Gq(x)}qQ, Par, W, {Q, (x)}} 

where  

▪ the social network community graph Gsc consists of K communities (so |Vsc| = K), connected 

together with an Erdos-Renyi random graph topology, with community size drawn from a 

power law distribution [36];  

▪ each continuous system cs, q: dx = fq(x,p)dt + Gq(x,p)dw, qQ, is given by the meso-scale 

social movement model H or B with appropriate parameter vector p and system “noise” w;  

▪ the discrete system {Q, (x)} is a Markov chain that defines inter-community interactions in 

the manner described in Definition A1.2.  

A Matlab instantiation of this S-HDS diffusion model is given in [39] and is available upon re-

quest. The behavior of the model can be shown to be consistent with empirical observations of 

several historical social movements (e.g., various movements in Sweden) [39].  

In order to assess ES predictability, SSI = {Xs1, Xs2} is defined so that Xs1, Xs2 are state sets 

corresponding to global (affecting a significant fraction of the population) and local (remaining 

confined to a small fraction of the population) movement events, respectively. We then employ 

Algorithm A2.2 iteratively to search for a definition for CSS = X0  P0 which ensures that the 

probabilities of reaching Xs1 and Xs2 from X0  P0 are sufficiently different to yield an ES pre-

dictable situation. We use two models of the form S-HDS, diff for this analysis, corresponding to 

the two definitions for the continuous system H and B. Each model is composed of K = 10 

communities connected together with an Erdos-Renyi random graph topology. (Using different 

realizations of the Erdos-Renyi random graph does not affect the conclusions reported below.)  

ES predictability analysis yields two main results. First, both the intra-community and inter-

community dynamics exhibit threshold behavior: small changes in either the intra-community 

“infectivity” or inter-community interaction rate around their threshold values lead to large varia-

tions in the probability that the movement will propagate “globally”. More quantitatively, for the 

diffusion model S-HDS, diff with continuous system dynamics H, threshold behavior is obtained 

when varying 1.) the generalized reproduction number R   / 2 and 2.) the rate  at which in-
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ter-community interactions between individuals take place. Thus in order for a social movement 

to propagate to a significant fraction of the population, the threshold conditions R1 and 0 

must be satisfied simultaneously. An analogous conclusion holds when H is replaced with the 

diffusion model B in the S-HDS representation. This finding is reminiscent of and extends well-

known results for epidemic thresholds in disease propagation models [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This threshold behavior is illustrated in the plot at the top right of Figure 7, which shows the 

way probability of global propagation increases with inter-community interaction rate when the 

intra-community diffusion is sufficiently infective (i.e.,  R1). The probabilities which make up 

Figure 7. Sample results from social diffusion predictability study. Cartoon at top left illus-
trates the setup for the inter-community interaction study, highlighting the parameter values 
R01 and 0 which quantify intra-and inter-community propagation thresholds; plot at top 
right shows classic threshold dependence of global propagation probability on inter-
community interaction intensity . Plots in bottom row depict the way global propagation 
probability increases with the number of communities across which a fixed set of innovat-
ing seeds are distributed (plots at left and right show cascade probabilities for multi-scale 
models possessing H and B meso-scale dynamics, respectively).  

0

R0

0

R0

0

R0
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this plot represents provably-correct (upper bound) estimates computed using Theorem 2 and 

Algorithm A2.1. A similar threshold response is observed when varying intra-community infec-

tivity R, provided the inter-community interaction rate satisfies 0. Importantly, the inter-

community interaction threshold 0 is seen to be quite small, indicating that even a few links be-

tween network communities enables rapid diffusion of the movement to otherwise disparate re-

gions of the social network. This result suggests that a useful predictor of movement activity in a 

given community is the level of movement activity among that community’s neighbors in Gsc.  

The second main ES predictability result characterizes the way probability of global propa-

gation varies with the number of network communities across which a fixed set of “seed” move-

ment members is distributed. To quantify this dependence, the social movement model S-HDS, diff 

is initialized so that a small fraction of individuals in the population are movement members and 

the remainder of the population consists solely of potential members. We then vary the way this 

initial seed set of movement members is distributed across the K network communities, at one 

extreme assigning all seeds to the same community and at the other spreading the seeds uni-

formly over all K communities. For each distribution of seed movement members, the probabil-

ity of global movement propagation is computed using Theorem 2 and Algorithm A2.1. Other 

than initialization strategy, the model is specified exactly as in the preceding analysis.  

The results of this portion of the ES predictability assessment are summarized in the two 

plots at the bottom of Figure 7. It is seen that for both choices of meso-scale social movement 

dynamics, H and B, the probability of global movement propagation increases approximately 

linearly with the number of network communities across which the fixed set of seed members is 

distributed (here the number of initial members is set to one percent of the total population).  
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