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Presentation to Sandia National Laboratories’
Complex Systems Advisory Panel

This presentation describes a model designed to study the
effects of adaptive network growth on the network’s
resilience, summarizing:

— Research questions
— Model formulation

— Initial results
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Understanding Connections between Network
Structure and Performance

(®

that ¢ > 1 says simply that the networks being considered are
all fully connected. Any value ¢ < 1would imply that the graph
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From Ulanowicz et al., Eco. Compl. 6 pp 27-36
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Trophic (and other) networks are topologically
intermediate between minimally and richly
connected

Maybe this reflects a compromise between being
efficient as a system and needing to survive local
disruptions

Maybe structure is an indicator of resilience
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Questions:

(®

Can local adaptation accomplish this
tradeoff?
Does it leave a signature in the
topology?
Is it a (systemically) good tradeoff?
... can it be made so?
Can structural measures predict
performance resilience?

e Against historical shocks?

e Against larger shocks?
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Understanding Connections between Network
Structure and Performance

o e e b + Trophic (and other) networks are topologically
intermediate between minimally and richly
: 5 o0 o T connected
2, 8° o 0 * Maybe this reflects a compromise between being
é 6{ o 5’; g A L 5 efficient as a system and needing to survive local
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From Ulanowicz et al., Eco. Compl. 6 pp 27-36 Driving
Questions: Network Process
e Can local adaptation accomplish this Structure /

tradeoff?
 Does it leave a signature in the ('
topology?
e Isita (.systemically) good tradeoff? Disruptions
... can it be made so? Performance
e Can structural measures predict
performance resilience?
e Against historical shocks?
e Against larger shocks? Answers depend on specifics.
Sandia We start with a simple flow model...
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Model Features

Driving Process
Diffusive fluid flow
between fixed-potential

Network sources and sinks;
Structure Limited by link capacities
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Model Features

Driving Process
Diffusive fluid flow
between fixed-potential

Disruptions foster growth§ Network sources and sinks;
of secondary pathways | Structure / Limited by link capacities

Disruptions
Random
removal of link
capacity

Performance
Energy carried by
flow along each link;
Used to fund new
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Model Features

Driving Process
Diffusive fluid flow
between fixed-potential

Network sources and sinks;
Structure / Limited by link capacities
Disruptions

Random

removal of link
capacity

Change in network
structure shifts the
location of disruptions

Performance
Energy carried by
flow along each link;
Used to fund new
capacity
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Flow and Growth Process Models

Flow rates are limited by a (directed)
capacity associated with each link, c;. where k. is a conductance
Assuming s; > s;, the flow from node i paramet”er and the function f(x)

Each node ihas a to node j is given by: models linear resistance as x->0 and
potential s, @ Si S
i enforces the capacity limit for large
X:
. .. L= Cii S: — S ki 1 _ —
Each link jihasa ¢, | | i = i f(Gsi = spki) (1) f=1—e* (2)
capacity ¢;

In equilibrium, the net flow at
each node iis 0, including any
internal sources (qs;) or
sinks(d;):
Network adapts by changing link
si capacities in response to utilization:

The equilibrium solution {S;} is
obtained by solving equations (1-3).
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Link Capacity Dynamics

s; qij = cij f((5i = spkij)

Cij o Sj
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Link Capacity Dynamics
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s; qij = cij f((5i = spkij)

New Capacity
Demand
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Link Capacity Dynamics

1—¢€
Wi = (Si — Y )qij Local
Energy
s; qij = cij f((si = spkij) Eyj
o (@Q
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Link Capacity Dynamics

€
1—¢€

wij = (si = 57 )4y

Average Local
Energy

12

s; qij = cij f((5i = spkij)

ij

New Capacity
Demand
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Adaptation without Disruption
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Adaptation without Disruption
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Adaptation without Disruption ‘

"AS0S
MGINZERING

~
=h

Opportunistic

o

Network Flow during Adaptation

Capacity Addition during Adaptation

e
&

0.16
Q

ats
e
=

on

o

2
=

Capacity Addition R:
o o O .
2R B2

=
2

=]

0 500 1000 1500 2000
Time

Sandia
National
Laboratories



Ada

Opportunistic

Network Flow during Adaptation

@

Sandia
National
Laboratories



Adaptation without Disruption

CASoS

ENGINEERING

Conservative

Opportunistic

Network Flow during Adaptation

ng Adaptation

0 500 1000 1500 2000
Time

Sandia
National
Laboratories



Adaptation without Disruption

Opportunistic

825
£ 2
SM

Network Flow during Adaptation

Capacity Addition du

@

Sandia :
National
Laboratories

CASoS
SMGINEERING

Conservative

Network Flow during Adaptation

Capacity Addition during Adaptation

0 500 1000 1500 2000

Time




Ada

otation without Disruption

CASoS

ENGINEERING

Opportunistic

Network Flow during Adaptation

Conservative

Network Flow during Adaptation

0 500 1000 1500 2000
Time

Sandia
National
Laboratories




Ada

Opportunistic

825
£ 2
SM

Network Flow during Adaptation

Capacity Addition du

@

Sandia
National
Laboratories

otation without Disruption

CASoS

ENGINEERING

Conservative

Network Flow during Adaptation

0.4

Expensive Capacity

Capacity Distributions in Undisturbed Networks
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Local Strategies Shape Configuration and
Performance
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Capacity Costs Encourage Efficiency
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Influence of Disruption on System Performance
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Influence of Disruption on System Performance
Opportunistic Strategy with Expensive Capacity
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Influence of Disruption on System Performance
Opportunistic Strategy with Expensive Capacity
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Influence of Disruption on System Performance
Opportunistic Strategy with Expensive Capacity
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Influence of Disruption on System Performance
Opportunistic Strategy with Expensive Capacity
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Influence of Disruption on System Performance
Opportunistic Strategy with Expensive Capacity
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Influence of Disruption on System Structure
Opportunistic Strategy with Expensive Capacity

Capacity Distribution in Disrupted Networks
Expensive Capacity and Opportunistic Growth
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Influence of Disruption on System Structure

Opportunistic Strategy with Expensive Capacity\ |
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Capacity Distribution in Disrupted Networks
Expensive Capacity and Opportunistic Growth
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Capacity Distribution in Disrupted Networks
Expensive Capacity and Conservative Growth
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Influence of Disruption on System Structure
Opportunistic Strategy with Expensive Capacity_
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Influence of Disruption on System Structure
Opportunistic Strategy with Expensive Capacity_
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Influence of Disruption on System Structure
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Assessing Resilience to Extraordinary Disruptions
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Assessing Resilience to Extraordinary Disruptions
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Assessing Resilience to Extraordinary Disruptions
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Summary

Network structure can reflect an adaptive response, balancing
requirements for good nominal performance and resistance to
disruption

Whether this adaptation leads to a resilient system depends on ...
We are using a simple model of a class of infrastructure systems to

understand whether (or under what conditions) adaptation to small
disruptions can confer resilience to big ones

Initial results suggest that
®* The undisturbed system tends toward efficiency

® Adaptation under disruption can improve performance compared to naive
systems

Next:
®* Complete and publish an exploration of parameter space for this model

* Explore application of the approach to other systems of interest having
different driving processes and adaptive responses (human networks,
communications systems, biological systems)
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