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Abstract. We present a model of behavioral dynamics that combines a social network-based opinion dy-
namics model with behavioral mapping. The behavioral component is discrete and history-dependent to
represent situations in which an individual’s behavior is initially driven by opinion and later constrained
by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled
as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and
the effects of individual parameters and parameter interactions on model results. Mapping a continuous
opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide
targets of opportunity for influencing the network state; however, the smaller the network the greater the
stochasticity and potential variability in outcomes. This has implications both for behaviors that are influ-

enced by close relationships verses those influenced by
for influencing those behaviors.

1 Introduction

The investigation of health-related behaviors using social
network analysis and modeling is a growing field that inte-
grates behavioral, epidemiological, and computational re-
search, and often utilizes models and methods of analysis
from statistical physics. Although social network analy-
sis has existed as a research tool for almost a century, a
series of recent innovations has advanced this vital and
growing area of investigation. Some innovations integrate
computational modeling of social processes with an em-
phasis on explanation or prediction of social phenomena,
including the network-scale results of the diffusion of ideas
and individual opinion formation. Many topics of interest
to social scientists and epidemiologists, however, center on
social influences affecting individual risk behaviors.

The domain of sociophysics, the investigation of social
phenomena using relatively simple computational models
of stylized interpersonal interactions drawn from models
developed for statistical physics, has foundations in the ex-
tensive work of Serge Galam [1-3]. Galam has led the in-
vestigation of the application of these models to a wide
range of social and sociopolitical phenomena [4-6]. One
broad field of particular interest is the modeling of social
influences on individual opinions and behaviors, broadly
termed opinion dynamics modeling [1,7,8].
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societal norms and for the effectiveness of strategies

Opinion dynamics models are quantitative computa-
tional techniques for modeling the propagation of opinions
between pairs of individuals. This class of models derives
from the Ising spin models employed in statistical physics,
taking from those models the notion that the state of
one element in a collection can, through interaction, af-
fect the state of another [1,9]. Although these models are
highly simplified implementations of extremely complex
psychosocial phenomena, they have generated a great deal
of interest in the field of computational social sciences due
to their computational and analytical tractability.

Broadly, opinion dynamics models capture the social
components of opinion formation as defined by structural
balance theory. First proposed in 1953, structural balance
theory suggests that individuals connected by positive af-
fect will influence each other in their opinions regarding a
third individual or idea [1,10]. This theoretical construct is
similar to a model proposed by French [11,12], and to phe-
nomena observed in the famous Asch experiments in so-
cial influence in which subjects altered their answers about
the perceived lengths of lines in order to conform to group
opinions [13,14]. Recognizing that individuals obtain and
contextualize information largely from external sources,
modeling that is inclusive of these externalities conforms
to current thinking in social psychology and provides the
flexibility to model diverse phenomena including the ef-
fects of different classes of interventions to influence opin-
ions. This approach is an extension of research models that
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use simple or complex propagation of behavioral states,
and can suggest additional metrics for characterizing the
propagation of behavioral phenomena.

Opinion dynamics models have been applied to sev-
eral domains, including the spread of environmentally-
aware agricultural practices among European agricultural
producers and the formation of extremist groups in so-
cial networks [1-3]. These models have taken several
forms, including: discrete and continuous models of opin-
ion space [4-6]; well-mixed and network-based popula-
tion interactions [1,7,8]; and various models of opinion
propagation including neighbor sampling [1,9], summa-
tion [1,10], averaging [11,12], and Bayesian estimation [13].

The influence of social factors on health-related be-
haviors have generated considerable interest among re-
searchers; social network effects on smoking, obesity, and
other health-related behaviors and conditions have been
identified across a range of datasets [15-17]. These behav-
iors and conditions demonstrate assortativity in networks
creating clusters of similarly characterized individuals.

In this paper, we describe a behavioral dynamics model
that combines opinion dynamics in directed graph social
networks, conflicting media messages, opinion-driven be-
havior and the effects of addiction. Section 2 outlines the
conceptual and mathematical components of the model
using smoking as the motivating example. Section 3 re-
ports the results of the model including the effects of each
input parameter on model behavior. Section 4 concludes
with a summary of our findings.

2 Theory and model development
2.1 Opinion

Opinion dynamics models incorporate individual agents
to simulate social influences on individual opinion for-
mation. These agents are characterized with a numeric
opinion value, which is often implemented using a contin-
uous variable. Opinions are influenced by other individ-
uals in the community, either by random sampling in a
well-mixed population or as constrained by a social net-
work topology. In bounded confidence models individu-
als are also characterized by a tolerance value. This tol-
erance value contributes a homophily-like characteristic
that constrains opinion-changing interactions to individu-
als exhibiting similarity in opinion, where individual tol-
erance determines the necessary degree of similarity. For
a comprehensive review of different approaches to opinion
dynamics modeling, see Castellano et al. [9].

2.1.1 The meaning of opinion

As an illustrative example, we consider opinions about
smoking and their influence on smoking behavior. In this
model, opinion is represented as an aggregated value sub-
suming both utilitarian and affective assessments of smok-
ing. Positive evaluations about smoking tend to increase

Eur. Phys. J. B (2015) 88: 95

opinion about smoking; negative evaluations tend to de-
crease it. Individuals form opinions on the basis of interac-
tions with their peers and other individuals in their social
networks, as well as through the influence of marketing or
public health education campaigns.

Utility evaluations are primarily pragmatic: positive
utility might be perceived if an individual believes that
smoking helps with weight control or stress relief, while
negative utility would arise from awareness of the strong
causal link between smoking and multiple diseases. Af-
fective evaluations are more image-centered and emo-
tional; the perception of smoking as an assertion of ma-
turity and independence would contribute positively to
opinion, while the perception of smoking as associated
with undesirable or anti-social behaviors would contribute
negatively. There is a large body of empirical evidence
identifying the correlation of positive utility and social
perceptions with a propensity among youth to smoke,
while negative social perceptions and concerns about
health consequences are correlated with a decreased like-
lihood of youth smoking [18].

We initialize initial opinion using a continuous variable
on the interval [0, 1]. With relatively high mixing of opin-
ions among agents and with initial opinions drawn from
a uniform random distribution on the interval [0, 1], the
consensus opinion tends to converge to a neutral value,
at or near 0.5. In the model, opinions approaching 0.0 are
more negative towards smoking; those approaching 1.0 are
more positive.

2.1.2 Opinion propagation

As in all opinion dynamics models, the opinions of indi-
viduals are influenced by their neighbors. We restrict in-
fluence on an individual to neighbors in a social network
with directed edges. Directionality in friendship relation-
ships has been indicated as important in the spread of
smoking-related behaviors, as well as the spread of other
behaviors and opinions [15,16].

The continuous-valued opinion dynamics algorithm
proposed by Weisbuch and co-workers uses a model of
non-directed interactions between agents in a well-mixed
(non-networked) population [19]. Agents x and =’ selected
at random from the population whose opinions differ by
less than some value d, would mutually update their opin-
ions according to the equation:

r=x+p(z — )
r=otp( —2) 1)

for some value u, a convergence parameter. Weisbuch also
investigated the application of the model to undirected
scale-free and lattice network topologies [8], but did not
discuss clustering effects in terms of network topology-
based clusters.

We adapt this model with the following realization in
which both directionality imposed by network topology
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and averaging over out-degree neighbors are applied
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In equation (2), the subscript ¢ represents an individual,
subscript j is a neighbor to that individual, x;(t 4+ 1) is
the opinion value of individual ¢ at the next time step,
x;(t) is ¢’s opinion at the current time step, S; is the set
of all out-degree neighbors of ¢ and |S;| is the cardinality
of S;, pi; is the plasticity value associated with the rela-
tionship between individual ¢ and neighbor j, and z;(t) is
the opinion of neighbor j at the current time step.

The averaging function is similar to that proposed by
Hegselmann and Krause [11,20] and captures longer-term
continuous influences on opinion compared to the ran-
domized discrete interactions utilized in the Weisbuch and
co-workers implementation.

The plasticity value functions analogously to an edge
weight. Larger plasticity values proportionally increase the
influence of the given node. Some empirical research sug-
gests that the quality of a relationship (best friend versus
friend, work associate versus spouse) can cause a differen-
tial effect in behavior propagation [15,21] thus networks
can be constructed using heterogeneous plasticity values
to represent different types of relationships.

As in the Weisbuch and co-workers approach, we apply
the restriction imposed by tolerance bounds [1]:

| (t)

In equation (3), € represents tolerance and indicates the
range of opinion to which an individual might be receptive.
An individual with higher tolerance will be more open to
influence from his or her neighbors, while an individual
with lower tolerance will be less open to influence. The
number of opinion clusters expected to form in a network
is determined by tolerance values [8]. Networks charac-
terized by low tolerance will form many small clusters,
while networks with high tolerance will generally come to a
single large-cluster consensus value. Network connectivity
values also play a role in cluster size distribution. In a well-
mixed population with random bi-directional interactions,
the number of opinion clusters at steady state will be pro-
portional to 215’ with a phase transition from discrete clus-
ters to community-wide consensus at € ~ 0.27 [6].

—zi(t) <e. (3)

2.1.3 Media influences

In this model, opinion-broadcasting media campaigns are
represented as nodes with an out-degree of 0; such nodes
have the potential to influence individuals but are not
themselves subject to influence. The in-degree of a me-
dia node is analogous to the reach of the campaign.

In the tobacco example, media sources that have
been shown to influence individuals’ opinions regarding
smoking include cigarette advertising (e.g., displays at
points-of-sale), characters smoking in movies, tobacco in-
dustry promotions, and direct mail; these sources are
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modeled as media nodes with high opinions about smok-
ing [18,22]. Alternatively, public health campaigns and
counter-marketing media sources are represented by me-
dia nodes with low opinions. A recent study concluded
that tobacco control campaigns are more effective in trig-
gering quitting behaviors than advertising campaigns for
nicotine replacement therapies (NRTs) [23]. In the context
of opinion dynamics, this finding could be interpreted as
low opinion about smoking having a greater behavioral
effect than a high opinion toward specific NRTs.

Media nodes can be given a lower (or higher) plasticity
to reduce (or enhance) their influence relative to that of an
individual’s friends or others in the network. Media nodes
can also be assigned different patterns of connectivity to
enable modeling of the effects of different metrics of reach.
The influence effects of media nodes are largely a function
of message strength, of reach, and of the network centrality
of the individuals being influenced [24].

This approach to adding media nodes to opinion dy-
namics models is similar in intent to Carletti et al. [25], but
uses a social network structure rather than a well-mixed
population. Media campaigns in this model integrate with
the social network topology through connection to a sub-
set of nodes rather than by being applied to all nodes
simultaneously. The campaigns are also constantly active,
rather than being activated at set time intervals.

2.2 Behavior

To model social influences on the initiation and cessation
of individual behaviors, we add a behavioral component
to the individual agents in the model. Although the dif-
fusion of information within social networks is an impor-
tant phenomenon, it is the behavior of individuals within
the network that is of greatest interest to many domains,
including public health. Product advertisements, public
health campaigns and other forms of media and social in-
fluence often seek to reinforce or to change behaviors by
providing information, evoking emotions, or otherwise in-
fluencing opinions in conscious and unconscious ways [24].
Models of social influence on individual behaviors, includ-
ing health-related behaviors, should therefore incorporate
social influences on opinions.

Although opinions in this model occur in a continuous
space, behaviors are modeled as discrete variables. For
purposes of simplicity, we introduce a simple step func-
tion representing behavior as a binary-valued state vari-
able. An individual may either be engaging in the behav-
ior (b =1) or not (b = 0). Although some other models of
smoking initiation break the initiation process into multi-
ple stages, our model’s step function correlates with smok-
ing surveys in which a simplified behavioral definition is
used to categorize an individual as a smoker (see, for ex-
ample, Alexander et al. [21], where smoking status is based
on whether an individual has smoked in the past 30 days;
the same definition is used in the National Youth Tobacco
Survey [26]). The behavioral function can take on multiple
stages or states, as needed.
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2.2.1 Initiation

If an individual’s opinion regarding a behavior passes an
initiation threshold, that individual will initiate the be-
havior, changing the state variable from 0 to 1. The ini-
tiation threshold can be thought of as the threshold es-
tablished by the costs associated with the behavior. In
this context, cost should be understood as a total cost,
rather than strictly a monetary cost. Using the example
of smoking, cost includes the price of a pack of cigarettes,
as well as the convenience costs associated with obtain-
ing cigarettes and their use. Thus, the initiation thresh-
old would be raised by increasing the price of a pack of
cigarettes as well as by restricting where smoking can oc-
cur, and in the case of adolescent smokers, increased dif-
ficulty in acquiring cigarettes and fear of punishment for
smoking.

In the tobacco example presented here, costs should
not be interpreted as subsuming health-related costs. The
perceived impacts to health (whether personal through
the direct health consequences of smoking, or secondary
due to the impact of second-hand smoke on others) are
part of an individual’s opinion about smoking. Likewise,
other social costs, such as others’ dislike for the smell of
smoke or concern over the social perception of smokers,
are part of the individual’s overall opinion of tobacco.

By way of example, we consider an individual with
an opinion of 0.70 to have a modestly positive opinion
about smoking. This individual considers smoking to be
moderately attractive, possibly by associating it with posi-
tive imagery (“coolness”), or because of perceived benefits
(e.g., weight control). For example, if the initiation thresh-
old is 0.70 or less, the individual in this example will start
smoking. If, however, the initiation threshold is 0.75, the
individual will not initiate, because her opinion is not high
enough to surpass the costs associated with the behavior.
We investigate the results of different initiation thresholds
at the network level in Section 3.2.8.

Raising the initiation threshold means that an indi-
vidual’s opinion about smoking needs to rise to a higher
value before that individual will initiate the behavior. If
cigarettes become more expensive or difficult to obtain (for
adolescents), or if smoking becomes more inconvenient,
an individual will need a commensurably higher opin-
ion about smoking to initiate the behavior. However, if
cigarettes are inexpensive and easy to acquire and use, an
individual may start using them more quickly at a signif-
icantly lower opinion value. Empirical evidence indicates
that price increases have the effect of reducing smoking ini-
tiation, as do indoor clean air laws which restrict permis-
sible smoking areas (see, e.g., [18,27]). Community-level
interventions to reduce minors’ access to tobacco prod-
ucts also can reduce initiation by raising the initiation
threshold. In this approach, effective public health media
campaigns operate by reducing opinions about smoking
rather than by increasing the initiation threshold [18,28].

Modeling behavior as a binary realization of opin-
ion was initially proposed in a model developed by Mar-
tins [13]. The Martins model uses an explicit Bayesian
function in which an individual infers the opinions of
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neighbors based on observed (binary) actions of those
neighbors. In contrast, our model uses a binary representa-
tion of behavior which is influenced by opinion dynamics.

2.2.2 Cessation and addiction

If the behavior being modeled has a physiologically or psy-
chologically addictive component, the direct influence of
opinion on behavior can be modified. Although opinion
might contribute to initiation and early usage, opinion
and behavior can diverge, allowing behaviors to persist
despite a declining opinion.

In the case of smoking, for example, research shows
that most current smokers indicate that they would like to
quit [29], or state that they would not have become smok-
ers if they could make the choice again [30]. Despite the
fact that more than half of current smokers make a quit
attempt in a given year, only a small fraction are success-
ful [29]. Nicotine, a constituent of tobacco, is highly ad-
dictive and the principal compound responsible for phys-
iological addiction to tobacco [31-33].

Addictive effects can be modeled by introducing hys-
teresis into the opinion-to-behavior mapping function. An
individual’s opinion may fall below the initiation threshold
after smoking is initiated, but if an individual has become
addicted, a lower opinion may not be sufficient to instigate
cessation.

We implement this behavioral latching through the use
of an addiction factor which induces a cessation threshold
that is equal to or lower than the initiation threshold.
The addiction factor is the difference between the initia-
tion and cessation thresholds and represents the degree of
addiction of the individual. The degree of addiction can
vary among individuals and the risk of addiction increases
the earlier in life that smoking is initiated [31,34]. How-
ever, in the results presented here, the addiction factor is
set to be uniform across the networks to keep the model
simple and the results more easily interpretable.

Figure 1 illustrates the effects of this hysteresis loop on
behavior in a hypothetical social network that includes a
media node. In this scenario, the opinion of the attached
media node is set to a value above a smoking initiation
threshold, resulting in an increase in network average opin-
ion and smoking prevalence (peaking at ¢ = 400). The me-
dia node’s opinion of smoking is then set to a low value
(it becomes a public health education node), resulting in
declining average network opinion and decreased preva-
lence (¢ = 400 through ¢ = 1000). However, although the
broadcast media node opinion is able to decrease network
opinion far below its initial value, smoking prevalence re-
mains well above its initial value, reflecting the effects of
hysteresis.

These findings indicate the possibility of a public
health campaign successfully changing public opinion
about smoking without a correspondingly dramatic im-
pact on behavioral prevalence, pointing to the importance
of using metrics measuring changes in both opinion and
behavior to judge the effectiveness of campaigns.
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Fig. 1. Plots illustrating the effects of hysteresis. Plot (a) shows a time series of average opinion and prevalence. Plot (b) shows
prevalence as a function of average opinion. Plot (b) should be read in a counter-clockwise progression, showing a sharp rise in
prevalence as average opinion passes 0.55, and no decrease in prevalence until average opinion falls below 0.45. Prevalence does
not decrease to the initial value of approximately 0.325 despite the fact that average opinion falls well below its initial value.

In this example, the cessation threshold could be in-
creased by the introduction of interventions such as raising
the costs or barriers associated with smoking. It could also
be increased by the use of cessation counseling, the avail-
ability of quit lines, or the use of nicotine replacement
therapies [35,36]. In this model, these factors effectively
reduce the effects of addiction and serve to mitigate bar-
riers to cessation by allowing individuals to quit smoking
at relatively higher opinion values.

In domains other than tobacco, the opinion-to-
behavior mapping hysteresis function can reflect reluc-
tance to change motivated by sunk costs and loss aver-
sion, by ego-investment, or by physical or physiological
constraints.

3 Results

Here we illustrate model functionality. Results presented
here derive from simulations run to steady state on di-
rected random graphs of 250 nodes with a Poisson degree
distribution (Erdés-Rényi model [37], or ER graphs) us-
ing a probability of connection of 0.023 (producing a single
component network with an expected density of approxi-
mately 0.012 and a mean node degree of 5.75). ER graphs
are not generally considered representative of real-world
social networks [38]. They are selected for this work to al-
low the illustration of model dynamics in a base case sce-
nario rather than as further constrained by non-Poisson
degree distributions and network community structure.
We follow the general approach in the literature of
assigning initial opinions to the nodes from a uniform
random distribution on the interval [0, 1]. Opinions ap-
proaching 0.0 are interpreted as being negative toward
smoking, while those approaching 1.0 are interpreted as
being positive. Opinions at or near 0.5 are considered es-
sentially neutral. These assessments of “positivity” and

“negativity” are loose conceptual categorizations rather
than model components. An equivalent approach might
use an interval [-1, 4+1], in which positive and negative
values are more clearly defined. The uniformity of the in-
terval used for the initial opinion distribution should not
be read as suggesting that opinions about smoking, or
indeed most other subjects, are uniformly distributed in
populations. Rather, it is the assignment of a metric where
some opinions are more positive than others.

Our results demonstrate dynamics in a highly ab-
stracted, idealized mathematical environment. In order to
isolate the effects of specific contributors, we simulate con-
ditions in which media campaigns run in a relatively ex-
clusive manner with at most two competing campaigns.
In real-world scenarios, the situation is considerably more
complex, with multiple messages being broadcast from
multiple sources simultaneously.

3.1 Clustering effects in opinion and behavior space

Behavioral risk factors such as smoking have been shown
to cluster in populations. Peer and familial influences are
strong risk factors for initiation and maintenance of smok-
ing [18]. The prevalence of smoking is more heavily con-
centrated in particular subpopulations, such as individuals
with low educational attainment and income [39]. Using
data from the Framingham Heart Study, Christakis and
Fowler demonstrated clustering of smoking on the periph-
ery of a social network and the influence of close network
ties’ cessation behavior on an individual’s likelihood of
quitting smoking [15].

Mapping a continuous opinion variable into a discrete
behavioral space induces clustering on directed networks.
Figure 2 illustrates the differences in clustering character-
istics in opinion and behavioral spaces as a function of the
tolerance parameter.
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Fig. 2. Clustering in opinion and behavior spaces: points indicate equilibrium values for each particular run, lines show mean
values. Opinion clusters represent connected nodes of similar opinion. Two connected nodes are considered to be part of the
same opinion cluster if their opinions at steady state differ by less than their tolerance values. Behavior clusters represent
clusters of smokers. Results are based on 100 individual runs at each of 100 data points between tolerance values of 0.0 and 0.5,

for a total of 10000 runs.

In this example, two connected nodes are considered
to be part of the same opinion cluster if their opinions at
steady state differ by less than the tolerance value. Fig-
ure 2a illustrates that as tolerance (or the potential to
be influenced) increases, the number of opinion clusters
decreases dramatically. This reflects the process by which
the network achieves a consensus opinion. Behavioral clus-
ters show a similar behavior, but with greater variability
and far smaller numbers, as shown in Figure 2b. As the
number of opinion clusters decreases, the average size of
clusters increases, as shown in Figure 2c. In behavioral
space, however, we observe a bifurcation in cluster size.
At high tolerances, the network is dominated by either
large or small groups of smokers, as shown in Figure 2d.

3.2 Parameter investigation
3.2.1 Model parameter effects

All model parameters are provided in Table 1. By extend-
ing the model to incorporate opinion-driven behaviors and
addiction, we have increased the number of parameters
relative to the cited opinion dynamics models. In this sec-
tion, we examine model responses for variations across
these parameters. In addition to the parameters listed here
and investigated below, edge permeability is also consid-
ered a parameter. However, edge permeability, if uniform
throughout a network, has been shown to control the rate
of convergence rather than inform the final state of the
model. Because we hold permeability uniform for the sce-
narios investigated here, we do not include a separate in-
vestigation of network edge permeability. The same does
not hold true for media node edge permeability, which
may be higher or lower than network edge permeability.
To assess the impact of parameters we employ ran-
domly generated networks. Parameter values are held to

the default values given in Table 1 with the exception of
the parameter under investigation which is swept through
the possible range of values. Each presented scenario
used 100 data points sampled uniformly from the distri-
bution of the parameter being investigated. One hundred
random networks were used at each parameter value to de-
termine node opinion and network prevalence. The model
simulations were considered complete when the opinions
and behaviors of the nodes reached equilibrium. This pro-
cess resulted in 10000 model runs (100 randomly gener-
ated networks and populations x 100 parameter values)
for each parameter investigated. We present results using
contour plots of opinion and behavior space. For behav-
ior, the X axis represents the value of the parameter being
swept, the Y axis represents the prevalence of smoking at
that point, and the color represents the number of net-
works with that final prevalence value. For opinion space,
contour plots of individual nodes are similarly generated,
with the X axis representing the parameter under investi-
gation and the Y axis representing opinion where color
indicates the number of individual agents sharing that
opinion value. For prevalence, each point on the X axis
can be thought of as a column, with the sum of the values
represented by the colors of the contour map totaling 100
(the number of stochastic runs taken at that X value).
For opinion, each column sums to 100N, where N is the
number of nodes used in that scenario. Finally, we use
line graphs or other plots to show the mean values of the
output variables to assist with interpretation.

3.2.2 Number of nodes

In this section we demonstrate the effects of network size
on the behavior of the model. In the present work we are
primarily interested in the dynamics of smaller networks,
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Parameter
name
Number of nodes
(N)

Probability of
connection
(network
density)

Media
node
opinion

Media
node
edge

count

Media
node
edge

permeability

Tolerance

Table 1. Model parameters.

Possible range Default used . . .
. . Discussion of choice for value
of values in simulations
0-2500 250 As shown in Section 3.2.2, average results
Note that this is not are relatively insensitive to number of
a limitation imposed by nodes, although differences exist when
model architecture; model response surfaces are viewed in
rather, the number of detail. We select a default value of 250 to
nodes is limited only analyze the dynamics of small networks
by the practicality of representative of high school grades, and
memory and to avoid under-representing stochastic
simulation run times. effects via the reduced variability
exhibited by larger ER networks.
Depends on number 0.023 Section 3.2.3 shows that as value increases
of nodes; ranges from from 0 to 0.05 the network moves towards
low enough to a single component. Above 0.05, network
achieve a single behavior is relatively insensitive to this
component graph parameter. While the average number of
of low density friendship nominations in the National
to high enough Longitudinal Study of Adolescent Health
to produce a (Add Health') dataset varies by age and sex,
fully connected the average number of nominations is 5.9.
graph of density 1. Although we intentionally are not replicating
the community structure of real-world
social networks, the expected number of
edges in our graph (0.023 x 250 = 5.75)
is sufficient to give a connected graph
and is in line with the Add Health data.
0-1 0.375 for Public ~ Section 3.2.4 shows that greatest efficacy in
Health affecting behavior is gained if value is set to
Campaigns, just above initiation threshold or just below
0.725 for cessation threshold. For purposes of
smoking illustration, we hold Media Node Broadcast
promotions Values to within this high efficacy range.
0-N 25 As shown in Section 3.2.5, the ability of

Media Node Edge Count to influence
opinion and prevalence saturates by 2N
for networks with 250 nodes. For purposes
of general illustration, we hold Media Node
Edge Count to 25 for networks of 250 nodes
to give media influence a strong but
suboptimal ability to influence the network.

0-1 0.05 As shown in Section 3.2.6, the ability of

Media Node Edge Permeability to influence
opinions and behaviors saturates at values
above twice the default network edge
permeability. For purposes of general
illustration of media effects, we select 0.05
as a default value to give media influence a
strong but suboptimal ability to influence
the network.

0-1 0.21 As shown in Section 3.2.7, tolerance values
between 0.15 and 0.25 place the network
into an influenceable but non-consensus

region. We selected a value within this
region with a minor bias toward consensus
based on an analysis of Figure 3a,
which shows 0.21 to be the threshold of
maximum influence of the media node.

! Add Health is a longitudinal dataset comprising friendships and behaviors for a nationally representative sample. Subjects
were in 7Tth—12th grades during the 1994-1995 school year.
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Table 1. Continued.

Parameter  Possible range  Default used
name of values in simulations

Initiation 0-1 0.70

threshold

Addiction O-Initiation 0.30
factor threshold

@

Discussion of choice for value

As shown in Section 3.2.8, prevalence is
strongly influenced by initiation threshold.
For purposes of illustration, we select a
threshold that yields prevalences between
30 and 50 percent. Actual smoking
prevalences vary among countries and
demographic groups, ranging from over
70% of the adult male population in Russia,
to less than 10% in Ethiopia [34].

As shown in Section 3.2.9, addiction
maintains behavior of smokers, even
though their current opinion of smoking
may be less than it was when they initiated.
We select a baseline value of 0.3 for
illustration purposes because it results in a
prevalence distribution matching that
described in the Initiation Threshold section.

(b)

Fig. 3. Comparison of initiation threshold sweep for different network sizes. (a) Average prevalences for networks of 100, 250,
500, 1000, and 2500 nodes. (b) Prevalence in the same networks under the influence of advertising.

and have selected 250 nodes as representative of a net-
work size that might represent the students of a partic-
ular grade level in a US high school, or a small network
in a larger community consisting of friends and friends of
friends. Although the ER topology is non-representative
of real-world social networks, smaller network dynamics
are relevant and desired. However, in this section we relax
the small network constraint and examine the behavior
of the model on ER graphs with sizes ranging from 100
to 2500 nodes.

In this section, we compare system responses at 250,
500, 1000, and 2500 nodes, holding network density con-
stant just above the connection threshold of In(N)/N, for
networks with N nodes [35] (probability of connection
p = In(N)/(N x 1.05). For purposes of comparison, we
look at a scenario in which we sweep the initiation thresh-

old over the interval [0, 1] with both the presence and
absence of an advertising node with a broadcast opinion
of 0.025 above the initiation threshold and with the num-
ber of edges held at 10% of network size. Full analysis of
this and contrasting scenarios of networks with the default
size of 250 are presented in Section 3.2.8.

In their mean behaviors, networks without media influ-
ence behave very similarly independent of size, as shown
in Figure 3a. In Figure 3b, we observe that the networks
again behave similarly, with the exception of a region be-
tween initiation values of 0.4 and 0.55. The reason for
this effect can be seen in Figures 4 and 5. Increasing the
number of nodes from 100 to 2500 increases consolidation
in opinion space from a relatively undifferentiated field
at 100 nodes through the formation of upper, lower, and
central attractors. The different network sizes shown here


http://www.epj.org

Eur. Phys. J. B (2015) 88: 95 Page 9 of 28

Fig. 4. Opinion space contour maps for different network sizes. (a) 100 nodes; (b) 250 nodes; (c) 500 nodes; (d) 1000 nodes;
(e) 2500 nodes. Note that the values for the contour key are for the 100 node contour map. Contour values should be multiplied
by the factor increase in N to get the contour values for the other maps.

Fig. 5. Opinion space contour maps with media node broadcasting opinion 0.025 above initiation threshold. (a) 100 nodes;
(b) 250 nodes; (c) 500 nodes; (d) 1000 nodes; (e) 2500 nodes. Note that the values for the contour key are for the 100 node
contour map. Contour values should be multiplied by the factor increase in N to get the contour values for the other maps.
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Fig. 6. Opinion (a), prevalence (b) and standard deviation of opinion (c) as a function of node-connection probability. (a) is
a contour plot representing the numbers of nodes holding a given opinion value; (b) is a contour diagram showing the final
prevalence for each network in each model run. Data from 10000 model runs are used for each figure.

result in different banding effects, not necessarily more
representative realistic networks. Larger networks could
alternatively be achieved by joining clusters together.

These aggregations, or modes, produce opportunities
for influence by the media node. For the high node-count
runs, the effect on prevalence is evident when the advertis-
ing node moves through these strong bands. The strongest
effect is exhibited in the central region, where the initia-
tion threshold is 0.475 and the media node opinion is 0.5.
With the ability to draw from increasingly consolidated
upper and, more importantly, lower modes, the media
node is able to pull a large number of individuals above the
initiation threshold. Outside of this central region of initi-
ation threshold values, however, the media node is unable
to influence the lower mode, and prevalence levels remain
closer to baseline values.

3.2.3 Edge density

Edge density on ER-type graphs is controlled by the prob-
ability P that a given node A will be connected to another
node B. Holding the number of nodes constant at 250, we

examine how the edge density changes the response of the
system.

ER-type graphs approach a single component as P ap-
proaches In(N)/N, with N being the number of nodes in
the graph [37]. Below this value, 0.022 in our 250-node
example, the network exists with multiple components.
Above this value, the network is a single component with
network edge density increasing with P.

Without external stimuli such as a media node, edge
density has little effect on behavioral prevalence. As shown
in Figure 6a, at very low node-connection probabilities
(<0.01) the opinion distribution remains uniform, in line
with the initial opinion distribution.

Increasing edge density on an ER-type graph induces
a three mode distribution with most of the population
divided between the upper and lower modes and a lesser
number in the middle position. Changing edge density has
a negligible effect on prevalence (Fig. 6b) because opinions
are consolidated rather than shifted as evidenced by the
drop in the standard deviation of opinion with increasing
edge density (Fig. 6c¢).

The addition of an advertising node with 25 edges
(10% of the 250-node graph) slightly alters the effects of
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Fig. 7. Opinion (a), prevalence (b) and standard deviation of prevalence (c) as a function of node-connection probability
in the presence of a media node broadcasting an opinion of 0.725. (a) is a contour plot representing the numbers of nodes
holding a given opinion value; (b) is a contour diagram showing the final prevalence for each network in each model run. Data

from 10000 model runs are used for each figure.

increasing edge density. Figure 7 shows that the consoli-
dation effect in the higher opinion mode is much stronger,
reflecting the influence of the advertising node broadcast-
ing with an opinion value of 0.725. This is also reflected in
a corresponding increase in prevalence and the standard
deviation for prevalence at node connection probabilities
around 0.3. Further increases in the number of edges be-
tween network nodes dilutes the effects of the advertise-
ment, which drives the lower bound of the upper opinion
mode below the initiation threshold of 0.70. A lower initia-
tion threshold would have been able to extend the effective
prevalence gain.

Increasing the number of media edges from 25 to 100
to compensate for the dilution effect strongly increases
the opinion consolidation effect, as shown in Figure 8a. It
also extends the ability of the advertising node to influ-
ence behaviors in the network by significantly constraining
the formation of a middle mode of opinion. This increase
allows the media node to maintain the increase in preva-
lence over a wider range of edge densities, as shown in
Figures 8b and 8c. This indicates that the effectiveness
of a media campaign impacting a given number of peo-

ple is proportional to the average number of connections
between people connected in the social network.

3.2.4 Media node opinion

The opinion value broadcast by a media node indicates
the value to which it may move individuals in the network.
The ability of a media campaign node to modify individ-
uals’ opinion is limited by individual tolerance bounds. A
media node broadcasting an opinion can induce a bimodal
distribution in network opinions, with some nodes moving
closer to the broadcast opinion while other nodes cluster
together indicating the broadcast opinion is outside their
tolerance window. Increasing the number or strength of
edges serves to consolidate the affected mode rather than
to influence individuals to cross from the other mode, as
was shown in Figure 8a.

Figures 9a and 9b show the effect of the media node on
network opinion and prevalence, respectively, as the media
node broadcast opinion is swept from 0 to 1. We observe
that, at any given broadcast opinion value, the media node
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Fig. 8. Opinion (a), prevalence (b) and standard deviation of prevalence (c) as a function of node-connection probability in
the presence of a media node broadcasting an opinion of 0.725 with an increased number of media node edges. (a) is a contour
plot representing the numbers of nodes holding a given opinion value; (b) is a contour diagram showing the final prevalence for
each network in each model run. Data from 10000 model runs are used for each figure.

Fig. 9. Opinion (a), prevalence (b) and opinion and prevalence averages (c) as a function of media node broadcast opinion. (a)
is a contour plot representing the numbers of nodes holding a given opinion value; (b) is a contour diagram showing the final
prevalence for each network in each model run. Data from 10000 model runs are used for each figure.
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Fig. 10. Opinion (a), prevalence (b) and opinion and prevalence averages (c) as a function of the number of edges for a media
node broadcasting an opinion of 0.725. (a) is a contour plot representing the numbers of nodes holding a given opinion value;
(b) is a contour diagram showing the final prevalence for each network in each model run. Data from 10000 model runs are

used for each figure.

is capable of influencing significant numbers of individuals,
as shown in the individual opinion contour plot (Fig. 9a).
The effect of the broadcast media node on average net-
work opinion (Fig. 9¢) is more modest, due to the large
number of nodes unaffected by the broadcast opinion due
to tolerance constraint. An initiation threshold of 0.7 and
an addiction factor of 0.3 (resulting in a cessation thresh-
old of 0.4) are used for calculation of prevalence (Fig. 9b).
In driving behavior, we can see in the opinion average plot
(Fig. 9c) that the broadcast opinion is most effective at
decreasing network opinion when it is slightly below the
cessation threshold of 0.4 and most effective at increas-
ing average opinion when it is slightly above the initiation
threshold of 0.7, giving the average behavior response a
characteristic saw-tooth pattern.

3.2.5 Media edges

Just as the edges between nodes in the model represent
the influence of a relationship rather than a single inter-
action, edges from media nodes represent the aggregated
influence of media campaigns rather than the viewing of
a single advertisement. The effects of a media campaign

are partially dependent on the number of people reached
by the campaign. However, media campaigns are funda-
mentally constrained by their broadcast opinions and the
opinions and tolerances of the nodes in the network.

As we see in Figure 10a, a media node broadcasting
an opinion of 0.725 can induce a bifurcation in individual
opinions. As the number of media node edges increases
to above approximately 10, the opinion distribution be-
comes bimodal. Further increasing the number of media
node edges results in consolidation, or narrowing, of the
upper band (Fig. 10a). Increasing the number of edges for
this media node up to 3040 results in an initial marginal
increase in average opinion (Fig. 10c) and a stronger in-
crease in prevalence (Figs. 10b and 10c). The increase in
prevalence derives from the effect of the media campaign
on individuals already near the initiation threshold, as in-
dicated by the contour map (Fig. 10a).

After approximately 30—40 edges have been added, av-
erage prevalence stabilizes as shown in Figure 10c. The
individuals capable of being influenced by the media cam-
paign, or by their friends who have been influenced, are
constrained by tolerance bounds. Additional edges have
little additional effect on average prevalence. It can be
observed, however, that the consolidating effect in opinion
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Fig. 11. Opinion (a), prevalence (b) and opinion and prevalence averages (c) as a function of the edge permeability for a media
node broadcasting an opinion of 0.725. (a) is a contour plot representing the numbers of nodes holding a given opinion value;
(b) is a contour diagram showing the final prevalence for each network in each model run. Data from 10000 model runs are

used for each figure.

space does decrease outlying results in prevalence as ev-
idenced by the disappearance of the uppermost band of
outliers in the prevalence contour plot (Fig. 10b) and the
minor decrease in average opinion (Fig. 10c).

3.2.6 Media edge permeability

The permeability, or edge weight, of media nodes can be
thought of as the salience of the media campaign to the re-
ceiver, assuming that the broadcast opinion is within the
receiver’s tolerance bounds. In the weighted-average func-
tion used to determine an individual’s next opinion value,
edge permeability contributes a relative weighting, making
one individual’s opinion more (or less) important than an-
other’s. With a baseline permeability of 0.05 throughout
the network, a media node with a permeability of 0.025
would contribute exactly half as much to an individual’s
next opinion value as would a friend whose relationship
had the baseline permeability.

The number of media node edges and the media edge
permeability are similar in that they affect the ability of
the media node to connect into and influence the net-
work, and both are ultimately constrained by the toler-

ance bounds in the targeted network. As shown in Fig-
ure 11, the presence of a media node causes a bifurcation
in opinion (Fig. 11a), and in prevalence (Fig. 11b). In-
creasing permeability increases average opinion modestly
(Fig. 11c), but has a stronger effect on average preva-
lence (Fig. 11c). However, after an increase to 0.1 (twice
that of the baseline), the effect on prevalence and opinion
levels off. As demonstrated by the node opinion contour
map (Fig. 11a), this is due to the increase in permeabil-
ity affecting only those nodes with tolerance bounds that
include the media node’s broadcast opinion. This consol-
idates the opinions of individuals within the higher mode
band, but does not increase the ability of the media node
to recruit individuals from the lower mode band.

3.2.7 Tolerance

Tolerance restricts the range of opinions able to influence a
given node. Neighbors with an opinion outside the node’s
tolerance bounds are ignored. From a network perspective,
it is as if the edge connecting them does not exist. This
reduces effective network density, but in a dynamic fash-
ion. It also contributes an aspect of dynamic homophily
(like assorting with like) to the network.
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We observe that, in networks constructed with a node
connection probability of 0.023 (yielding a single compo-
nent sparsely connected with an expected edge density
of approximately 0.012), opinions move toward consensus
values of 0.5, as expected when drawing initial opinions
from a uniform distribution on the interval [0, 1]. We note
that this convergence occurs at a higher tolerance value
(0.5 rather than 0.27) than would be expected in the well-
mixed model of Weisbuch et al. [1]. We also note that
there remains significant diversity in results throughout
the tolerance region [0.5, 1]. In a well-mixed population
with mutual (non-directed) interactions, the number of
clusters formed is approximately the integer part of 1/2d,
where d is the uniform tolerance value [1]. We do observe
the formation of some consensus opinion values near 0.2
and 0.8 when tolerance nears 0.2, and the formation of a
stronger consensus region when tolerance nears 0.25.

At low values of tolerance (<0.15) opinions remain rel-
atively unchanged from initial conditions (Fig. 12a) but as
tolerance increases, opinions are moved toward consensus
and most individual opinions converge to 0.5 as tolerance
approaches 0.5. Even at a tolerance of 1, which removes
the tolerance constraint entirely, heterogeneity in individ-
ual opinions can be maintained at steady state due to
network connection, directionality and averaging. By way
of example, a node A connected to a node B with opinion
0 and a node C' at opinion 1 will maintain a steady state
opinion value of 0.5, assuming B and C do not reciprocate
A’s connections.

The average network opinion (Fig. 12c¢) is close to 0.5
at low (<0.15) values of tolerance because node opinions
were uniformly distributed over the interval [0, 1] and
change very little. As tolerance increases, nodes begin to
interact, and the range of possible average network opin-
ions increases (Fig. 12¢). Correspondingly, networks can
stabilize at a wide range of prevalence values (Fig. 12b).
As tolerance further increases, consensus forms near 0.5
for most of the networks (Fig. 12¢), leaving some outliers
due to network topology.

The shift to a wide range of possible prevalence val-
ues (Fig. 12b, at tolerance ~0.15) precedes the forma-
tion of a three mode regime in prevalence in which dif-
ferent stochastic runs resulted in low (0), moderate, (0.3,
+/-0.05), or high (1.0) prevalence values. The presence
of the significant mode centered on 0.3 is expected due
to the initiation threshold of 0.7 and hysteresis value (ad-
diction factor) of 0.3. At the beginning of a scenario run,
initial node opinion is drawn from a uniform distribution
on [0, 1], resulting in an expected value of 30% prevalence.
When, at high tolerance values, nodes approach consen-
sus values near 0.5, individuals who began smoking will
generally not achieve an opinion low enough to permit ces-
sation (in this case, an opinion of 0.4 or less). With hys-
teresis removed, as in Figure 12d, the 0.3-centered mode
is absorbed into the lower mode at 0.

The effects of the heterogeneity observed in the opin-
ion space contour map (Fig. 12a) can be seen in plots of
the cluster mean size and cluster count (Fig. 12e). We de-
fine as a cluster, nodes which are connected and whose
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opinions differ by less than 0.02. Even at a tolerance of 1,
heterogeneity can be maintained due to network topology
and the number of clusters can range up to 10 or higher.

Network density strongly influences the effects of tol-
erance. By increasing the probability of connection to 0.2,
from 0.022, expected network density increases to 0.1. For
this higher density network, nodes interact more at lower
values of tolerance due to the increase in the number of
neighbors and thus the number of expected possible in-
teractions. The formation of a three mode distribution is
apparent when tolerance reaches 0.175 (Fig. 13a), with a
strong consensus mode forming by 0.25 and bimodality
disappearing by 0.3. In a well-mixed population in which
interactions are non-directional, the number of modes
varies as 1/2d where d is the uniform tolerance value
in the population [1], predicting a bimodal distribution
from 0.175 to 0.25. With directed edges even on a dense
ER-type graph, we instead see a three mode distribution
through this range, with attractors near 0.3, 0.5, and 0.7.
Convergence to opinion consensus at approximately 0.5
does occur at tolerance 0.275, the same as would be ex-
pected in a well-mixed network. Prevalence (Fig. 13b)
shows a corresponding decrease in variability, with the
expected spike in the three mode region induced by the
opinion attractor near the initiation threshold of 0.7, and
a consolidation above tolerance =0.3 corresponding to the
loss of multimodality.

Tolerance effects under media influence

Tolerance has a strong effect on the ability of a media node
to influence the network. We attach a media node with a
broadcast opinion of 0.725, using the default parameter
values for network generation. Figure 14a shows that tol-
erances below 0.1 leave the media node unable to effect a
change in average network opinion. We observe that weak
bimodality in opinion forms around a tolerance of 0.15. A
phase transition occurs near tolerance 0.2, induced by the
approximate offset between the average network opinion
of 0.5 and the broadcast opinion of 0.725, leading to a
consolidation around the broadcast opinion for tolerance
values above 0.25. As expected, we see a corresponding
increase in prevalence (Fig. 14b), with the mode-induced
spike at 0.2 followed by a two mode distribution split
between full prevalence (1.0) and the hysteresis-induced
mode centered around 0.3. The mode at 0 prevalence, as
seen in the baseline scenario, has disappeared entirely. As
in the previous scenario, however, removal of hysteresis
(Fig. 14c) allows the mode clustered at 0.3 to be consoli-
dated at a prevalence of 0.

These results indicate that tolerances in the range of
approximately 0.15-0.25 place the system within a critical
region of non-consensus but influenceable opinions.

3.2.8 Initiation threshold interventions

Interventions that raise the costs associated with start-
ing to smoke can be modeled as a rise in the initiation
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Fig. 12. Opinion (a and c), prevalence (b and d) and opinion cluster sizes and numbers (e) as a function of the tolerance
parameter. (a) is a contour plot representing the numbers of nodes holding a given opinion value; (b) is a contour diagram
showing the final prevalence for each network in each model run; (c) is a contour diagram showing the average final opinion for
each network in each model run. (d) is similar to (b) except that the hysteresis loop (the addiction factor) has been removed.
Data from 10000 model runs are used for each figure.
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Fig. 13. Opinion (a), and prevalence (b) as a function of the tolerance parameter at a network density of 0.10. (a) is a contour
plot representing the numbers of nodes holding a given opinion value; (b) is a contour diagram showing the final prevalence for
each network in each model run. Data from 10000 model runs are used for each figure.

Fig. 14. Opinion (a), prevalence (b, ¢) as a function of the tolerance parameter in the presence of a media node broadcasting
an opinion of 0.725. (a) is a contour plot representing the numbers of nodes holding a given opinion value; (b) is a contour
diagram showing the final prevalence for each network in each model run. (c) is similar to (b) except that the hysteresis loop
(the addiction factor) has been removed. Data from 10000 model runs are used for each figure.


http://www.epj.org

Page 18 of 28

Eur. Phys. J. B (2015) 88: 95

Fig. 15. Prevalence (a) for networks with uniform opinion distributions and no opinion interactions; opinion (b) and prevalence
(c¢) for networks with opinion dynamics and no addiction. All are shown as a function of initiation threshold. Data from

10000 model runs are used for each figure.

threshold. Increases in the initiation threshold might re-
flect an increase in monetary price (by raising taxes or
setting minimum package sizes), an increase in enforce-
ment of youth access laws, or implementation of clean in-
door air policies. Over 80% of current smokers initiated
smoking before age 20, with half of those initiating before
age 16 [18], so interventions to prevent smoking initiation
are primarily targeted to youth and young adults.

The following scenarios illustrate the effects of an in-
creasing initiation threshold on smoking prevalence sim-
ulated on 100 randomly generated networks of 250 nodes
using 10000 runs. For some runs one or two media nodes
were implemented. A public education node opinion, if
present, was set to 0.025 below the effective cessation
threshold induced by the addiction factor, and an advertis-
ing node opinion, if present, was set to a value 0.025 above
the initiation threshold. As indicated above (Sect. 3.2.4),
broadcast opinions slightly above the initiation threshold,
or below the cessation threshold, are the most effective
in eliciting behavioral change. These nodes were attached
to networks generated using the default values given in
Table 1.

3.2.8.1 Effect of initiation threshold with media nodes

The opinion dynamics algorithm which induces bounded
consensus on connected nodes and the addition of
addiction-induced hysteresis to the opinion-behavior map-
ping function introduces more complex behaviors to the
otherwise expected linear relationship between initiation
threshold and prevalence. Without the addition of opin-
ion dynamics (that is, on a network where tolerance is
set to 0), individuals would remain within a uniformly
random distribution of opinions, and a 10% increase in
the initiation threshold would have a corresponding lin-
ear decrease of 10% in initiation, as shown in Figure 15a.
Without addiction the decrease of an individual’s opinion
below the initiation threshold would induce quitting, but
the systemic response may still exhibit non-linearities de-
pending on the distribution of opinions in the network.
For example, a bimodal network with half the population
holding opinions of 0.3 and the other half holding opinions
at 0.8 would exhibit no response to an increase in the ini-
tiation threshold from 0.6 to 0.7, but would experience a
rapid decrease in prevalence as the threshold is increased
through 0.8, so long as addiction is not a factor. Figure 15¢
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Fig. 16. Prevalence versus initiation threshold for multiple
media node scenarios.

shows this response for 0 hysteresis on networks generated
with default parameters. The node opinion contour map
(Fig. 15b) shows minor peaks at 0.2 and 0.8 (due to the
tolerance value of 0.21) and a major peak at 0.5. This pro-
duces the pattern of high, moderate, and low prevalence
seen in the prevalence contour map (Fig. 15¢).

Media nodes affect initiation by attempting to move
opinions above or below the behavior threshold. At either
extreme of the initiation threshold range, media nodes
play only a small role at best in changing prevalence due
to the difficulty in attaining network-wide extremal val-
ues, as demonstrated in Section 3.2.4. It is in the range of
moderate initiation values, from approximately 0.3 to 0.8,
that the major differential effects between interventions
are observed, as illustrated in Figure 16. This is due to
the tendency for network opinions to consolidate near this
mid-range.

Figure 16 shows the differential impact of initia-
tion thresholds on prevalence under multiple scenarios,
given a hysteresis factor of 0.3. Scenario results cluster
into 3 groups. Lowest prevalences are achieved when an
educational media node alone is implemented. Somewhat
higher prevalences are shown for both the baseline sce-
nario and for a scenario in which advertising and educa-
tional media nodes are both active simultaneously. Higher
prevalence is reached when an advertising node is con-
nected, the network reaches equilibrium, and then the ad-
vertising node is replaced with an educational node. Only
slightly higher prevalences are achieved when the advertis-
ing node remains active in the presence of the educational
node, or when the educational node is not implemented
at all. These dynamics are due to the interacting effects of
tolerance and the formation of opinion modes under the
influence of the advertising node. The three curves at the
highest prevalences indicate that if advertising precedes
other actions and the network stabilizes with the adver-
tisement, then subsequent educational nodes are far less
effective than if they had been implemented at the start of
the simulation. The advertising node is more effective due
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to its early exclusive presence, which allowed it to drive
the network to steady state uncontested. Each scenario is
discussed in detail below.

3.2.8.2 Baseline scenario

The baseline scenario for examining the effects of the ini-
tiation threshold is shown in Figure 17. The node opinion
contour map (Fig. 17a) is highly similar to the one shown
above (Fig. 15b), but the default hysteresis factor of 0.3
introduces a change in behavior space. Without hysteresis,
behavior (prevalence) exhibits three modes, corresponding
to the low, moderate and high opinion modes (Fig. 15c¢).
With hysteresis, individual behavior is not as responsive
to changes in initiation threshold or network influences
(Fig. 17b). This increases the number of networks with
higher prevalence for a given initiation threshold com-
pared to the addiction-free scenario. Hysteresis effectively
dampens the network effects, causing a quasi-linear re-
sponse to changes in the initiation threshold.

3.2.8.3 Educational node scenario

Figure 18 illustrates the effects of the initiation thresh-
old under a scenario in which only an educational node
is active. The difference between the initiation thresh-
old and the hysteresis factor induces an effective cessa-
tion threshold in the model. For comparability between
scenarios, we continue to hold the addiction factor con-
stant at 0.3, and set the education node broadcast opin-
ion to 0.025 below the cessation threshold. This value was
chosen based on the media node opinion sweep scenario,
investigated above (Sect. 3.2.4), in which broadcast values
slightly above or below threshold values achieved greatest
behavioral change. In these scenarios, when the cessation
threshold is less than 0, the educational node opinion is set
to a constant 0, resulting in constant node opinion space
for initiation threshold values less than 0.325 (Fig. 18a).
After this point, the educational node broadcast opinion
increases in step with the increasing cessation threshold,
resulting in a linear shift in opinion space. Changes in
prevalence are similar in form to the baseline scenario;
however, the width of the distributions differ due to the
focusing effects of the media node, and average prevalence
at each value of initiation threshold is lower for the edu-
cational node scenario as shown in Figure 16.

3.2.8.4 Advertising node scenario

Figure 19 shows the results of a scenario in which only an
advertising node was present, with a broadcast opinion
set to a value 0.025 above the initiation threshold. The
effects on opinion (Fig. 19a) are similar to those shown in
the investigation of the media node opinion sweep above
(Sect. 3.2.4), in which media nodes were shown to influ-
ence individuals with similar opinions, but to have no abil-
ity to influence those with extremely different opinions.
The ability to influence nodes of low opinion when the
initiation threshold is low causes saturation at a preva-
lence of 1.0 for a wider array of initiation threshold values
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Fig. 17. Opinion (a) and prevalence (b) as a function of initiation threshold for networks in the baseline scenario. (a) is a
contour diagram showing the final opinion for each node in each model run; (b) shows the distribution of prevalences. Data
from 10000 model runs are used for each figure.

Fig. 18. Opinion (a) and prevalence (b) as a function of initiation threshold for networks in the educational node scenario. (a)
is a contour diagram showing the final opinion for each node in each model run; (b) shows the distribution of prevalences. Data
from 10000 model runs are used for each figure.

Fig. 19. Opinion (a) and prevalence (b) as a function of initiation threshold for networks in a scenario in which an advertising
node is tied to the initiation threshold. (a) is a contour diagram showing the final opinion for each node in each model run; (b)
shows the distribution of prevalences. Data from 10000 model runs are used for each figure.
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Fig. 20. Opinion (a) and prevalence (b) as a function of initiation threshold for networks in a scenario in which an advertising
node is tied to the initiation threshold and an educational node is tied to the addiction factor. The advertising node is initially
active, then the educational node also becomes active. (a) is a contour diagram showing the final opinion for each node in each
model run; (b) shows the distribution of prevalences. Data from 10000 model runs are used for each figure.

Fig. 21. Opinion (a) and prevalence (b) as a function of initiation threshold for networks in a scenario in which an advertising
node is tied to the initiation threshold and an educational node is tied to the addiction factor. The advertising node is initially
active, then is replaced with an educational node. (a) is a contour diagram showing the final opinion for each node in each
model run; (b) shows the distribution of prevalences. Data from 10000 model runs are used for each figure.

than was shown in previous scenarios, and overall levels
of prevalence are increased (Fig. 19b).

3.2.8.5 Advertising then add education scenario

In Figure 20, we show the results of a scenario in which ad-
vertising is active until the network reaches steady state,
after which an education media node is introduced. Ad-
vertising and education broadcast opinion values are con-
figured as previously, at 0.025 above and below the initia-
tion and cessation thresholds, respectively. In the opinion
space contour map (Fig. 20a), we observe the distinct ef-
fects of the advertising and education nodes. The stronger
band represents the advertising node and follows the trend
shown in Figure 19. The lesser diagonal band (Fig. 20a)
follows the trend for the educational node shown in Fig-
ure 18. The advertising node shows greater effectiveness
due to its early exclusive presence, which allowed it to
drive the network to steady state uncontested. This results

in a prevalence response extremely similar to that seen in
the previous scenario of advertising only (Fig. 19b), in-
dicating that the education media node is less effective
if there has been previously unopposed advertising. We
again note that for real-world scenarios the situation is
considerably more complex, and changes in the network
and influence structure would occur that are not repre-
sented here.

3.2.8.6 Advertising then replace with education scenario

In Figure 21, we show the results of an identical sce-
nario, except this time removing the advertising node af-
ter the network has been driven to steady state under
its influence. The resulting opinion space contour map re-
sembles that of the previous scenario, but with the dif-
ference that the now uncontested education node has a
slightly greater effect. Nevertheless, the advantage of hav-
ing driven the network to its initial steady state results in
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Fig. 22. Opinion (a) and prevalence (b) as a function of initiation threshold for networks in a scenario in which an advertising
node is tied to the initiation threshold and an educational node is tied to the addiction factor. The advertising educational
nodes are both active throughout. (a) is a contour diagram showing the final opinion for each node in each model run; (b) shows
the distribution of prevalences. Data from 10000 model runs are used for each figure.

the effects of the advertising node on opinion remaining
distinctly stronger. This results in a behavioral space that
again is nearly identical to that achieved in the advertising
only scenario. Tolerance effects constrain the effectiveness
of the education node, serving to maintain a collection of
high opinion nodes at every point of the run, despite re-
moving the advertising broadcast node. In real-world sce-
narios, changes in the network structure would occur over
time and different individuals might be exposed to differ-
ent messages. Nevertheless, the results show that provid-
ing information early results in an advantage in swaying
opinion.

3.2.8.7 Simultaneous advertising and education scenario

In Figure 22, we show the results of a scenario in which
both advertising and education are simultaneously active
from the start. In this scenario, the opinion space contour
map (Fig. 22a) shows greater equality between the modes
induced by the advertising and educational media nodes.
In addition, a third, less well-expressed mode is introduced
between the education and advertising opinions. This re-
sults in a behavior space with less consolidation than any
of the previous scenarios.

3.2.9 Addiction effect interventions

For the smoking example, the difference between the initi-
ation threshold and the addiction factor, which establishes
an implicit cessation threshold for an individual agent,
represents the hysteresis in opinion-to-behavior mapping
brought about by addiction. This hysteresis serves to
maintain smoking behavior despite the fact that an indi-
vidual’s opinion about smoking has fallen. These individ-
uals are effectively latched into a behavior and, depending
on the level of physiological and psychological addiction,
need to have a far lower opinion of smoking in order to be
able to quit than would be necessary without addiction.

Fig. 23. Prevalence versus addiction threshold for multiple
media node scenarios.

Because the opinion-to-behavior function hysteresis es-
tablishes a cessation threshold as an offset of the initia-
tion threshold, cessation can similarly be affected by com-
prehensive tobacco control interventions, such as price
increases and smoke-free policies that increase the costs
(both monetary and non-monetary) associated with smok-
ing. However, the magnitude of the hysteresis itself can be
reduced by interventions that target the effects of addic-
tion, such as providing reduced costs for nicotine replace-
ment therapies and other treatments, as well as social sup-
port programs such as quit lines.

3.2.9.1 Comparison of scenarios

For ease of comparison, these results are summarized in
Figure 23, which shows the mean prevalences achieved un-
der each scenario. More detailed plots and analysis follow
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Fig. 24. Opinion (a) and prevalence (b) as a function of the addiction factor for the baseline scenario. (a) is a contour diagram
showing the final opinion for each node in each model run; (b) shows the distribution of prevalences. Data from 10000 model

runs are used for each figure.

Fig. 25. Opinion (a) and prevalence (b) as a function of the addiction factor for a scenario in which an educational node is tied
to the addiction factor. The educational node is present throughout the scenario. (a) is a contour diagram showing the final
opinion for each node in each model run; (b) shows the distribution of prevalences. Data from 10000 model runs are used for

each figure.

in Section 3.2.9.3 and later sections. In the baseline sce-
nario, we observe that the effects of increasing the ad-
diction factor largely saturate above 0.25. This is due to
the consolidation of the major mode with opinion values
around 0.5, shown in Figure 24a. Individuals in the central
mode are either never smokers (their opinions were never
above the initiation threshold), or else their opinions were
lowered from above 0.7. If their opinions were lowered from
above the initiation threshold, and if the addiction factor
is larger than 0.25, then they will likely be caught in hys-
teresis, thus raising prevalence. Although another major
mode exists in Figure 24a below an opinion value of 0.3,
these individuals are generally never smokers, and so do
not have their behaviors influenced by addiction.

At very low addiction factor values, the education
node’s broadcast opinion is close to the initiation thresh-
old. For example, an addiction factor of 0 (no addiction)
sets the effective cessation threshold to 0.7 (equal to the

initiation threshold), and the education node broadcast
opinion is correspondingly set to 0.675. This value is not
sufficiently below the initiation threshold to have a large
effect on prevalence, and so the prevalence is the same
as seen in the baseline scenario. As the addiction factor
increases and the education node broadcast opinion is cor-
respondingly lowered, effectiveness in reducing prevalence
increases until the broadcast opinion is low enough (at
an addiction factor of 0.2, corresponding to a broadcast
opinion value of 0.475) that an uninfluenced, higher opin-
ion mode begins to form, as shown in Figure 25a. At this
point, although the education node scenario achieves a
lower prevalence than the other scenarios, the increasing
addiction factor results in increasing prevalence. Finally,
by the time the addiction factor reaches 0.45 and the ed-
ucation node’s opinion is a corresponding 0.225, it is ex-
iting the range of influence of even mid-opinion smokers,
and so does not achieve an outcome significantly different
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Fig. 26. Opinion (a) and prevalence (b) as a function of the addiction factor for a scenario in which an advertising node is tied
to the initiation threshold. The advertising node is present throughout the scenario and does not change value. (a) is a contour
diagram showing the final opinion for each node in each model run; (b) shows the distribution of prevalences. Data from 10000

model runs are used for each figure.

from the baseline scenario. We illustrate that the effect
shown in the scenarios containing an education node on
the interval [0.0, 0.2] is due to a less effective education
campaign, rather than due to the addiction factor itself.
When the education media node’s broadcast opinion value
is offset by 0.1 rather than 0.025, as shown in Figure 23,
the education node is effective at reducing prevalence for
addiction factors below 0.2. Above this addiction factor,
prevalence becomes essentially equivalent to the scenario
in which the education node broadcasts an opinion with
an offset of 0.025.

In the simultaneous education and advertising sce-
nario, we see a prevalence curve nearly identical in shape
to education only, but shifted up by 0.05. Advertising is
able to increase prevalence even in the presence of educa-
tion, but the overall response curve is that of the educa-
tion node. This is due to the education node’s dynamic
value being set based on the current level of addiction,
while the advertising node’s broadcast opinion value is
held constant based on the constant initiation threshold.
A dynamic educational node with opinion that can change
with addiction level is more effective than a constant ad-
vertising opinion based on a constant initiation threshold.

Removing the advertising node and adding an educa-
tion node achieves near-baseline prevalence values only for
low levels of addiction. The stronger the effects of addic-
tion, the less effective it becomes to replace advertising
with education. At an addiction factor of 0.15 and an ef-
fective cessation threshold of 0.55, the education node’s
opinion becomes 0.525, which is outside the opinion range
of the higher opinion nodes, allowing the formation of a
high opinion mode between 0.7 and 0.85, as seen in Fig-
ure 27. This causes a phase transition in the prevalence
curve, yielding prevalence equivalent to that seen in the
other scenarios incorporating advertising due to the ef-
fects of tolerance; at higher addiction levels the educa-
tional node moves outside of the tolerance range of more
individuals.

For the scenarios in which advertising remains active
throughout a run (Advertising only and Ad Stays Active),
there is little difference with or without a late-introduced
education node. As shown in Figures 26a and 29a, opin-
ion space is sufficiently biased by the early-acting adver-
tising node that even though the education node shifts
some opinions at low addiction factors, opinion shifts
are small due to tolerance bound constraints and ef-
fects on prevalence are minimal. In real-world dynamic
networks, in which births, aging and deaths modify mem-
bership and constantly changing messaging campaigns in-
troduce new sources of opinions, message campaign re-
sults can vary. For example, Hamilton [40] asserts that
the Fairness Doctrine, which required broadcasters to bal-
ance cigarette advertising with educational messages on
smoking-induced harm, caused a decrease in prevalence
despite long-term industry adverstising.

3.2.9.2 Impact of addiction and cessation threshold

The effects of sweeping through values for the addic-
tion factor are strikingly different than those of sweep-
ing through initiation thresholds. While the effects of ad-
diction are relatively simple for an individual node, the
system as a whole displays complex behavior whose ori-
gin becomes clear when considering the interaction be-
tween opinion and behavior as moderated by addiction
and driven by media nodes.

3.2.9.3 Baseline scenario

Figure 24 shows the effects of a sweep of addiction fac-
tors for the baseline case. With no media nodes driving
network opinions, opinions remain constant with increas-
ing addiction, with a highly-expressed mode at opinions
around 0.5 and lower-expressed modes around 0.2 and 0.8
(Fig. 24a). Given the baseline initiation threshold of 0.7,
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Fig. 27. Opinion (a) and prevalence (b) as a function of the addiction factor for a scenario in which an advertising node is tied
to the initiation threshold and an educational node is tied to the addiction factor. The advertising node is present throughout
the scenario and the educational node is introduced after the networks reach equilibrium. (a) is a contour diagram showing the
final opinion for each node in each model run; (b) shows the distribution of prevalences. Data from 10000 model runs are used

for each figure.

addiction factors below 0.2 allow for cessation by smok-
ers with opinions of 0.5 or lower, as reflected by the low-
prevalence cluster in Figure 24b. If the addiction factor
increases above 0.2, smokers need an opinion below 0.5 in
order to quit. However, the smokers in the network are pri-
marily made up of individuals whose opinions at steady
state are above the initiation threshold, or those whose
opinions were formerly above the initiation threshold. Be-
cause opinion values in this scenario trend towards 0.5 for
both initial smokers and non-smokers, the lower opinions
achieved by formerly-high-opinion nodes are insufficient
to allow cessation, thus contributing to the relatively un-
changing prevalence values above approximately 0.2.

3.2.9.4 Educational node scenario

Figure 25 shows the effects of a sweeping on the magnitude
of hysteresis (the addiction factor) under the influence of
an education node broadcasting an opinion value 0.025 be-
low the cessation threshold. This value was selected based
results shown in Section 3.2.4. At an addiction factor of
0, the effective cessation threshold is equal to that of the
initiation threshold, which in this case is 0.7. The educa-
tion node broadcast opinion is therefore set to 0.675. At
this value, the education node is successful at influencing
high-opinion individuals, but it does so by broadcasting an
opinion value very close to the initiation threshold, which
lowers its overall effect on reducing prevalence. As the ed-
ucation node broadcast opinion decreases with increasing
addiction and gains separation from the initiation thresh-
old, its effectiveness increases. However, after the addic-
tion factor reaches 0.2, the education node’s broadcast
opinion of 0.475 becomes too low to effectively influence
the opinions of the high-opinion nodes, again causing a loss
in effectiveness and higher prevalence (Fig. 25b). Contin-
uing to lower the education node’s broadcast opinion re-
sults in increasing alienation of high- and even moderate-

(opinion) nodes throughout the rest of the scenario. How-
ever, these extremely low media node opinion values are
necessitated by the effective cessation threshold induced
by the hysteresis factor — higher broadcast opinion val-
ues would place the education node’s opinion above that
of the cessation threshold, and thus would potentially in-
fluence opinions but not enough to trigger a behavioral
change. Thus, as the education node moves to lower opin-
ion values, it stops influencing people with high opinions.
The increase in prevalence is due to both the increase in
addiction and the effects of tolerance-induced constraints
on the education node’s ability to change opinions.

3.2.9.5 Advertising node scenario

Figure 26 shows the results of addiction under a scenario
with only an advertising node. Because advertising node
opinion is fixed at 0.025 above the initiation threshold
of 0.7, and because the initiation threshold is held constant
in these scenarios, there is no change in node opinions as a
result of increasing the addiction factor (Fig. 26a). We ob-
serve that the advertising node induces the formation of a
highly expressed mode around 0.725, and a more modestly
expressed lower mode around 0.17 comprised of nodes that
are unaffected by the advertisement due to tolerance con-
straints. This concentration of high opinion nodes reduces
the effectiveness of low addiction factors in reducing preva-
lence (Fig. 26b), rendering them all but ineffectual even
at the lowest levels.

3.2.9.6 Advertising then add education scenario

Figure 27 shows the effects of giving the advertising node a
head start — allowing the network to come to steady state
under the effects of advertising before introducing the
dynamic opinion education node described in the above
education-only scenario. Contrasted with that scenario,
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Fig. 28. Opinion (a) and prevalence (b) as a function of the addiction factor for a scenario in which an advertising node is tied
to the initiation threshold and an educational node is tied to the addiction factor. The advertising node is present until each
network reaches equilibrium, then it is replaced with an educational node. (a) is a contour diagram showing the final opinion for
each node in each model run; (b) shows the distribution of prevalences. Data from 10000 model runs are used for each figure.

the upper mode is far more highly expressed, due to the
effects of the advertising node (Fig. 27a). At high edu-
cation node broadcast opinion values, used when the ad-
diction factor is very low, the education node is effective
at influencing high-opinion nodes, and is able to lower
those opinions as its opinion decreases and addiction in-
creases. However, because the education node opinion is
close to the initiation threshold and therefore similar to
that of the advertising node, it has only a modest effect on
prevalence, showing only a slight decrease over that of the
advertising-only scenario (Fig. 27b). Above an addiction
factor of 0.2, corresponding to an education node opinion
of 0.525, even this modest effect is lost as the education
broadcast opinion passes outside of the tolerance threshold
of the high-opinion nodes. A larger tolerance value would
permit a greater range of influence for the education node.

3.2.9.7 Advertise then replace with education scenario

Figure 28 shows the results of a scenario in which the ad-
vertising node is removed after the initial steady state is
reached, giving the education node an advertising-induced
steady state as its initial condition in an otherwise uncon-
tested environment. Contrasted with the previous scenario
in which the advertising node remains active, we observe
that the advertising-induced upper opinion mode, while
more strongly expressed than in the education-only sce-
nario, is far less highly expressed than when the advertis-
ing node remains active (Fig. 28a). This scenario allows
the education node greater ability to influence opinions,
with a resulting improvement in reducing smoking behav-
iors (Fig. 28b). However, this benefit is lost at lower values
of education broadcast opinion that are outside the toler-
ance range of the upper opinion nodes; there, the net-
work remains closer to the prevalence levels seen in the
advertising-only scenario.

3.2.9.8 Simultaneous advertising and education scenario

Finally, Figure 29 illustrates the effects of an even-handed
scenario in which both advertising and education nodes
are broadcasting at the same time. The contour map of
node opinion (Fig. 29a) shows characteristics of both the
previous scenario and the advertising-only scenario, but
the ability of the education node to influence opinions is
increased because it begins its activity on a network that
has not come to steady state under the influence of adver-
tising. This results in a behavior-space reaction (Fig. 29b)
similar to the education-only scenario, with nearly iden-
tical transitions but with slightly reduced levels of effec-
tiveness.

4 Conclusions

Opinion dynamics models are powerful tools for modeling
complex phenomena in the social sciences. With the addi-
tion of behavioral components, the scope of applications
for this category of models expands significantly. Such ap-
plications can be used to analyze the fundamental dynam-
ics of a system as well as to model effects of a variety of
interventions under a range of counterfactual scenarios.
This paper focused on the effects of idealized network
topological elements on opinion dynamics and hysteresis
in behavior and how they impact the potential distribu-
tion of opinions and network behavior states for a given set
of parameter values. Opinion dynamics models using well-
mixed populations with random connections and fully-
connected networks converge toward single opinion values
for tolerances greater than 0.27. With sparse connectiv-
ity the network remains in non-consensus over a broader
range of tolerance values. In the case of the ER-type net-
works with probability of node connection of 0.022, con-
sensus is not reached for tolerances less than 0.5. When the
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Fig. 29. Opinion (a) and prevalence (b) as a function of the addiction factor for a scenario in which an advertising node is
tied to the initiation threshold and an educational node is tied to the addiction factor. The both nodes are active throughout
the scenario. (a) is a contour diagram showing the final opinion for each node in each model run; (b) shows the distribution of
prevalences. Data from 10000 model runs are used for each figure.

probability of node connection is increased to 0.2, the
outcomes are similar to previous studies with a tolerance
threshold for consensus of 0.25; but with an added phase
of trimodal results for tolerance between 0.175 and 0.25.

Mapping opinion to a discrete, bimodal behavior re-
sults in fewer modes for the node behavior state than for
the opinion state. Aggregating the behavior state of the
nodes into a network prevalence value further reduces the
modality of the model results. The behavior of the model
is strongly affected by initiation and cessation threshold
values. Increasing the initiation threshold, which, for our
example, can be interpreted as raising the costs associated
with starting to smoke, often results in a roughly linear de-
crease in the number of new smokers, although the shape
of the response curve is driven by the distribution of opin-
ion in the network.

Hysteresis in the opinion-to-behavior mapping damp-
ens network and intervention effects on individual behav-
ior. With regard to our smoking example, this suggests
that it will be easier to prevent individuals from starting
than to get people to quit, consistent with evidence show-
ing that while the majority of smokers in the U.S. express
an interest in quitting and have tried to quit, only a small
fraction are successful [29]. Both sets of effects can be al-
tered by the activity of media campaigns that can raise
or lower opinions. These model runs also highlight the po-
tential value of this modeling approach for exploring and
evaluating multi-component interventions focused at dif-
ferent levels of influence.
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