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2 New approaches for payment 
system simulation research 

Abstract 

This article presents new directions for simulation research in 
interbank payment systems that integrates network topology, network 
dynamics and agent-based modelling of bank behaviour. In the 
process it also reviews literature in the field and presents applications 
of the ideas presented. While the focus of the article is on systemic 
risk in interbank payment systems, the concepts and models presented 
are applicable to address questions related to other payment systems 
and topics such as liquidity flow efficiency as well. 
 
 
2.1 Introduction 

At the apex of the financial system is a network of interrelated 
financial markets by which domestic and international financial 
institutions allocate capital and manage their exposure to risk. Critical 
to the smooth functioning of these markets are a number of financial 
infrastructures that facilitate clearing and settlement. The events of 11 
September 2001 underscored both the resiliency and the 
vulnerabilities of these financial infrastructures to wide-scale 
disruptions. Any interruption in the normal operations of these 
infrastructures may seriously impact not only the financial system but 
also the economy as a whole. 
 A growing body of policy-oriented research is available. One 
segment of the literature focuses on simulating the default of a major 
participant and evaluating the effects on other institutions in 
payments1 and securities settlement systems2. Another segment 
presents detailed case studies on the responses of the US financial 
system to shocks such as the 1987 stock market crash and the attacks 
of 11 September 2001.3 Much of the research has been conducted 
                                          
1 See Humphrey (1986), Angelini et al (1996), Kuussaari (1996), Bech et al (2002), 
Northcott (2002), Bech and Soramäki (2005), Bedford et al (2005) and Mazars and 
Woelfel (2005). 
2 See Hellqvist and Koskinen (2005) and Devriese and Mitchell (2006). 
3 See Bernanke (1990), McAndrews and Potter (2002) and Lacker (2004). 
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using data from real operating environments with the given payment 
flows and settlement rules of the respective systems. As such they are 
useful for assessing the operation of the particular system under 
disruptions, but the results are difficult to generalise to systems with 
other characteristics. Little research has focused on explaining the 
relationship between the characteristics of the system and its 
performance during and following disruptions. Also the behaviour of 
participants has been generally exogenously defined or assumed 
unchanged (or to change in a predetermined manner) when the policy 
parameters of the system change or when a bank changes its 
settlement behaviour as a consequence of operational or financial 
problems. Such assumptions are unlikely to hold in the case of real 
disruptions. 
 This article argues that three aspects are important for answering 
the still unanswered questions on what makes a payment system and 
its participants robust or fragile towards disruptions, and what are the 
most efficient measures to reduce the likelihood and magnitude of 
disturbances. First, understanding the pattern of liquidity flows among 
the system participants. Second, understanding how the rules of the 
system affect the dynamics of liquidity flows. Third, the ability to 
evaluate likely behavioural changes of the participants before, during 
and following disruptions or as a consequence of policy changes. 
 This article presents new approaches at answering the above 
questions. It is organised as follows. Section 2.2 discusses how 
payment system interactions can be described by means of network 
topology and presents empirical results for the US Fedwire system. 
Section 2.3 describes dynamics that can take place in interbank 
payment systems and presents a simple model of a payment system 
based on simple rules of settlement. Section 2.4 presents some 
possible directions for modelling participant behaviour in payment 
systems. Section 2.5 concludes. 
 
 
2.2 Modelling interbank payment flows 

A payment system can be treated as a specific example of a complex 
network (see eg Newman, 2003). In recent years, the physics 
community has made significant progress towards understanding the 
structure and functioning of complex networks. The literature has 
focused on characterising the structure of networked systems and how 
the properties of the observed topologies relate to stability, resiliency 
and efficiency in case of perturbations and disturbances. 
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 From a technical perspective, most payment systems are star 
networks where all participants are linked to a central hub (the 
operator) via a proprietary telecommunications network. From a 
payment processing perspective, payment systems are generally 
complete networks as all nodes (participants) are linked in the sense 
that they can send and receive payments from each other. However, 
these representations do not necessarily reflect the actual behaviour of 
participants that controls the flow of liquidity in the system and thus 
the channels for contagious transmission of financial disturbances.  In 
common with other of social networks mediated by technology (such 
as email or telephone calling), the networks formed by actual 
participant behaviour are of more interest than the network structure 
of the underlying communication system. 
 
 
2.2.1 Network representation of payment systems 

Networks have been modelled in several disciplines such as in 
mathematics and computer science under graph theory, in applied 
mathematics and physics under network theory and in sociology under 
social network analysis. While the terminologies and research 
questions in the different traditions vary, common to all is the 
representation of the topic under study as (at minimum) two types of 
elements: nodes and connections between them, ie links. The 
following paragraphs summarise the main concepts. 
 Links can be either undirected or directed. Links can have weights 
attached to them representing the importance of the relationship 
between nodes. The strength of a node can be calculated as the sum of 
the weights of all the links attached to it. For a directed network, 
strength can be defined over both the incoming and outgoing links. 
 A link from a node to itself is called a loop. The neighbours of a 
node are all the nodes to which it has a link. The predecessors of a 
node are the nodes that have a link to the node and the successors are 
the nodes that have a link from the node. A walk is a sequence of 
nodes in which each node is linked to the next. A walk is a path if all 
its nodes are distinct. The length of a path is measured by the number 
of links. If the start node and the end node of a path are one and the 
same, then it forms a cycle. 
 A complete network is a network where all nodes have a link to 
each other. A tree is a network in which any two nodes are connected 
by exactly one path. A connected network is a network where any two 
nodes can be joined by a path while a disconnected network is made 
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up of two or more connected components or sub-networks. These 
concepts are illustrated in Figure 2.1a. 
 
Figure 2.1 Network modelling 
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The most basic properties of a network are the number of nodes n and 
the number of links m. The number of nodes defines the size of a 
network while the number of links relative to the number of possible 
links defines the connectivity of a network. The degree of the network 
is the average number of links for each node in the network. 
 A starting point for the quantitative analysis of a network is to 
partition the set of nodes into components according to how they 
connect with other nodes. Dorogovtsev et al (2001) divide a network 
into a single giant weakly connected component (GWCC) and a set of 
disconnected components (DCs). The GWCC is the largest component 
of the network in which all nodes connect to each other via undirected 
paths. The DCs are smaller components for which the same is true. 
The GWCC consists of a giant strongly connected component 
(GSCC), a giant out-component (GOUT), a giant in-component (GIN) 
and tendrils. The GSCC comprises all nodes that can reach each other 
through a directed path. A node is in the GOUT if it has a path from 
the GSCC but not to the GSCC. In contrast, a node is in GIN if it has a 
path to the GSCC but not from it. Tendrils are nodes that have no 
directed path to or from the GSCC. They have a path to the GOUT or 
a path from the GIN (see Figure 2.1b). 
 Application of the component analyses to liquidity flows between 
banks provides insights on the structure of these flows within the 
payment system and gives clues with respect to the relative 
importance and vulnerability of banks in the system in case of 
disruptions. As banks in GOUT only receive funds from other banks 
in the GSCC, a disruption by a bank in GOUT would only affect other 
banks in that component. Banks in GIN are affected only by 
disruptions in the same component, and not by banks in other 
components as their payment processing is not dependent on incoming 
liquidity from these banks. Banks outside the GSCC tend to be smaller 
whereas all money center banks belong to the GSCC. 
 Two important characteristics of a node in a directed network are 
the number of links that originate from the node and the number of 
links that terminate at the node. These two quantities are referred to as 
the out-degree and in-degree of a node respectively. The average 
degree of a node in a network is the number of links divided by the 
number of nodes, ie <k>=m/n. Networks are often categorised by their 
degree distributions. The degree distribution of a classical random 
network (ER-network, Erdõs and Rényi, 1959) is a Poisson 
distribution. Many real networks have fat-tailed degree distributions 
and a large number have been found to follow the power law 
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P(ki = x)∼k-y for large-degree nodes. Networks with a power-law 
distribution are sometimes referred to as scale-free networks4. Scale-
free networks have been found to remain better connected when 
subjected to random failures than other types of networks. Albert et al 
(1999) and Crucitti et al (2004) find that the connectedness of scale-
free networks is robust to random failures but vulnerable to targeted 
attacks. However, one must be a bit careful here as the process acting 
on the network influences such analyses of robustness and 
vulnerability. 
 Simply put, banks that have a low in-degree and high weights for 
these links are likely to be more vulnerable to disturbances than other 
banks as the removal of one link will severely limit the amount of 
incoming funds. Conversely, banks with high out-degree have ceteris 
paribus the potential to affect more counterparties if their payment 
processing is disrupted. Understanding the topology of payment flows 
is likely to be important in assessing the resiliency of a payment 
system to wide-scale disruptions. 
 It is also common to analyse distances between nodes in the 
network. The distance from node i to node j is the length of the 
shortest path between the two nodes. The average distance from a 
node to any other node in a strongly connected network is commonly 
referred to as the average path length of a node. If the network is not 
strongly connected, paths between all nodes may not exist. In a 
payment network the path length may be important due to the fact that 
the shorter the distances between banks in the network, the easier 
liquidity can re-circulate among the banks. On the other hand, a 
payment system where liquidity flows over short paths is also likely to 
be more vulnerable to disruptions in these flows. 
 Sociologists have long studied clustering in social networks, ie the 
probability that two nodes which are the neighbours of the same node 
themselves share a link. This is equivalent to the observation that two 
people, each of whom is your friend, are likely to be friends with each 
other. One way of measuring the tendency to cluster is the ratio of the 
actual number of links between the neighbours of a node over the 
number of potential links among them. A tree network has a clustering 
coefficient of zero, and a complete network a coefficient of one. In a 
classical random network, the clustering coefficient is the 
unconditional probability of connection, ie <C> = p. 

                                          
4 This is because the power law distribution is the only scale-free distribution, ie if the 
scale by which x is measured is increased by a factor, the shape of the distribution p(x) is 
unchanged, except for an overall multiplicative constant (see Newman, 2005). 
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 In a payment network, the clustering coefficient measures the 
prevalence of payments between a bank’s counterparties. In terms of 
resilience one could hypothesise that disturbances in banks with a 
higher clustering coefficient might have a compounding impact on 
their counterparties, as some of the disturbance may be passed on by 
the bank’s neighbours to each other – in addition to the direct 
contagion from the source of the disruption. 
 There are various measures of the centrality that indicate the 
relative importance of nodes in a network. Four measures of centrality 
are commonly used in network analysis: degree, closeness, 
betweenness, and eigenvector centrality. The first three were 
described in their current form by Freeman (1979) while the last was 
proposed by Bonacich (1972). Degree centrality takes into account 
only the immediate neighbourhood of the node, ie it is simply the 
number of links the node has. Closeness centrality as defined by 
Freeman is the sum of shortest paths from all other nodes. 
Betweenness centrality may be defined loosely as the number of times 
that a node is on the shortest path between any pair of nodes. 
Eigenvector centrality encapsulates the idea that the centrality of a 
node depends also on the centrality of the nodes that it is linked by (or 
links to). A famous commercialisation of this centrality measure is the 
PageRank algorithm by Google (Brin and Page, 1995). In general, the 
importance of the node will depend on process taking place in the 
network. Borgatti (2005) provides a good overview of alternative 
processes in networks and centrality measures applicable for their 
analysis. 
 Finally, a key question in the study of networks is how the 
topologies that are seen in reality have come into being. There are two 
classes of network formation models some times referred to as 
equilibrium and non-equilibrium models (Dorogovtsev and Mendes, 
2003). Equilibrium models have a fixed set of nodes with randomly 
chosen pairs of nodes connected by links. Erdõs and Rényi (1959) 
develop a basic model of a n node network, with each pair of nodes 
connected by a link with probability p. This type of network is 
commonly referred to as a classical random network. Non-equilibrium 
network models grow a network by successively adding nodes and 
setting probabilities for links forming between the new nodes and 
existing nodes and between already existing nodes. Many of these 
models, notably the Barabasi and Albert (1999) model (BA model), 
are based on preferential attachment. Preferential attachment assigns a 
probability of a link forming with a node that is increasing with the 
number of prior links of the node. 
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2.2.2 Fedwire as an example of a complex network 

Soramäki et al (2007) analyse the topology of daily networks formed 
by the payment flows between commercial banks over Fedwire for a 
period of 62 consecutive business days. Apart from a few holidays, 
the statistics characterising the network were quite similar from day to 
day. These networks shared many characteristics with other empirical 
complex networks, such as a scale-free degree distribution, high 
clustering coefficient and the small world phenomenon (short path 
lengths in spite of low connectivity). Like many other technological 
networks, high-degree nodes tend to connect to low-degree nodes. 
Similar conclusions can also be reached from analysis on BoJ-NET by 
Inaoka et al (2005). 
 Moreover, Soramäki et al (2007) report that the topology of the 
network was significantly altered by the attacks of 11 September 
2001. The number of nodes and links in the network and its 
connectivity was reduced, while the average path length between 
nodes was significantly increased. Interestingly, these alterations were 
of both similar magnitude and direction to those that occurred on 
several of the holidays contained within the period. 
 Figure 2.2a shows liquidity flows in Fedwire as a visual graph. 
The figure includes over 6,600 nodes and more than 70,000 links. 
Each link between two banks is shaded by the value of payments 
exchanged between them, with darker shades indicating higher values. 
Despite the appearance of a giant fur ball, the graph suggests the 
existence of a small group of banks connected by high value links. To 
gain a clearer picture of this group, a subset of the network where the 
focus is on high value links is displayed in Figure 2.2b. This graph 
shows the largest undirected links that comprise 75% of the value 
transferred. The network consists of only 66 nodes and 181 links. The 
prominent feature is a densely connected sub-graph, or clique, of 25 
nodes to which the remaining nodes connect. By itself it is almost a 
complete graph. A small number of banks and the links between them 
thus dominate the value of all payments sent over the network. 
 



 
24 

Figure 2.2 Visualisation of the liquidity flow network 
   (Soramäki et al, 2007) 
 
a) b) 

  
 
 
The analysis finds that payment networks have characteristics similar 
to other social and technological networks. An unanswered question is 
why the network has the structure it does: the network may grow over 
time by a logic that is very general or that is particular to payment 
systems, or to specific policies of a given system. This is an 
interesting topic for future research. The network structure has also 
implications for its robustness. Robustness of the network, however, 
also depends on the processes taking place in it. This is the topic of 
the next sections. 
 
 
2.3 Modelling payment system dynamics 

2.3.1 Network dynamics 

A number of payment system simulations carried out in recent years 
have used actual or generated payment data. These simulations have 
studied the actual dynamics of payment systems, where system rules 
have varied from simple real-time gross settlement to complex hybrid 
settlement mechanisms with offsetting and multilateral settlement 
capabilities. The research can be summarised as trade-off questions 
between liquidity, speed of settlement and risks. The impact of bank 
behaviour has not been taken endogenously into account in these 
simulations. A summary of this line of research is provided in 
Leinonen (2005) and is not presented here. 
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 From a network perspective, the performance of banks (nodes) is 
often dynamically dependent on the performance of other banks 
within the network and upon the structure of linkages between banks. 
A failure by one node in the network, for example, may hinder flows 
in the network and adversely impact the performance of the other 
nodes as the disturbance propagates in the network. 
 One branch of network literature has investigated the resilience of 
different network topologies in terms of a connectivity threshold (ie 
percolation threshold)5 at which a network dissolves into several 
disconnected components. A well-known finding is that scale-free 
networks are more robust to random failures than other types of 
networks. However, they are very susceptible to the removal of the 
very few highly connected nodes. These static failure analyses may be 
applicable to some networks if the interest is the availability of paths 
between nodes in the network – but are less applicable to networks of 
monetary flows which contain both flows via the shortest paths as 
well as longer walks within the network. 
 Another branch of the literature has studied the impact of 
perturbations that cascade through the network on the basis of 
established theoretical or domain-specific rules6. In these dynamical 
models nodes generally have a capacity to operate at a certain load 
and, once the threshold is exceeded, some or all of the node’s load is 
distributed to neighbouring nodes in the network (Bak et al, 1987). 
While the detailed dynamics depend on the rules applied for the 
cascades, generally the most connected nodes (or nodes with highest 
load in relation to overall capacity) are more likely than average nodes 
to trigger cascades. Increased heterogeneity makes the system more 
robust to random failures, but more susceptible to targeted attacks that 
may cause global cascades. 
 Cascade models have been applied by physicists to systems within 
fields ranging from geology to biology to sociology (eg Jensen, 1998). 
This research has demonstrated that models made of very simple 
agents, interacting with neighbouring agents, can yield surprising 
insights about system-level behaviour. In the spirit of these cascade 
models, Beyeler et al (2007) formulate a simple agent-based model for 
liquidity flows within a payment system. 
 
 

                                          
5 Eg Bollobas (1985), Moore and Newman (2000) and Callaway et al (2000). 
6 Eg Watts (2002) and Crucitti et al (2004b) for random and complex networks, 
respectively, and Sachtjen et al (2000) and Kinney et al (2004) for power networks. 
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2.3.2 Simple payment system model 

The model of Beyeler et al includes only the essential processes of a 
payment system and its accompanying liquidity market. A set of 
banks exchange payments through a single common payment system. 
All payments occur only along the links of a scale-free network – as 
was shown to be representative of Fedwire liquidity flows. Banks’ 
customers randomly instruct them to make a unit payment to a 
neighbouring connected bank. Banks are reflexively cooperative: they 
submit the payment if the balance in their payment system account 
allows; otherwise they place the instruction on a queue for later 
settlement. 
 If the receiving bank has instructions in its queue, the payment it 
just received enables it to remove a queued instruction and submit a 
payment in turn. If the bank that receives that payment is also queuing 
instructions, then it can make a payment, and so on. In this way a 
single initial payment made by a bank can cause many payments to be 
released from the queues of the downstream receiving banks. This is 
an example of the cascade processes typically studied in other models 
of self-organised criticality. Statistics on these settlement cascades are 
an indicator of the extent of interdependence of the banks, and in the 
model they are a controlled by two parameters: the overall liquidity 
and market conductance. 
 
Figure 2.3 Simple payment system model 
   (Beyeler et al, 2007) 
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In the absence of a liquidity market, only abundant liquidity allows 
banks to operate independently; reducing liquidity increases the 
likelihood that a given bank will exhaust its balance and begin 
queuing payments. A bank that has exhausted its balance must wait 
for an incoming payment from one of its neighbours. When liquidity 
is low a bank’s ability to process payments becomes coupled to its 
neighbours’ ability to process. The output of the payment system as a 
whole is no longer determined by overall input, but instead becomes 
dominated by the internal dynamics of the system. Figure 2.4a shows 
how the correlation between arriving instructions and submitted 
payments degrades in the model as liquidity is reduced (1: high 
liquidity; 2: medium liquidity; 3: low liquidity). A settlement cascade, 
that is the release of queued payments as a result of a single initiating 
payment, can comprise hundreds of queued payments as illustrated in 
Figure 2.4b. 
 To explore how liquidity markets reduce coupling among network 
neighbours and thereby reduce congestion, market transactions were 
represented as a diffusive process where a bank’s balance plays the 
role of a potential energy or pressure. Banks with high balances tend 
to contribute liquidity to the market, while banks with low balances 
tend to draw liquidity from the market. There is no decision-making or 
price-setting in this simple market model, but it reflects two essential 
features of a real market: liquidity flows from banks with surplus 
funds to banks that need funds, and liquidity can flow from any bank 
to any bank – flows are not confined to the links of the payment 
network. It creates a separate global pathway for liquidity flow. The 
ease of liquidity flow through the market is described by a single 
conductance parameter. 
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Figure 2.4 Instruction and Payment Correlation (a) 
   and Settlement Cascade Length 
   Distribution (b). 
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With a liquidity market included, the number of payments closely 
tracks the number of instructions as the coupling between banks is 
weakened and the size of the settlement cascades is reduced. The rate 
of liquidity flow through the market relative to the rate of flow 
through the payment system was surprisingly small. The performance 
of the system can be greatly improved even though less than 2% of the 
system through-put flows through the market. 
 
 
2.4 Modelling bank behaviour 

2.4.1 Decision-making, learning and adaptation 

Wide-scale disruptions may not only present operational challenges 
for participants in the interbank payment system, but they may also 
induce participants to change the way they conduct business. The 
actions of participants have the potential to either mitigate or 
exacerbate adverse effects. Hence, understanding how participants 
interact and react when faced with operational adversity will assist 
operators and regulators in designing countermeasures, devising 
policy, and providing emergency assistance, if necessary. 
 The first approach to study bank behaviour in payment systems 
has been to use standard game theory. Angelini (1998) and 
Kobayakawa (1997) use a setup derived from earlier literature on 
precautionary demand for reserves. Angelini (1998) shows that in a 
RTGS system, where banks are charged for intraday liquidity, 
payments will tend to be delayed and that the equilibrium outcome is 
not socially optimal. Kobayakawa (1997) models the intraday 
liquidity management process as a game of uncertainty, ie a game 
where nature moves after the players. Kobayakawa (1997) shows that 
both delaying and not delaying can be equilibrium outcomes when 
intraday overdrafts are priced. McAndrews and Rajan (2002) study the 
timing and funding of transfers in the Fedwire funds transfer system. 
They show that banks benefit from synchronising their payment 
pattern over the course of the business day because it reduces the 
overdrafts. Bech and Garratt (2003) develop a stylised two-period-
two-player model with imperfect information. They analyse the 
strategic incentives under different intraday credit policy regimes 
employed by central banks and characterise how the Nash equilibria 
depend on the underlying cost parameters for liquidity and delays. It 
turns out that two classical paradigms in game theory emerge: the 
Prisoner’s Dilemma in the case where intraday credit is provided 
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against collateral and the Stag Hunt coordination game in the case 
where the central bank charges a fee. Hence, many policy issues can 
be understood in terms of well-known conflicts and dilemmas in 
economics. 
 Other approaches that have been applied to similar problems of 
repeated interaction among a large number of players are evolutionary 
game theory and reinforcement learning (such as Q-Learning by 
Watkins et al, 1992). Agents who learn about each others’ actions 
through repeated strategic interaction is a leading theme in 
evolutionary game theory. In most of the existing literature it is 
customary to look at the players’ asymptotic behaviour in situations 
where the payoffs are some known function of players’ strategies. In 
one strand of the literature, this knowledge is a prerogative of the 
players, who can therefore use adaptive rules of the type ‘choose a 
best reply to the current strategy profile’. In a second research line, the 
learning rules do not require knowledge of the payoff function on the 
part of the learners. Such rules are instead of the kind ‘adopt more 
frequently a strategy that has given a high payoff’. 
 Galbiati and Soramäki (2007) use methods from reinforcement 
learning (Barto and Sutton, 1998) and fictitious play (Brown, 1951) to 
numerically solve a model with interactions among a large number of 
banks that settle payments on a continuous basis under imperfect 
information, stochastic payoffs and a finite but long sequence of 
settlement days. The model is summarised and discussed in more 
detail below. 
 
 
2.4.2 Multi-agent model of bank behaviour 

Galbiati and Soramäki (2007) develop a dynamic multi-agent model 
of an interbank payment system where payments are settled on the 
basis of pre-committed funds. In the model banks choose their level of 
committed funds on the basis of private payoff maximisation. 
 The model consists of a sequence of settlement days. Each of these 
days is a simultaneous-move game, in which each bank chooses the 
amount of liquidity to commit for payment processing and receives a 
stochastic payoff. Payoffs are determined by means of simulating the 
settlement day with the amounts of liquidity chosen by the banks. 
Instructions to be settled by the banks arrive on the basis of a Poisson 
process and are ex-ante unknown to the banks. As shown in Section 
2.3.2, the relationship between instruction arrival and payment 
settlement is very complex and could not so far be described 
analytically. Adaptation takes place through reinforcement learning 
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with Bayesian updating, with banks maximising immediate payoffs. 
Figure 2.5 shows the sequence of decisions, events and learning in the 
model. 
 
Figure 2.5 Overview of a multi-agent learning model 
   of a payment system 
   (Galbiati and Soramäki, 2007) 
 
 

 
 
 
By the process of individual pay-off maximisation, banks adjust their 
demand for liquidity up (reducing delays) when delay costs increase 
and down (increasing delays), when they rise. It is well known that the 
demand for intraday credit is generated by a tradeoff between the 
costs associated with delaying payments and liquidity costs. 
Simulating the model for different parameter values, they find that the 
demand for intraday credit is an S-shaped function of the cost ratio 
between intraday credit costs and the costs associated with delaying 
payments7 (see Figure 2.6a). 
 

                                          
7 In the model both costs are assumed to be linear. 
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Figure 2.6 Demand for intraday credit (a), 
   Payoff comparison (b) 
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An interesting question is how good the performance of the banks is in 
absolute terms. To understand this we compare the payoffs received 
by the banks through adaptation with two extreme strategies: 
 
a) delay all payments to the end of the day; 
b) commit enough liquidity to be able to process all payments 

promptly. 
 
The performance of these three strategies is shown in Figure 2.6b. For 
any level of the delay cost, the adaptive banks obtain better payoffs 
than either of the two extreme strategies as they manage to learn a 
convenient trade-off between delay and liquidity costs. On the 
contrary, the strategy under a) becomes quickly very expensive as 
delay costs increase, and the strategy under b) is exceedingly 
expensive when delays are not costly. 
 Ideally, banks should be taking into consideration the future 
stream of pay-offs as well. This would create a value of information to 
the banks as discounting expected future payoffs would create an 
explicit trade-off between exploitation (the use of actions that appear 
optimal in the light of the available information) and exploration (the 
use of seemingly sub-optimal actions, which might appear such 
because of lack of experimentation). Banks may also be risk-averse, 
interested not only in the expected pay-off but also its variability. 
These are among the topics for future research. 
 
 
2.5 Conclusion 

This article presented three elements of payment systems, new 
approaches for understanding and analysing them, and examples on 
how these approaches can be applied to specific research questions. It 
argues that performance of a payment system is a function of network 
topology, the ‘physics’ of the system and the behaviour of banks – one 
factor alone is not enough to evaluate efficiency or robustness. 
 First, the payment system can be understood as a network of 
liquidity flows and can be modelled as a graph. Each model of a 
payment system assumes some topology, be it random, complete or a 
topology closer to the system being modelled - such as the scale-free 
topology of Fedwire. Graph theory and social network analysis 
provide good tools for analysing the structure of interbank payment 
systems and their liquidity flows. Understanding how banks are 
connected in the payment network is important for analysing their 
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robustness. The concepts developed in the field can help us 
structurally analyse payment flows in the system (see eg Newman, 
2003). Measures of average path length can tell us how quickly 
disturbances are likely to reach other banks in the network. More 
research is clearly needed to identify measures that explain the 
connection between system topology and its robustness. Centrality 
measures can help us identify banks that are not only important 
through their size, but also due to their position in the network and due 
to their linkages to other banks (see eg Borgatti, 2005). A likely 
fruitful area in payment system research would be to use such 
approaches for the identification of important (and vulnerable) banks 
in networks representing RTGS or netting systems. 
 Second, payment systems have rules, procedures and technical 
constraints for the processing of individual payments that may 
produce emergent behaviour at the system level.  An example of these 
is the settlement cascades that take place at low levels of liquidity and 
low market conductance. The model of payment system dynamics 
exhibits a transition from independent to highly interdependent 
behaviour and allows the study of factors that control system-wide 
interdependence. Complexity theory and models developed in 
statistical mechanics (see eg Bak, 1987, and Sachtjen et al, 2000) can 
help explain how simple local rules create emergent system-level 
behaviour. 
 Third, banks react to changes in the environment – be these 
changes in policy or disruptions to the system’s operation or changes 
in the behaviour of other banks. Understanding how banks might 
react, and the impact of simultaneous reactions at the system level, 
greatly helps in evaluating risks and efficiencies of payment systems. 
While the incentives of banks may be analysed individually in 
isolation or when operating in a stipulated environment, their 
interaction in a system of banks with their own incentives necessitates 
a model. In modelling bank behaviour, methodologies developed 
under reinforcement learning (Sutton and Barto, 1998) and learning in 
games (Fudenberg and Levine 1998) may prove useful. As seen by the 
given example, mere simple ‘intelligence’ by agents can produce 
realistic behaviour and add value to the analysis of payment systems. 
In the development of more realistic behaviour for banks in settling 
payments, an important unanswered question is whether and what 
kind of bank behaviour can be identified from empirical payment data. 
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