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. Low-density CH and CH, foams have become an
important fixture in ICF and HEDP technology
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ifferent radiation transport approximations

predict different propagation speeds in 5 mg/cc CH.
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The scaled radiation energy gradient, R, in the CH foam is in
on flux limiter is unphysical
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A 5 mg/cc CH, foam was fielded
on Z shot #874 with Al and MgF, tracers
to measure the relative heating at two different locations.
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| i A time-resolved elliptical crystal spectrometer measured
shifting charge states in the Al and MgF, tracers on Z shot #3874
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Calculating the plasma conditions in the Al and
Mng tracers requires coupling together a number of simulations
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3-D simulations using the VISRAD
view-factor code are utilized to calculate
time- dependent non- thermal drive spectra on the sample surface
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i The plasma temperature and density evolution is
calculated by the BUCKY 1-D radiation-hydrodynamics code.
(Radmtmn transporr mode]ed wnh dlserese ordmates assummg a 15% increase in measured Z-] pmch power)
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SPECT3D calculations of the atomic level
populations under the calculated plasma conditions yields
good agreement between the computatlons and the expenmental data*
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@*Radiaﬁon transport modeled using discrete ordinates assuming a 15% increase in measured z-pinch power.
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: Each time-frame can be analyzed by an
automatic chi- -squared ﬁttmg program called SPECTROFIT.

SPECTROFIT

« Reads detailed line-opacity tables
generated by the JATBASE/EOSOPA
code =

- LTE and Non-LTE opacities
- Arbitrary plasma mixtures

Comparison between Al K-o spectra at
t = 100 ns, and a SPECTROFIT best fit

(x*= 191)
38.8ev, n = 1.78e+020cm™

+ Compares two relative transmission AL
absorption spectra (i.e. experiment vs.
calculation) at discrete temperatures
and densities.
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The SPECTROFIT y? and fit-variance
curves show the contour in temperature-density
phase space Where the calculated spectra best match the data

Fit variance over the searched
T-p phase space for the Al spectrum
at t= 100 ns.

%2 plots at discrete densities for
the comparison between the Al data at
t =100 ns, and the calculated spectra.
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The average density in the Al and MgF, layers under
the + 25% uncertainty level in the measured z-pinch power
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SPECTROFIT Calculation
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Using discrete ordinates radiation transport, the
calculated average Al densities at +- 25%
measured power are: 0.013 g/cc and 0.016 g/cc
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Including the + 25% uncertainty in measured
z-pinch power, different radiation transport methods predict a
wide-range of temperature conditions in the Al and MgF, tracers.
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clearly indicates that flux-limited diffusion is too restrictive,
suggesting that discrete ordinates is a much more accurate transport method.

B Aluminum Calculation + Aluminum Data

[J Magnesium Calculation —{—' Magnesium Data

Discrete Ordinates .. . . o e
(multi-angle short- Flux-Limited Diffusion Flux-Limited Diffusion

characteristics solution) (MAX limiter) (SUM limiter)
50 50 S0

é 40 E 40 + é 40 +
[ @ o =
5 30 = 30 _I_ g 30 +
B © B
S 20 S¢ S 20 5 20
: : + Mt t
§ 10 i § 10 § 10
= [ —
o] H 8] v
90 95 100 10 890 85 100 10 90 95 100 105
Time {ns) Time (rs) Time (ns)

@ @

il i Summary and Hypothesis

* Calculations indicate that 5 mg/cc CH, foams have an optical depth in a regime where
flux-limited diffusion may not provide an accurate predication of the radiation transfer
speed.

» A 5 mg/cc CH, (TPX) foam was fielded on the Z machine for shot #874 with Aluminum
and Magnesium-Fluoride tracers buried at different depths.

« Z-pinch backlit K-shell absorption spectra of the shifting Aluminum and Magnesium
charge states provide information on the time-dependent heating of the tracers under the z-
pinch x-ray emission.

» The SPECTROFIT chi-squared fitting code was utilized in conjunction with radiation-
hydrodynamics calculations of the time-dependent density conditions in the Aluminum
and Magnesium-Fluoride layers to infer the time-dependent temperature profile in the two
tracers.

« Direct comparison between the inferred heating profiles and radiation-hydrodynamics
calculations using different radiation transport approximations suggests that Discrete
Ordinates provides a much more accurate solution to the radiative transfer speeds in 5

mg/cc CH, foam than the standard Flux-Limited Diffusion approximation. @




