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Abstract

We consider the following problem that arises in assembly planning: given an assembly,
identify a subassembly that can be removed as a rigid object without disturbing the rest of
the assembly. This is the assembly partitioning problem. Speci�cally, we consider planar
assemblies of simple polygons and subassembly removal paths consisting of a single �nite
translation followed by a translation to in�nity. We show that such a subassembly and
removal path can be determined in O(n1:46N6) time, where n is the number of polygons
in the assembly and N is the total number of edges and vertices of all the parts together.
We then extend this formulation to removal paths consisting of a small number of �nite
translations, followed by a translation to in�nity. In this case the algorithm runs in time
polynomial in the number of parts, but exponential in the number of translations a path
may contain.

�Work on this paper by the �rst author has been supported by a grant from the Stanford Integrated
Manufacturing Association (SIMA), by NSF/ARPA Grant IRI-9306544, and by NSF Grant CCR-9215219.
This research was performed while the second author was at Stanford University, and has been supported by
the Stanford Integrated Manufacturing Association (SIMA).
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Figure 1: Assemblies requiring non-straight-line motions for disassembly. (a) is a monotone
binary assembly while (b) is not.

1 Introduction

This paper addresses a geometric problem in assembly planning. The problem is: given an
assembly of parts, identify a subassembly that can be removed from the assembly. That is,
identify a proper subset of the parts that can be moved (as a single rigid object) to in�nity
without disturbing the other parts. This is the assembly partitioning problem.

The partitioning problem arises in assembly planning. An assembly sequence is a sequence
of motions that constructs an assembly from its constituent parts, and for rigid parts is the
reverse of a disassembly sequence. In this paper we assume that the (dis)assembly sequences
are binary and monotone, i.e., only one group of parts moves at a time, and the motion
completely separates the moved parts from the rest of the assembly. In other words, no
parts are placed in intermediate positions. For example, the assembly in Figure 1(a) can be
assembled by a monotone binary assembly sequence involving only translations (the two small
parts are placed together then inserted into the larger), while the assembly in Figure 1(b)
cannot. A monotone binary assembly sequence can be found, if one exists for the assembly,
by repeated application of an assembly partitioning algorithm.

A large majority of assemblies in industry are monotone binary, and most assembly plan-
ning systems make this assumption as well [8]. As a result, the partitioning problem is of
great practical importance.

Previous work has presented polynomial-time partitioning algorithms when the motion
used to remove the subassembly must be a single translation to in�nity [1, 18]. In addition,
it has been shown that when the removal motion may consist of any number of translations,
partitioning is NP-complete [10].

In this paper we consider the case where a sequence of two translations may be used to
remove a subassembly. We restrict our attention to planar assemblies of simple polygons.
We give a polynomial-time algorithm to determine whether an assembly of non-overlapping
simple polygons can be partitioned by a motion consisting of a �nite translation followed by
a translation to in�nity. A subassembly and its removal motion can be identi�ed in the same
time bound. In addition, we extend this result to removal motions consisting of k translations;
in this case the algorithm runs in time exponential in k.

The rest of the paper is organized as follows. In Section 2 we survey some related work.
In Section 3 we present the basic necessary terminology together with an initial analysis of
our solution approach. In Section 4 we present our solution to the two-translation problem,
which we then extend to the case of a bounded number of translations in Section 5. Some
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concluding remarks and open problems are given in Section 6.

2 Related Work

For an overview of geometric separation problems see Toussaint [17]. Pollack, Sharir, and
Sifrony [16] give an e�cient algorithm to separate two simple polygons in the plane.

Polynomial-time solutions to the binary partitioning problem exist for certain types of
restricted disassembly motions. Arkin, Connelly, and Mitchell [1] give a polynomial-time al-
gorithm for partitioning an assembly of polygons in the plane with a single in�nite translation,
and they have extended the algorithm to polyhedral assemblies in 3D [14]. Wilson [18, 19]
solves the 3D partitioning problem for polyhedra in polynomial time when the disassembly
motions are restricted to either (a) in�nitesimal translations and rotations or (b) in�nite
translations. In the in�nitesimal case, a subassembly is identi�ed that can move a very small
distance, which is only a necessary condition on a removal path.

Lozano-P�erez and Wilson [13] extend Wilson's framework to arbitrary removal motions.
While their algorithm might prove useful in practice, Kavraki, Latombe, and Wilson [10]
show that for assemblies of polygons in the plane the problem of partitioning for arbitrary
removal motions is NP-complete.

This paper addresses an intermediate case for assemblies of simple polygons in the plane.
In this intermediate case the number of translations allowed to remove a subassembly is
greater than one, but bounded by some constant k. We �rst consider the case where k = 2,
and then consider the case k > 2.

3 Preliminaries: Terminology and Initial Analysis

In this section we present some of the terminology that we will be using throughout the paper,
together with an initial analysis of the problem we are considering.

3.1 Arrangements of Curves and of Surfaces

An arrangement of curves in the plane is the subdivision of the plane induced by these
curves. Consider, for example, the arrangement induced by a collection of n lines in the
plane. An arrangement of lines partitions the plane into vertices, edges and faces. A vertex
is an intersection point of two lines, an edge is a maximal connected portion of a line that
does not meet any vertex, and a face is a maximal connected region of the plane not meeting
any edge or vertex. If we assume that the lines are in general position, namely, no two are
parallel and no more than two meet at a single point, then it can be shown that the number
of vertices (as well as the number of edges or faces) in the arrangement is �(n2). Similarly, in
three dimensions, we may consider an arrangement of n planes, which partitions space into
vertices, edges, faces and cells.

Arrangements are de�ned for non-linear objects as well, and the concept extends to higher
dimensional Euclidean spaces. We will discuss arrangements of (hyper)surfaces or surface
patches in d-dimensional Euclidean space, where the surfaces are assumed to be algebraic of
bounded maximum degree, and bounded by algebraic surfaces of maximum constant degree.
See [5] for detailed discussions on arrangements of lines and of hyperplanes in higher dimen-
sional spaces. For discussion of arrangements of curves and surfaces (not necessarily linear)
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see, e.g., [6], [7]; in particular, the thesis [7] focuses on arrangements of surfaces in 3-space
that are induced by motion planning problems and are closely related to the arrangements
discussed in Section 4 of this paper.

We will often refer to two quantities regarding arrangements of n surfaces in d-space:
The complexity of the entire arrangement, and the time complexity of computing the entire
arrangement. The complexity of an arrangement of n surface patches in d-space is de�ned as
the overall number of cells of dimension k, 0 � k � d, in the arrangement. It is well known
that the maximum complexity Kd(n) of an arrangement of n surface patches in d-space as
de�ned above is �(nd) (see, e.g., [15]).

As for computing an arrangement of n surfaces in d-space, we should �rst be more explicit
as to what we mean by \computing" an arrangement. For our purposes, we need a way to
visit all cells in the arrangement, at each step moving from a cell to one of its neighbors.
We will denote the worst-case running time of the best known algorithm for solving this
problem by Td(n), where d is the dimension of the space, and the maximum is taken over
all arrangements of n surfaces as de�ned above. For arrangements of lines in the plane, the
running time of such an algorithm is �(n2) (see, e.g., [5]). In fact, T2(n) is roughly quadratic,
i.e., there is an algorithm with near-quadratic running time to compute the arrangement
induced by any collection of n algebraic curves of bounded degree. In higher dimensions,
there are also algorithms to solve this problem with running time that is close to the worst
case combinatorial complexity of the entire arrangement. Basu et al. [2] give an algorithm to
�nd a point in every cell in a d-dimensional arrangement, in time O(nd), where d is �xed, and
where we assume that the algebraic degree of the surfaces is bounded (their result explicitly
handles the dependence on this degree). It may be more convenient for our purpose, though,
to have an algorithm that produces these sample points in a systematic way, namely, in a way
that for most pairs of successive points that the algorithm produces they lie in adjacent cells.
This can be done with roughly the same running time, using road-map like methods [3]. In
any case, we will use the notation Td(n) as de�ned above rather than be speci�c about this
bound.

3.2 The Minkowski Sum of Two Polygons, Envelopes and Shadows

Let P and Q be two sets in R2. The Minkowski sum (or vector sum) of P and Q, denoted
P �Q, is the set fp+ q j p 2 P; q 2 Qg. We will also use the notation P 	Q = P � (�Q) =
fp� q j p 2 P; q 2 Qg. Choose a reference point r rigidly attached to Q, and suppose that Q
is placed such that the reference point coincides with the origin. Then P 	 Q is the loci of
placements of the reference point where P \ Q 6= ;. The Minkowski sum is a useful concept
in robot motion planning and related areas [12], often called the con�guration space obstacle,
or C-obstacle: the set Q will collide with P under a rigid translational motion along a path t
exactly when the reference point r, moved along t, intersects P 	 Q.

For the assembly partitioning problem that we are considering, we will con�ne ourselves
to the Minkowski sum of polygonal sets, which is itself a polygonal set. Let P and Q be
two simple polygons, and let u and v denote the number of vertices in P and Q respectively.
It is well known that the combinatorial complexity of the boundary of P 	 Q, namely the
overall number of edges and vertices on the boundary of P 	Q, is O(u2v2), and this bound
is tight in the worst case (see, e.g., [9]). However, for our purposes, we only need to know
the outer boundary of P 	 Q. Since it is de�ned by at most O(uv) segments, its complexity
is at most O(uv�(uv)) [16], where �(n) is the extremely slowly growing functional inverse
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of Ackermann's function. Figure 2(a) shows two polygons P and Q, and Figure 2(b) their
Minkowski sum P 	Q.

In our analysis, we will consider portions of the Minkowski sum of two polygons, which
we will refer to as envelopes. Let M denote the outer boundary of P 	 Q. The boundary
M is a simple polygon. We de�ne the central envelope of M , EC(M), to be the collection
of points of M �rst hit by rays from the origin. More precisely, if � is a ray from the origin,
we let F (�;M) be the intersection point of � and M which is nearest to the origin; F (�;M)
is unde�ned if � \M = ;. Then, EC(M) is the union of F (�;M) over all rays through the
origin where F (�;M) is de�ned. Figure 2(c) shows the central envelope for the polygon in
Figure 2(b).

Next we de�ne the �-upper envelope of M . Let � be a directed line, whose angle with
the positive x-direction is �. Let G(�;M) be the farthest point of intersection of � and M

in the direction of �, if they indeed intersect. The �-upper envelope of M , E�(M) is de�ned
to be the union of G(�;M) over all lines � whose angle with the positive x-direction is �,
whenever G(�;M) is de�ned. If � is 90�, then our de�nition of E�(M) is similar to the
standard de�nition of upper envelopes (see, e.g., [6]). Figure 2(d) shows the �-upper envelope
of the polygon in Figure 2(b) for � = 90�.

Corresponding to each of the two envelopes, we now de�ne a shadow. The central shadow
of M , SC(M), is the collection of points in the plane such that the line connecting them to
the origin intersects the central envelope EC(M). Similarly, the �-shadow of M , S�(M), is
the union of rays whose angle with the positive x-axis is �+180� and whose termini lie on the
�-upper envelope E�(M). Figures 2(e) and 2(f) show the central shadow and 90�-shadow,
respectively, of the polygon in Figure 2(b).

We will use the central shadow and �-shadow of P	Q to reason about relative translations
of Q with respect to P . For an initial translation (x; y) of Q, the point (x; y) is inside the
central shadow SC(P 	Q) exactly when Q collides with P along the translation (x; y). When
Q is already at position (x; y) and translated in�nitely in direction �, it collides with P if and
only if (x; y) is inside the �-shadow S�(P 	Q).

Let Pi and Pj be two parts in an assembly A, with ni and nj vertices respectively. As
mentioned above the complexity of the outer boundary of Pi 	 Pj is O(ninj�(ninj)). The
same bound also holds for each of the envelopes we have de�ned, and for the boundary of
the corresponding shadows of Pi 	 Pj . Now, the outer boundary of Pi 	 Pj , as well as the
two envelopes lie each in the union of a collection S of O(ninj) line segments|the collection
of segments underlying the Minkowski sum. Each of these segments is either the Minkowski
sum of an edge of Pi and a vertex of �Pj or the Minkowski sum of a vertex of Pi and an edge
of �Pj . The boundary of each of the shadows also lies in a collection of O(ninj) segments,
which is the collection S augmented with additional rays extended from endpoints of some of
the segments in S.

For the subsequent analysis, which aims at worst-case asymptotic time bound for the
algorithm that we present, it is su�cient to deal with the appropriate raw collection of
segments rather than with the boundary of Pi 	 Pj . Hence, we state the following Lemma.

Lemma 3.1 Let Pi and Pj be two polygonal parts with ni and nj vertices respectively. The

outer boundary M of Pi 	 Pj, the central envelope of M , the �-envelope of M for any �xed

�, the boundary of the central shadow and the boundary of the �-shadow for any �xed �, each
lies in the union of O(ninj) segments.
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(a) (b)

(c) (d)

(e) (f)

P

Q

Figure 2: Some geometric preliminaries: (a) Two polygons P and Q, (b) the boundary of
the Minkowski sum of P and �Q, M = bd(P 	Q), (c) the central envelope EC(M), (d) the
�-upper envelope E90�(M), (e) the central shadow SC(M), and (f) the �-shadow S90�(M).
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3.3 Partitioning along a Single Path

Consider an assembly A of non-overlapping simple polygons in the plane. We will call the
polygons parts, and will use the term subassembly loosely, to refer to a set of parts as well
as their union. In general, we wish to identify a proper subassembly S � A that can be
completely separated from A n S 1 by a collision-free rigid motion along a continuous path t.
In this paper, we will con�ne ourselves to paths that are the concatenation of a small number
k of straight line segments.

Now, consider which subassemblies of A could follow a given rigid motion t. Since a
subassembly occupies space equal to the union of its parts, the motion t causes a collision
between a subassembly S and A nS if and only if t causes a collision between some part in S
and some part in A n S.

Let S be a subassembly removable along t. If a part Q moved along t collides with another
part P (left stationary), then we say that P blocks Q along t. If P blocks Q, then either P
must be in the moved subassembly S or Qmust not be in S. These constraints on membership
in S can be easily represented with a blocking graph [19]. The blocking graph of A for motion
t, written GA(t), is a directed graph with a node for each part of A and an arc from node Q
to node P exactly when Q is blocked by P along t. A subassembly S can be removed with
rigid motion t if and only if no arcs in GA(t) connect nodes in S to nodes in A n S. Such a
subassembly exists exactly when GA(t) is not strongly connected.2

The set of positions in which a part Q collides with part P is given by P 	 Q, i.e., the
Minkowski sum of P and �Q (see Subsection 3.2). Part Q will collide with P under a rigid
motion t exactly when the reference point of Q, moved along t, intersects P 	 Q. To �nd
the collisions between all pairs of parts for a single motion, all pairwise di�erences can be
computed, taking the origin of the coordinate system to be the common reference point for
all the parts. When the pairwise di�erences are superimposed, they partition the plane into
regions, within which the set of pairs of parts colliding is �xed. A rigid motion t causes the
reference point to move through a sequence of regions, collecting constraints for the blocking
graph of t. For further discussion see [13].

Figure 3 shows an assembly and the blocking graphs for two motions, one a translation up
to the right, and the other a translation to the left then upward. For instance, part B collides
with part C when translated up right, so the constraint B ! C is present in the corresponding
blocking graph. The blocking graph of the up-right translation is strongly connected, and in
fact no subassembly can be removed along that path. For the two-step motion, the blocking
graph is not strongly connected. Instead, there are no outgoing arcs from fB;Cg to fAg, so
B and C may be removed rigidly in a motion to the left then upward.

We summarize our notation in Table 1.

4 Partitioning with Two Translations

Given an assembly A of simple polygons, we wish to determine whether any subassembly S of
A can be completely separated from the subassembly AnS by a �nite translation of S followed
by an in�nite translation of S. We describe a rigid motion consisting of two translations by

1Here \n" denotes the set subtraction operator.
2A strongly connected component (or strong component) of a directed graph is a maximal subset of nodes

such that for any pair of nodes (n1; n2) in this subset, a path connects n1 to n2. A graph is strongly connected
if it consists of one strong component.
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Figure 3: An assembly and its blocking graphs for two translational motions

symbol description de�ned in

n number of parts in the assembly A
N overall number of features of parts in the assembly A

Kd(m) complexity of a d-dimensional arrangement of m surfaces Subsection 3.1
Td(m) time to compute a d-dimensional arrangement of m surfaces Subsection 3.1
P 	 Q the Minkowski sum of P and �Q Subsection 3.2
SC(M) the central shadow of a polygon M Subsection 3.2
S�(M) the �-shadow of a polygon M Subsection 3.2
GA(t) the blocking graph for assembly A along path t Subsection 3.3

Table 1: Summary of notation

a triple t = (x; y; �), where (x; y) is the displacement caused by the �rst translation, and �

is the direction of the second (in�nite) translation. Since any motion (x; y; �) will move the
subassembly to in�nity in direction �, we need only ensure that the motion is collision-free
with the complement of the moved subassembly.

To solve the problem, we partition the (x; y; �)-space into cells such that the set of sub-
assemblies that can follow a motion is �xed for all motions in a cell. First we derive the
constraints arising from the �rst translation (x; y), and then the constraints arising from a
second translation given by �. Then we combine these sets of constraints to obtain the �nal
three-dimensional arrangement, i.e., the subdivision of the (x; y; �)-space.

4.1 The First Translation

Consider now the constraints on subassemblies that can follow the �rst translation (x; y)
without collision, as x and y vary. The origin of the plane represents the null translation
(0; 0), and we wish to calculate the critical curves in the plane at which the blocking graph
for the �rst translation changes.

For any two parts P and Q, the set of placements of Q for which Q intersects P is the
polygonal C-obstacle C = P 	 Q. However, not all edges of C are critical curves; once a
translation enters C, the constraint Q ! P will be present in the blocking graph for all
translations further in the same direction. This leads us to compute the central shadow of

8



C, SC(C). The edges of the central shadow SC(P 	 Q) are (potential) critical curves for
the �rst translation: the arc Q ! P is present in blocking graphs for just those motions
(x; y) 2 int(SC(P 	 Q)) ending inside the shadow.3

We now superimpose the central shadows SC(Pi 	 Pj) for all pairs of parts (Pi; Pj).
The boundary edges of the shadows determine a subdivision of the plane into regions (an
arrangement of segments), such that for all points (x; y) inside each region, GA((x; y)) is
�xed.

Figure 4 shows the C-obstacles (dotted lines) and the boundaries of the corresponding
central shadows (solid) for each pair of parts of the assembly in Figure 3. B=C is the obstacle
for moving part B and stationary part C; the obstacle C=B is identical to B=C, rotated
180 degrees around the origin. The full arrangement for the �rst translation is shown at the
bottom of Figure 4.

How many segments are there in this arrangement? Let the assembly A have n parts, and
assume �rst that each part has at most some �xed number of vertices. (At this point we wish
to emphasize the e�ect of the number of parts on the complexity. Below, in Subsection 4.4
we will give a re�ned analysis.) Thus the total complexity of the assembly is O(n). By our
assumption, the C-obstacle for two parts can have an outer boundary with at most some �xed
(constant) number of vertices, and the same holds for the boundary of the central shadow of
such a polygon. For the consequent analysis, we need to know the maximum overall number
of segments in the arrangement, which is O(n2) (Lemma 3.1). We denote this set of O(n2)
segments by S1.

4.2 The Second Translation

We now concentrate on the second, in�nite translation. Such a translation is in fact a trans-
lation along a ray and it can be speci�ed by three parameters (x; y; �), where (x; y) is the
starting point of the ray and � is its direction. We wish to partition the (x; y; �)-space into
cells such that the set of subassemblies that can follow a motion along a ray is �xed for all
the rays represented by the points in a cell. Note that, for the moment, we ignore the e�ect
of the �rst translation on this subdivision.

We will de�ne a collection of critical surfaces that induce the desired subdivision. We
start by �xing a direction �0 and considering a two-dimensional cross-section of the three-
dimensional space (x; y; �), at �0. At the �xed �0, the critical curves are de�ned similar
to the subdivision of the �rst translation, only this time we consider the �0-shadows of the
C-obstacles rather than the central shadows. It is evident that inside a �0-shadow of a C-
obstacle, a new constraint is added, that does not exist out of that shadow. The collection
of critical curves that determine the subdivision of the �0-cross-section are the boundaries of
the �0-shadows of the C-obstacles.

To get the three-dimensional critical surfaces, we let � vary, and let the boundaries of
the �-shadows vary accordingly. The collection of critical surfaces is de�ned to be the union
of the �-shadow boundaries for all � 2 [0; 2�). However, to simplify the analysis, we will
consider a superset of the above collection. Namely, for every C-obstacle D, we will consider
the surfaces traced by the set S(D) of all the segments underlying the C-obstacle D (see

3We say potential critical curves because we only care about edges where the transitive closure of the
blocking graph changes, which is possibly a subset of the above edges. It might be the case, that considering
only actual critical curves, that is, only edges where the transitive closure of the blocking graph changes, could
lead to better bounds.

9



B

A

B/C
C

A/B

A/C

C/B

B/C

A/B

B/A

A/C

C/A

Figure 4: An assembly, central shadows for pairs of parts, and the arrangement for the �rst
translation
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Subsection 3.2) as � varies, together with surfaces traced by rays in the � + 180� direction
extended from endpoints of segments in S(D) (that is, at a �xed � we extend a ray from an
endpoint of a segment in S(D) in the �+180� direction, and let this ray change as � changes;
we consider the surface swept by this ray to be an additional critical surface and repeat this
for every endpoint of any segment in S(D)). The resulting collection of surfaces is clearly a
superset of the critical surfaces traced by the �-shadow boundaries. We denote this superset
of critical surfaces by S2.

By the assumptions in Subsection 4.1, the number of surfaces induced by each C-obstacle
is bounded by a constant. Since there are O(n2) C-obstacles (one for every pair of original
parts), we conclude that S2 consists of O(n

2) critical surfaces, that partition the space (x; y; �)
into non-critical cells such that for all in�nite translations (x; y; �) inside each cell, the blocking
graph GA((x; y; �)) is �xed.

Figure 5 shows the �-shadows for the assembly of Figure 3, and the resulting arrangement,
for the upward translation � = 90�.

4.3 Combining the Two Translations

As stated in the beginning of this section, the triple (x; y; �) can represent not only the second
in�nite translation, but in fact the two translations. A point (x0; y0; �0) represents a path
of a subassembly that starts at the origin, moves to the point (x0; y0) along a straight line
segment, and then moves to in�nity along a ray in the �0 direction. We already have the
set S2 of constraint surfaces that subdivides the space (x; y; �) into non-critical cells, and
we now re�ne this subdivision according to the constraints induced by the �rst translation.
Consider a cross-section of the (x; y; �)-space at �0. If we wish to add the constraints induced
by the �rst translation, we should simply add the segments in the set S1 to the arrangement.
But this statement is valid for any � value. Therefore, we extend each segment in S1 into
a vertical \wall" (in the � direction) in the (x; y; �)-space. We will denote this collection of
vertical walls, extended from S1, by S1. Thus we have completed the subdivision of the space
(x; y; �) into non-critical cells, such that for any two-translation path t = (x; y; �) in each cell
the set of blocking constraints GA(t) is �xed.

The number of elements in S1 as well as in S2 is O(n2). These surfaces (or more precisely,
surface patches) are clearly algebraic of bounded degree. By the discussion in Subsection 3.1
the maximum number of cells in a 3D arrangement induced by m such surfaces, K3(m), is
O(m3). Hence the maximum number of cells in the above subdivision is O(n6).

Finally, to solve the original problem, i.e., to �nd a subassembly that can be partitioned
with two translations (if one exists), we proceed as follows. We compute the subdivision of
the (x; y; �)-space by the surfaces in S1 [ S2, using an algorithm with running time T3(n2)
(see Subsection 3.1). For each cell produced by the algorithm, we compute the blocking
graph GA(t) corresponding to a representative path t for that cell. The blocking graphs for
all cells in the arrangement can be computed incrementally in the following way. We begin
by choosing a point t = (x0; y0; �0) in some cell c0 of the arrangement; the blocking graph
GA(t) can be easily computed by checking for inclusion of (x0; y0) in the central shadows and
�0-shadows of the C-obstacles, in time proportional to the number of shadows, that is O(n2).
(This step will be dominated by other steps of the algorithm, also in the re�ned analysis that
we give below.) We then perform a systematic traversal of the arrangement, at each step
moving from a cell to one of its neighbors. When we step through a critical surface, we either
add or remove the constraint corresponding to that surface, depending on whether we are
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Figure 5: An assembly, �-shadows for pairs of parts when � = 90�, and a 2D slice of the
arrangement for the second translation at � = 90�
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entering a shadow or leaving it.
Since at most a constant number of constraints is added or removed at each step,4 all the

blocking graphs can be computed in time proportional to the size of the arrangement, i.e.,
in time O(n6). Strong connectedness can be checked in time linear in the size of the graph,
which in this case is bounded by n2. Thus in an assembly of n polygons, each having at most
some constant number of vertices, the total time to �nd a subassembly removable by two
translations is

T3(m) +K3(m)O(n2); where m = O(n2):

We summarize the discussion above in the following theorem.

Theorem 4.1 Given a planar assembly consisting of n disjoint simple polygons, each having

at most some constant number of vertices, it can be determined in O(n8) time whether there

is a subassembly that can be removed along a path consisting of a single �nite translation

followed by a translation to in�nity. The algorithm outputs both the labels of the parts in the

removable subassembly and the speci�cations of the path.

4.4 Re�ned Analysis

In this subsection we introduce another parameter into the analysis of the running time of
our algorithm, and also indicate several points where the algorithm may be improved.

Let the assembly A we wish to partition consist of n parts (as before) and let N be the
total number of vertices of all the parts together. Denote the number of vertices of part
Pi 2 A, by ni. As discussed in Subsection 3.2 (see also Lemma 3.1), the crucial parameter5

for each C-obstacle de�ned by two parts Pi; Pj, is the number of segments underlying the
Minkowski sum Pi 	 Pj , which is O(ninj). Hence in both sets S1 and S2 of the analysis in
this section, the overall number of surfaces is

X

i6=j

O(ninj) = O(N2) :

Therefore we have

Theorem 4.2 Given a planar assembly consisting of n disjoint simple polygons, having a

total of N vertices altogether, it can be determined in O(n2N6) time whether there is a sub-

assembly that can be removed along a path consisting of a single �nite translation followed by

a translation to in�nity. The algorithm outputs both the labels of the parts in the removable

subassembly and the speci�cations of the path.

The bound above assumes a worst case combinatorial bound O(m3) for an arrangement
of m surfaces in 3-space. It might be that the underlying arrangement does not achieve this
bound. To exploit the potential \sparseness" of the arrangement one can employ an output-
sensitive algorithm for computing the arrangement, like the one devised by de Berg et al.6

[4].

4We are assuming here general position of the parts in the arrangement. Certain technical modi�cations to
the algorithm will be necessary to handle \degenerate" assemblies.

5For practical use, one may gain a lot from computing only the boundary rather than using all the segments.
This may a�ect the constant factor in our analysis.

6One does not need all the machinery of [4] in this case. All that is needed here is the so-called \�rst step
decomposition" of the arrangement. Although [4] deals with triangles in space, the algorithm for computing
the required decomposition can be easily extended to the arrangements studied in this paper.
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It may appear that checking each blocking graph independently for strong connectedness is
rather wasteful, since each graph di�ers from the previous one by at most a single constraint.
In related work, Khanna, Motwani, and Wilson have shown the following: given a directed
graph with n nodes, and a \long" (compared to n) sequence of edge insertions and deletions to
that graph, the strong connectedness of all resulting graphs can be determined in amortized
time O(n1:46) per graph [11]. The method groups the sequence of graphs into phases and
pre-processes the common sub-graph for each phase. The method applies directly to our
problem, resulting in the following theorem.

Theorem 4.3 Given a planar assembly consisting of n disjoint simple polygons, having a

total of N vertices altogether, it can be determined in O(n1:46N6) time whether there is a

subassembly that can be removed along a path consisting of a single �nite translation followed

by a translation to in�nity. The algorithm outputs both the labels of the parts in the removable

subassembly and the speci�cations of the path.

5 Partitioning with a Bounded Number of Translations

We now consider partitioning an assembly along a path consisting of a small number k of
translations m1; m2; : : : ; mk. There are 2k�1 degrees of freedom in specifying the path t. Two
parameters (xi; yi) specify the endpoint of each of the �rst k � 1 moves, and one parameter
� speci�es the direction of the last (in�nite) move. Hence we will examine the k-translation
problem in a 2k � 1-dimensional space with coordinates (x(1); y(1); : : : ; x(k�1); y(k�1); �).

We distinguish three di�erent types of moves along the path t: the �rst movem1 starting at
(0; 0), the last (in�nite) movemk , and the intermediate movesm2; : : : ; mk�1. As we will show
below, the analysis of the �rst and the last moves is similar to the analysis in Subsections 4.1
and 4.2 respectively. Thus we start by analyzing the contribution of constraint (hyper)surfaces
by an intermediate move mi.

Consider the four-dimensional space with coordinates (x(i�1); y(i�1); x(i); y(i)), where ev-
ery point represents an intermediate translational move in the plane from (x(i�1); y(i�1)) to
(x(i); y(i)). We wish to subdivide the space (x(i�1); y(i�1); x(i); y(i)) into non-critical cells, such
that the blocking graph corresponding to the moves represented by all the points inside the
cell is the same. It can be easily shown that every feature of a C-obstacle contributes at
most a �xed (constant) number of critical three dimensional hypersurfaces, all algebraic of
bounded degree.

The analysis of constraint curves induced by the �rst motion in the 2D space with coordi-
nates (x(1); y(1)) is the same as the analysis in Subsection 4.1. Similarly, the analysis of con-
straint surfaces induced by the last move in the 3D space with coordinates (x(k�1); y(k�1); �) is
the same as the analysis in Subsection 4.2. Our goal now is to put all the constraints together
in the 2k� 1-dimensional space with coordinates (x(1); y(1); : : : ; x(k�1); y(k�1); �). We use the
guidelines that we have used in Subsection 4.3. For example, consider a 3D constraint hyper-
surface de�ned above in the space (x(i�1); y(i�1); x(i); y(i)). This 4D space can be viewed as a
4D cross-section of the underlying 2k�1 dimensional space, where all but the four coordinates
(x(i�1); y(i�1); x(i); y(i)) are �xed. Moreover, the same 3D constraint prevails for every other
4D cross-section as above of the 2k � 1-dimensional space. Hence, we extend every critical
hypersurface de�ned in the k subspaces (x(1); y(1)); (x(1); y(1); x(2); y(2)); : : : ; (x(k�1); y(k�1); �)
into a 2k� 2-dimensional surface in the space (x(1); y(1); : : : ; x(k�1); y(k�1); �), in the obvious
manner.
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Let � denote the overall number of features (vertices and edges) in all the O(n2) original
C-obstacles de�ned earlier. Recall that, by the analysis in Subsection 4.4, � = O(N2). Note
that each of the k moves contributes O(�) critical 2k�2 dimensional surfaces. Therefore, the
number of non-critical cells in the subdivision of the space (x(1); y(1); : : : ; x(k�1); y(k�1); �), is
O((k�)2k�1).

To compute a subassembly that is separable by k translations we employ an algorithm to
produce all the cells in the above 2k� 1-dimensional arrangement, and for each cell we check
the corresponding blocking graph for strong connectedness.

Theorem 5.1 Given a planar assembly consisting of n disjoint simple polygons, having a

total of N vertices altogether, it can be determined in O((kN2)2k�1n2) time whether there is

a subassembly that can be removed along a path consisting of at most k translations where the

last translation extends to in�nity. The algorithm outputs both the labels of the parts in the

removable subassembly and the speci�cations of the path.

Proof. The actual computation of the arrangement can be carried out in time roughly
O((kN2)2k�1) (see Subsection 3.1) and hence it is negligible in comparison with the strong
connectivity check for all the cells. The 2k � 1 dimensional arrangement is determined by
O(kN2) hyper surfaces, and therefore the maximum number of cells in it is O((kN2)2k�1). In
each cell we spend time O(n2) to check for strong connectivity, and the bound O((kN2)2k�1n2)
follows. 2

6 Conclusions

In this paper, we have extended the non-directional blocking graph (NDBG) framework for
the assembly partitioning problem devised by Wilson [18] to the case of a compound removal
path consisting of a small number of translations. Our new result builds on two existing
concepts: the concept of the NDBG [18] and the \interference diagram" [13]. Previously,
NDBGs were studied only for simple types of motions, while it was not clear how to use the
interference diagram e�ciently in order to solve the partitioning problem.

The major open problem that our paper raises is to improve the running time of the al-
gorithms presented in it. Some possible directions for improvement are suggested in Subsec-
tion 4.4. Another related question, which applies to other instances of the NDBG framework
as well, is the following: We compute a collection of n(n � 1) C-obstacles. However, this
collection of C-obstacles is induced by only n parts. Can we exploit this fact to improve the
running time of our algorithm, or of other algorithms that deal with the NDBG? We are
currently investigating this question. Another direction that we are currently exploring is the
introduction of randomization into the algorithm, in order to try to avoid the computation
of the entire arrangement in situations where this is not necessary.

In this paper we have con�ned ourselves to translational motion along straight line seg-
ments. It is desirable to extend the framework to compound motions that consist of more
elaborate basic moves, particularly including rotations.
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