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Abstract

The goal of assembly sequencing is to plan a feasible series of
operations to construct a product from its individual parts.
Previous research has investigated assembly sequencing un-
der the assumption that parts have nominal geometry. This
paper considers the case where parts have toleranced geom-
etry. Its main contribution is an efficient procedure that
decides if a product admits an assembly sequence with in-
finite translations that is feasible for all possible instances
of the components within the specified tolerances. If the
product admits one such sequence, the procedure can also
generate it. For the cases where there exists no such as-
sembly sequence, another procedure is proposed which gen-
erates assembly sequences that are feasible only for some
values of the toleranced dimensions. If this procedure pro-
duces no such sequence, then no instance of the product is
assemblable. This work assumes a simple, but non-trivial
tolerance language that falls short of capturing all imperfec-
tions of a manufacturing process. It is only one step toward
assembly sequencing with toleranced parts.

Keywords: assembly planning, assembly sequencing, solid
modeling, tolerancing, non-directional blocking graph.

1 Introduction

An assembly is described by a geometric model of its parts
and their relative placement. The goal of assembly sequenc-
ing is to plan a partial ordering of operations to construct
this product from its individual parts. Each operation gener-
ates a new subassembly by merging individual parts and/or
subassemblies constructed by previous operations. It is spec-
ified by the subassemblies it merges and their relative mo-
tions.

There has been considerable research in assembly sequenc-
ing during the past decade (e.g., [4, 9, 15, 16, 17, 21, 23, 35,
36, 38, 39]). Early assembly sequencers were mainly interac-
tive sequence editors; geometric reasoning was supplied by
a human who answered questions asked by the system [9].
Automated geometric reasoning was then added to answer
these questions automatically [4, 17, 39]. This development
first resulted in generate-and-test sequencers, with a mod-

ule guessing candidate sequences and geometric reasoning
modules checking their feasibility [17, 35]. More efficient
techniques were later proposed to replace time-consuming
generate-and-test [3, 36]. Research on “separability prob-
lems” in Computational Geometry is also related to assem-
bly sequencing [7, 27, 30, 32].

Assembly sequencing has been shown to be in-
tractable [18, 19, 24, 39], leading researchers to consider re-
stricted, but still interesting subsets of assembly sequences,
e.g.: monotone sequences, where each operation generates
a final subassembly, and two-handed sequences, where every
operation merges exactly two subassemblies. Often motions
are also limited to translations. Though restrictions vary
slightly among the assembly sequencers proposed so far, one
is made in all of them: Parts are uniquely defined by their
nominal geometry. In this paper we depart from this as-
sumption by investigating assembly sequencing when parts
have toleranced geometry. This work has been motivated
by the fact that for many products tolerances have crucial
effect on assembly sequences and manufacturing costs.

Part tolerancing addresses the fact that manufacturing
processes are inherently imprecise and produce parts of
variable shapes [29, 33]. A large body of work has been
devoted to the development of tolerance languages (e.g.,
Y14.5 [1, 34]) providing designers with symbolic means
to specify acceptable variations. Omne important goal is
to guarantee part interchangeability in an assembly prod-
uct [33]: Given any set of parts manufactured according
to the specified tolerances, they should assemble satisfac-
torily. The basic tolerance analysis problem — determin-
ing where the boundary of a part might be located in a
given coordinate system — has attracted considerable interest
(e.g., [6, 11, 14, 26]). But verifying part interchangeability is
much harder, and previous work has focused on checking the
geometric feasibility of the assembled state (i.e.: Does there
exist an assembled state in which no two parts overlap?), us-
ing stack-up, optimization, constraint propagation, statisti-
cal analysis, and/or Monte Carlo techniques [2, 8, 10, 12, 26].

In this paper we go beyond the mere existence of an assem-
bled state. We propose an efficient procedure that decides
whether a product made of toleranced parts admits a guar-
anteed assembly sequence, i.e., a sequence that is feasible for
all possible instances of the parts. This procedure can also



generate all such sequences. The existence of an assembled
state is not explicitly tested, but is implied by the existence
of an assembly sequence. For the cases where no guaran-
teed assembly sequence exists, we also propose another pro-
cedure that generates non-guaranteed assembly sequences,
i.e., sequences that are only feasible for some instances of
the parts. This procedure returns no such sequence if and
only if the product is never assemblable. Our procedures
assume a simple, but non-trivial tolerance language which
does not model some important imperfections of manufac-
turing processes. The work reported in this paper is there-
fore only one limited step toward assembly sequencing with
toleranced parts. Nevertheless, we believe it contributes to
the much-needed understanding of what sort of tolerance
language is suitable for assembly sequencing. Such under-
standing is of major interest to the community of researchers
who are trying to improve the mathematical foundations of
tolerancing [28, 31].

Section 2 describes the assembly-description language ac-
cepted by our algorithms. Section 3 gives technical back-
ground for the rest of the paper. It summarizes results pre-
viously reported in [36, 37], including the concept of the non-
directional blocking graph (NDBG) of a nominal product, an
algorithm to compute NDBGs, and a procedure to generate
assembly sequences from an NDBG. Section 4 develops the
concept of a strong NDBG for products made of toleranced
parts; this NDBG represents all blocking interferences be-
tween parts when their dimensions span the tolerance zones.
It 1s used in the same way as a “classical” NDBG to generate
guaranteed assembly sequences. Section 5 describes in detail
the algorithm enabling the construction of the strong NDBG.
The main difficulty faced here is that variations in the di-
mensions of the parts also cause the relative positions of the
parts in the products to vary. Section 6 proposes the con-
cept of a weak NDBG, which represents necessary blocking
interferences between parts; this NDBG can be used to gen-
erate non-guaranteed assembly sequences. Section 7 gener-
alizes the algorithms of Section 4 and 5 (presented for planar
polygonal assemblies) to polyhedral assemblies.

2 Description of an Assembly

We consider a planar assembly product A made of N parts
Pi, ..., Py. It is described by a geometric model of the parts
and spatial relations defining their relative placements.

We assume that each part P; is a polygon manufactured
such that all instances of P; have perfectly straight edges,
the same topology, i.e., the same sequence of edges, and
the same angles between edges; but each edge may have
different lengths in the various instances. The geometry of P;
is defined by its sequence of edges, with each edge specified
by the orientation of its supporting line relative to some
coordinate system and the interval of acceptable distances
from the origin of this system to the supporting line.

We will refer to the coordinate system used to specify the
geometry of P; as the coordinate system of P;. We denote
its origin by p;. The distance between p; and the line sup-
porting an edge of P; is called a variational parameter and

Figure 1: Part description

the interval of acceptable values for this distance a tolerance
zone. The tolerance zones of the variational parameters of
each part P; should be small enough to guarantee that all in-
stances of P; have the same topology. A sufficient condition
is that no vertex falls into the intersection of more than two
stripes swept by edge-supporting lines when the variational
parameters span the tolerance zones.

Fig. 1 illustrates the description of a part with seven
edges. It shows a particular instance of the part in bold
contour, the variational parameters di,...,d7, and the ex-
treme positions of the edge-supporting lines.

The orientation of an edge-supporting line is defined by
its angle in [0, 7) with the z-axis of P;’s coordinate system.
The distance from p; to this line is a signed real; the sign
is set as follows: If the outer normal to the corresponding
edge points in the direction of p;, the distance is negative;
otherwise it is positive. For example, in Fig. 1 all variational
parameters, except ds, are positive. This convention has two
advantages:

- It allows p; to lie without ambiguity in the stripe swept by
an edge-supporting line when the corresponding variational
parameter spans its tolerance zone.

- There is one instance of P; that contains all other (called
MMP, for Maximal Material Part). With our convention, it
is obtained when all variational parameters are maximal.

The relative placement of the N parts in A is defined by
a set of spatial relations. Each relation R uniquely defines
the relative placement of two particular parts. This means
that for every possible geometry of these two parts, a single
relative position of their coordinate systems achieves R. We
assume that R consists of two more elementary relations:
one states that two edges, one from each part, are paral-
lel, with their outer normals pointing in either the same or
opposite directions and a signed distance between the lines
supporting the two edges; the other states that a vertex of
one part 1s at some signed distance of the line supporting
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Figure 2: Spatial relation between two parts

an edge of the other part. This definition of spatial rela-
tions subsumes normal contact relationships between parts:
One specifies a contact between two edges by setting the
distance between them to zero. We assume zero tolerances
in the distance values of the spatial relations.

Fig. 2 illustrates a spatial relation between two parts P;
and P;. Edges e and f are parallel, with their normals point-
ing in the same direction, at some distance of each other (the
distance, not given in the figure, is negative to indicate that
e is ahead of f along the direction of the outer normals).
The vertex v is at some distance of the edge ¢ (again, the
value of this distance has been omitted in the figure).

The set of relations in the description of A must be com-
plete and non-redundant. By complete, we mean that if one
randomly picks a geometry for every component of A, the
relations determine a unique geometry for A (such an as-
sembly is said to be “static” [26]). By non-redundant, we
mean that removing any one of the relations makes the set
incomplete. In order for the set of relations to be complete
and non-redundant, it is necessary and sufficient that the
undirected graph whose nodes are the components of A and
whose links are the spatial relations be connected and with-
out cycles. We call this graph the relation graph of A.

For any two parts, P; and P;, in their relative placement in
A, we refer to the position of p; in the coordinate system of
P; as the position of P; relative to P;. This relative position
may vary over several instances of A, due to variations in
the geometry of the parts composing A. On the other hand,
the relative orientations of the coordinate systems are fixed.

Let ¢; designate the number of edges of P; (z =1 to
N). Q@ = ¢1 + ...+ gn 1s the total number of edges in
the parts of A. The geometry of any particular instance
of A is defined by a single value of the tuple (d1,...,dg) of
variational parameters. The space spanned by this tuple is a
@-dimensional hyper-parallelepiped V, the Cartesian cross-
product of the tolerance zones. We call V the variational
space of A. In the following, the same notation P; (resp. A)
will be used to designate both the variational class of parts
(resp. assemblies) determined by V and any instance in that
class. Whenever some ambiguity may arise, we will explicitly
mention to which we refer.

There is no requirement that an assembly product speci-
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Figure 3: Part with imperfect edges
fied as above be feasible.

Discussion: We now briefly discuss some of the shortcom-
ings of our assembly-description language. We focus on tol-
erancing, since this is the main theme of this paper.

First, let us remark that the assembly sequencing problem
depends intimately on how we describe an assembly A. We
noticed before that each part admits an MMP. Suppose that,
instead of using spatial relations, we had defined the relative
placement of every two parts in A by the relative position of
their coordinate systems. Then assembly sequencing would
trivially reduce to assembly planning with MMPs. This does
not seem to make much sense, however. Indeed, contacts
and/or clearances between parts are crucial in assemblies.
When the relative positions of the coordinate systems are
directly provided in the description of the product, contacts
can only be achieved at the ends of tolerance zones (other-
wise parts could overlap); similarly clearance constraints are
only met for some values of the variational parameters.

The most blatant assumption in our language is that edges
are perfectly straight. Such edges are impossible to manu-
facture. However, the assumption is not really needed. Con-
sider a part with imperfectly shaped edges as illustrated in
Fig. 3.a. We can bring a straight line, called a datum [26],
into two-point contact with each edge and replace the im-
perfect edges by the perfect ones defined by the datums
(Fig. 3.b). Our algorithms apply to the parts defined by
these virtual edges.

In the Y14.5 standard, specifying a distance between two
edges e and f leads to associating a datum with one edge,
say e. The tolerance zone defines the region (a stripe in 2D)
within which the other edge, f, should lie. In our case, the
tolerance zone defines the locus of the virtual edge. The con-
straint expressed in Y14.5 entails ours, but the converse is
not true. Although the relative weakness of our constraint
would matter if we wanted to ensure that parts be inter-
changeable in function, it does not affect their interchange-
ability in assembly, which is our only concern in this paper.
Said otherwise, the constraint expressed in Y14.5 can be
translated into our language without affecting part inter-
changeability in assembly.

Another important limitation is that edges are cut with
perfect angles between them (which now only means that the
virtual edges make perfect angles). Perfect angles are not
possible in practice, even between datums, and this assump-
tion is the main limitation of our language. See, however,
the conclusion for a discussion of how it could be removed.

The coordinate system of a part P; can be located any-
where. In practice, dimensions are specified relative to da-



tums associated with edges. Then we could choose P;’s co-
ordinate system such that one of its axes is aligned with
an edge and its origin coincides with one extremity of that
edge. But using a single “central” coordinate system may
be a limitation, since it often happens that datums in a sin-
gle part are “chained” by distance specifications. In [22] we
show that a simple preprocessing allows our algorithms to
handle multiple coordinate systems per part.

The fact that we only consider planar assemblies is one im-
portant limitation not directly related to tolerancing. In Sec-
tion 7 we show that the algorithms of Sections 4 and 5 are
easily generalized to 3D polyhedral assemblies.

Other generalizations of our algorithms, presented in [22],
include the use of spatial relations between more than two
parts and the specification of tolerance zones on distances
in spatial relations.

3 Background

Let the assembly A be described as above, but with zero-
length tolerance zones. Hence, all parts and subassemblies
are nominal. In this section we review previous techniques
that generate monotone two-handed assembly sequences for
A. We present the NDBG of A for infinite translations.

An assembly sequence is a partial ordering on operations
of the form: “Merge S1 and S% into S by translating S;
along t.” Its inverse, a disassembly sequence, is obtained
by reversing the ordering and replacing each operation, such
as the above, by: “Break S into 57 and S: by translating
S1 along t+ 7.7 When parts are rigid, this inverse map is a
bijection between assembly and disassembly sequences. Any
assembly sequence can thus be produced by first generating
a disassembly sequence and then inverting it. A disassembly
sequence is intuitively easier to produce since it starts from
the highly constrained assembled state, in which spatial re-
lations may directly suggest candidate disassembly motions.

Let partition be a procedure that takes the description
of an assembly S as input and generates two subassemblies
S1 and Sz (S1US2 = S), along with a direction ¢ such that S;
can be removed from S and translated arbitrarily far along
t without colliding with S>. Whenever such subassemblies
and direction don’t exist, the procedure returns failure. Dis-
assembly sequences are generated by applying partition to
A and, recursively, to the generated subassemblies that are
not individual parts. Let disassemble designate this recur-
sive procedure.

In early sequence planners, partition was based on
generate-and-test. Given S, this technique enumerates all
candidate partitions {S1,52} of .S, until it finds a direction
t that separates S2 from S; without disturbing Si. Finding
t often consists of inferring it from spatial relations between
parts (mainly from contacts), computing the region that will
be swept by Sz, and checking that this region does not in-
tersect S1. But the number of candidate partitions is ex-
ponential in the number of parts in S, while the number of
feasible partitions is usually much smaller. The NDBG was
introduced to avoid this combinatorial trap [36, 37]. The
idea is to precompute a structure, the NDBG, that represents
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Figure 5: Construction of a cone of feasible infinite
translations

all blocking interferences among the partsin A, and to query
this structure to generate one, several, or all disassembly se-
quences.

Consider two parts P; and P; in their relative position in
A. Ignore all other parts. The direction tis a feasible infinite
translation for P; relative to P; if one can translate P; to
infinity along ¢ without colliding with P;. Now consider the
full assembly A and a direction ¢. The directional blocking
graph, or DBG, of A fort is the directed graph whose nodes
are the parts of A and whose arcs are all pairs of parts
(P;, P;) such that ¢ is not a feasible infinite translation of
P; relative to P;. Fig. 4 shows DBGs of a simple assembly
for two directions ¢; and i».

In two dimensions the set of all directions is represented
by the unit circle S*. The set of feasible infinite translations
of P; relative to Pj is a cone C; that determines an arc in
S'. Hence, all the cones Cij, 1,5 € [1, N], i # j, partition S*
into O(N?) arcs such that the DBG of A remains constant
over each arc. The sequence of arcs and their DBGs form the
non-directional blocking graph of A.



Assume that there are no tight insertions in A. FEach
cone C;; can be constructed by erecting the two extreme
rays originating at p; (the origin of the coordinate system of
P;) and tangent to P; & P; (the Minkowski difference of P;
and P;). See Fig. 5, where the polygon in bold contour is
P; o P;. If P; and Pj touch each other, then p; lies in the
contour of P; & P;. If they overlap (in which case, A is not
a possible assembly), p; lies in the interior of P; & P;. (If we
allowed P; to be tightly inserted into P;, we would have to
be more careful, since the set of positions where P; touches
P; would then be a superset of the boundary of P; © Pi.)

If P; and Pj are non-convex polygons with ¢; and ¢; edges,
we decompose them into convex components denoted by PF
and P]l (k,1 =1,2,...), respectively. We have: P; & P; =
Uk,l P]l © PF. A trapezoidalization of P; and P; yields O(g;)
and O(q;) components, each of constant complexity, in times
O(gilog ¢i) and O(qg;log gq;) [25]. Each region P]l & PFisa
convex polygon of constant complexity that takes constant
time to compute. Let Cik]l be the cone formed by the two
rays stemming from p; and tangent to P]l & PF. We have:
Ci; = ﬂk,l Cik]l. All cones Cik]l are computed in time O(qiq;).
They determine O(gig;) arcs in S*. The computation of
the arc where C; intersects ST is thus done in total time
O(¢ig; + ¢ilog ¢i + q;1og ;).

Let ¢ be the maximal number of edges in a single part of
A. The O(N?) cones Cj; are computed in time O((Ng)?).
They determine O(N?) points in S* that are sorted in time
O(N?log N). The DBG in any arc can be obtained in time
O(N2). However, between any two adjacent arcs, the DBG
undergoes a small number of changes that can be computed
in constant time. Thus, once a DBG has been computed, all
other DBGs can be computed in total time O(N?) by scan-
ning the sequence of arcs in S* and, for each arc, modifying
the DBG constructed for the previous arc [36]. The complete
NDBG takes time O(N?(log N + ¢°)) to compute.

Consider now the DBG G of A for some direction ¢. A can
be partitioned into two subassemblies S; and S> by trans-
lating 57 along t if and only if there exists no arc in G
connecting a part of S1 to a part of S2. Hence, A can be
partitioned by a translation along t if and only if G is not
strongly connected. The strong components of G yield all
possible partitionings of A. Notice also that the NDBG of any
subassembly S of A is obtained by restricting every DBG to
the parts of S and merging adjacent arcs of S' having the
same DBGs. Hence, given the NDBG of A, partition can be
implemented as follows:

procedure partition(s);
for every arc ¢ in the NDBG of S do:
if the DBG associated with ¢ is not strongly connected
then return ¢ and a feasible partition of .5
return failure;

Computing the strong components of a DBG takes time
O(N?). (A better bound, O(N'*%), can be obtained by tak-
ing advantage of the fact that any two successive DBGs differ
by a small amount [20].) Hence, partition runs in time
O(N4) and disassemble generates an assembly sequence in

time O(N5).

The procedures partition and disassemble can easily
be modified to generate all feasible assembly sequences [36].
In the worst case, however, the number of these sequences
is exponential in N.

Remark: The above presentation has focused on planar
assemblies and infinite translations. However, NDBGs have
been successfully extended both to deal with 3D assemblies
and to generate more complicated motions (e.g., rotational
motions [37] and multiple extended translations [38]). This
requires adapting the definition of a feasible motion of P;
relative to P;. Another planning approach, based on “mono-
tone paths,” has been proposed to avoid the combinatorial
trap of generate-and-test for assemblies of polygons in the
plane [3]. But, so far, this approach has only been pro-
posed to generate translational assembly sequences for pla-
nar polygonal assemblies. Attempts to efficiently generalize
it to 3D assemblies and/or rotational motions have failed.

4 Strong NDBG

From now on let the assembly A be made of toleranced
parts, as described in Section 2. While the question “Does
there exist an assembly sequence to construct A?” had only
two possible answers, “yes” and “no”, when parts in A had
unique geometry, it now has three possible answers, “yes”,
“no” and “maybe”. Moreover, if the answer is “yes”, two
cases are possible: There may, or may not exist an assem-
bly sequence that is feasible for all values of the variational
parameters. We call such a sequence a guaranteed assembly
sequence, and a sequence that is only feasible in a non-empty
subset of the variational space V a non-guaranteed sequence.

In this section we focus on guaranteed assembly sequences.
We extend the NDBG concept to represent all blocking inter-
ferences among parts of A for infinite translations, when the
variational parameters span V. We call this extension the
strong NDBG. The procedures partition and disassemble
apply to this NDBG without modification. The procedure
disassemble now produces guaranteed assembly sequences,
whenever such sequences exist; it returns failure otherwise.

Consider any two parts in A. Due to possible variations
in their geometry and relative position, the cone of feasible
infinite translations of one part relative to the other is not
constant. Therefore, at each point in the variational space
V, one may compute a distinct NDBG. To be sure that A
can be partitioned into two subassemblies by translating one
to infinity along some direction, this partitioning must be
feasible in all NDBGs over V.

As computing all NDBGs over V is impractical, we project
these NDBGs onto S': With every direction ¢ of S?, we as-
sociate the set of all distinct DBGs for direction ¢ when the
variational parameters span V. Usually, if two directions t;
and t are very close to each other, the same set of DBGs
is associated with both directions. But this is not true for
some isolated directions where a translated part collides with
a new part or stops colliding with a part. These directions
partition S* into arcs such that a single set of DBGs is associ-
ated with every arc. We call this structure the multi-valued
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Figure 6: Multi-valued NDBG for two parts
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Figure 7: Influence of variational parameters on feasible
translations

NDBG of A.

To make this concept clearer, consider two parts P; and
P;in A. For every value of the variational parameters, we
can compute a cone Cj; of feasible infinite translations of P;
relative to P;. Let us intersect all cones C;; when the vari-
ational parameters span their tolerance zones. The result
is the possibly empty cone SCj; of infinite translations that
are feasible for all values of the variational parameters. We
call it the small cone of feasible translations of P; relative to
P;. Similarly, the union LC; of all cones C;; is the cone of
all infinite translations that are feasible for at least one value
of the variational parameters (LC;; may have a 27 angle).
We call it the large cone. Inverting SC;; and LCj;; yields
SC;; and LCj;, respectively. The four cones SC;;, LCiy,
SCj;, and LCy; partition S* into at most 8 arcs, such that
a single set of DBGs reduced to P; and P; is assoclated with
each cell. The set of arcs and the associated sets of DBGs
form the multi-valued NDBG of the subassembly made of P;
and Pj. See Fig. 6, where the small (resp. large) cones are
bounded by plain (resp. dashed) lines.

In the example of Fig. 6, the small and large cones are re-
spectively obtained for the maximal material parts (Fig. 6.a)

‘
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Figure 8: Strong NDBG for two parts

and least material parts (Fig. 6.b). But this is not always the
case. For example, Fig. 7 shows a 3-part assembly with two
variational parameters di and d2. When d; is minimal and
d2> maximal, the peg Ps; can’t be translated vertically. When
d; is maximal and d> minimal, this translation is feasible.

Scanning all pairs of parts in A leads to partitioning S*
into O(N?) arcs. But in the worst case the set of DBas
associated with one arc has size O(2N2). We thus replace
this set by the union of the DBGs it contains. The result
is called the strong DBG. The NDBG whose cells are labeled
by strong DBGs is called the strong NDBG; it describes all
blocking interferences among the parts of A when the vari-
ational parameters span V. Fig. 8 shows the strong NDBG
derived from the multi-valued NDBG of Fig. 6. Since several
adjacent DBGs are identical, the corresponding arcs should
be merged. Clearly, only the small cones are needed to con-
struct the strong NDBG.

At the core of the computation of the strong NDBG is
the algorithm that generates the small cone SC;; for any
two parts P; and P;. Considering all combinations of maxi-



mal and minimal values of the variational parameters would
yield an algorithm exponential in the number of variational
parameters. In the next section a different approach allows
us to propose an algorithm that computes all cones SC;;
in time O(N?n(¢*> +logn)), where n < N is the maximal
length of a path in the relation graph of A and ¢ < @ is the
maximal number of edges in a part of A. In general, n K N
and ¢ € . As in the nominal-geometry case, the DBGs
associated with two adjacent arcs in the strong NDBG differ
by a small amount. Hence, the DBG for one arc can still be
computed in constant time by slightly modifying the DBG
computed for the previous arc. The total time to construct
the strong NDBGs is O(N? log N 4 N2n(¢® +log n)). In most
practical cases, this time is O(N?ng¢?).

When applied to the strong NDBG, the procedure
disassemble generates guaranteed sequences, whenever
such sequences exist. If it returns failure, the product may
still be always assemblable, but with several sequences de-
pending on the values of the variational parameters, or it
may be assemblable only for some values of these parame-
ters, or it may never be assemblable.

Discussion: An alternative to the computation and ex-
ploitation of the strong NDBG would be to compute the
nominal NDBG of the assembly A and then perform sensi-
tivity analysis on a nominal assembly plan. However, our
approach gives a much stronger result: While sensitivity
analysis would usually not be able to formally prove that a
particular sequence is feasible for all instances of the parts,
our approach checks the existence of a guaranteed sequence
and, if one exists, produces it. Moreover, sensitivity analy-
sis could be very time consumming. Indeed, the number of
variational parameters is often large and the number of fea-
sible nominal sequences can be exponential in the number of
parts. Instead, the time complexity of our method is both
well-bounded and reasonable.

In this paper the only assembly motions we consider are
infinite translations. As indicated earlier, “classical” NDBGs
have been applied to other types of motions. We hope that
the work reported here will also be eventually extended to
produce assembly sequences with various motions. Notice,
however, that it is often desirable that products be manu-
facturable with translations only. The algorithms described
here are directly relevant to that case.

5 Computation of Small Cones

We now describe an algorithm to compute the small cone
SCi; of feasible infinite translations of P; relative to P;.
Recall from Section 3 that, if the geometry and relative po-
sition of P; and P; are uniquely defined, then the cone of
feasible infinite translations of P; relative to P; is identical
to the cone of feasible translations of the point p; (the origin
of the coordinate system of Pi) relative to P; © P;. Here,
both the geometry and the relative position of P; and P; are
functions of the variational parameters di,...,dg. Thus,
the small cone SCj; is the cone of feasible translations of p;
relative to the region Uv(PJ 6 P;) swept by P; © P; when
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Figure 9: Parameters influencing the relative position
of two parts

(d1,...,dg) spans the variational space V.

To compute Uv(PJ & P;), we first remark that it only
depends on a subset of variational parameters. Indeed, the
geometries of P; and P; depend on ¢; and ¢; parameters,
respectively. On the other hand, recall that the spatial re-
lation between two parts consists of two more elementary
relations: one states that two edges, one in each part, are
parallel at a given distance; the other states that a vertex
of one part is at some distance from an edge of the other
part. Hence, the relative position of two parts linked by a
spatial relation depends on at most 5 variational parame-
ters: 2 are contributed by the distance between two parallel
edges, and are the variational parameters of these two edges;
the other 3 are contributed by the distance between an edge
and a vertex, and are the variational parameters of this edge
and the two edges intersecting at this vertex. For example,
in Fig. 9, the relative position of P; and P> depends on
di,...,ds. The relative position of P; and P; thus depends
on 5r;; variational parameters, at most, where r;; is the
number of spatial relations defining the relative placement
of P; and P (i.e., r;; 1s the length of the path between P;
and P; in the relation graph of A). Moreover, among the
r;; relations, one defines the relative placement of P; and
another part. Out of the 5 (or less) variational parameters
that influence the relative position of these two parts, 2 or
3 also affect the geometry of P;. The same remark holds for
P;. Therefore, a maximum of ¢; 4+ ¢; + 5r;; — 4 variational
parameters influence the cone of feasible translations of P;
relative to P;.

We divide these remaining parameters into three disjoint
subsets, J, K, and L:
- J (shape parameters) contains the variational parameters
of P; and Pj; that do not influence the relative position of
the two parts.
- K (position parameters) contains all parameters that are
not variational parameters of P; or Pj; hence, they only
affect the relative position of P; and P;.
- L (shape-position parameters) contains the variational pa-
rameters of P; and P; that do influence the relative position
of the two parts; it contains at most 6 parameters.

We now consider these three sets in sequence:
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Figure 10: Locus of p; with respect to p; when r;; = 2

Shape parameters (J): Assume that we fix the parame-
ters in K UL to some arbitrary value in their tolerance zones,
while we let the parameters in J span their domains. Let
UJ(P] © P;) denote the region swept by P; & F;.

The value of the parameters in J affects the shapes of
P; and P;, but not their relative position. Let P; and P;
stand for the regions swept by P; and Pj, respectively, in the
coordinate systems of P; and P;. P; (resp. Pj) is exactly
equal to P; (resp. P;) when the parameters in J have their
maximal values, the parameters in K U L being set as above.
Thus, we have:

U,(P,& P)=P, &P

Position parameters (K): Now let the parameters in
J U K span their domains, while the parameters in L keep
the arbitrary value given above. UJ,K(PJ & P;) denotes the
region swept by UJ(P] © P;) as the parameters in K vary.

By definition, the parameters in K do not affect the
shapes of P; and P;. However, when the parameters in K
vary, the origin p; of the coordinate system of P; spans a
region W in the coordinate system of P;. The geometry of
W is independent of the values of the parameters in J U L.
If rij =1, K is empty and W reduces to a single point. If
ri; = 2, W is a convex polygon of constant complexity, which
also takes constant time to compute (see Fig. 10, where W
is shown gray). If r;; > 2, W is a convex polygon of com-
plexity O(r;;), which is computed in time O(r;; log ri;) by
a divide-and-conquer technique as the convolution of ri; —1
convex polygons of constant complexity [13]. Thus, while P;
is fixed, P; sweeps the region W @ P;. We have:

UJ,K(PJ ePy=WaeP,oP:.

Shape-position parameters (L): We now obtain
Uv(PJ © P;) by letting the parameters in L span their do-
main and constructing the region swept by UJ,K(PJ o P).
The difficulty here is that the parameters in L affect both
the relative position and the shapes of P; and P;.

For any value of the parameters in L, UJ,K(PJ o P)is
exactly the region bounded by the outer contour of the union
of the polygons ¢ = W & eé & e¥, where ¥ and eé (k, 1=
1,2,...) denote the edges of P; and P;, respectively.

As the parameters in L vary, P; and P; keep the “same”
edges. Therefore the region swept by UJ,K(PJ e P is

bounded by the outer contour of the union of the regions
swept by the sets ¢*'. Since the geometry of W and the ori-
entations of the edges of P; and P; are independent of the
parameters in L, each ¢*" also keeps the “same” edges with
the same orientations. Moreover, the coordinates of every
vertex v in every ¢"! are linear functions of the parameters in
L, whose domain is a hyper-parallelepiped. Hence, v spans
a convex polygon whose vertices are attained when the pa-
rameters in L take extreme values (i.e., are at vertices of
their domain). Consider two consecutive vertices v; and vs
of any ¢*'. The region swept by the edge connecting v; and
v2 1s exactly the convex hull of the two polygons spanned by
v1 and vy. Tt follows that the region swept by any ¢ is the
convex hull of the polygons spanned by its vertices.

To obtain SC;;, however, we do not need to explicitly
compute Uv(PJ 6 P;). Indeed, let SCik]l be the cone of fea-
sible translations of p; relative to the region swept by ¢*'.
We have: SCy; =1, SCY.

Fach ¢* has O(r;;) vertices and is computed in time
O(n]). The number of extreme values of the parameters in
L is exponential in the size of L, which is at most 6; hence,
this number is O(1). By exploiting the fact that the edges of
#*! keep constant orientations, we compute the convex hull
of the polygons spanned by the vertices of ¢*! in time O(riy).
Thus, SC; is computed in total time O(r;;(giq; + log r4j)).
The logarithmic term comes from the computation of W.

Let ¢ be the maximal number of vertices in a part of A
and n the length of the longest path in the relation graph of
A. The O(N?) small cones needed to the construction of the
strong NDBG of A are computed in time O(N?n(g* 4log n)).

6 Weak NDBG

In Section 4 we defined the strong NDBG by replacing the set
of DBGs associated with each arc of the multi-valued NDBG
by the union of these bBGs. We now replace this set by the
intersection of the DBGs. We get another NDBG, which we
call the weak NDBG. It describes blocking interferences that
necessarily occur between the parts of A, whatever the value
of the variational parameters.

Assume that the strong NDBG yields no guaranteed as-
sembly sequence. Then the procedures partition and
disassemble applied to the weak NDBG generate non-
guaranteed assembly sequences whenever there exists an in-
stance of A that can be assembled. A failure of disassemble
now means that no instance of A can be assembled.

The weak NDBG is interesting in several ways, e.g.:

- There exists no guaranteed sequence: One may wish to
generate non-guaranteed sequences to estimate their proba-
bility of success using, say, Monte Carlo techniques.
- Some parts in an assembly are sealed together: For safety
purposes (e.g., the product is a toy), one may wish to check
that the resulting assembly cannot be disassembled.

To construct the weak NDBG, we must first compute the
large cones LC;; of feasible translations of P; relative to Pj,
for all pairs of parts in A. In general, if P; and P; are not
convex, LCj; is not equal to the cone of feasible translations
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of p; relative to the intersection of all the regions P; o P;
when the parameters in J U K U L span their domain. This
leads us to directly form the union of the cones Cj; of feasi-
ble translations of p; relative to P;& P; when the parameters
in JUK UL vary. But there is another, more basic diffi-
culty: Neither of the two rays bounding LC;; may be passing
through a vertex of P; © P;, at a position attained by this
vertex when the parameters in L have extreme values. This
subtle point is illustrated in Fig. 11, where we assume for
simplification that d € L is the only variational parameter
(i.e., the tolerance zone of every other parameter has length
zero). We consider two rays erected from p;, one passing
through vertex u, the other through vertex v. In Fig. 11.a,
the value of d is chosen in its tolerance zone (depicted by the
gray area) so that both rays are aligned. Fig. 11.b and 11.c
show the rays (dotted lines) with the most counterclockwise
orientations when d takes its extreme values (the ray with
long dashes is identical to the one in Fig. 11.a; it is repro-
duced to facilitate comparison with the other rays). As d
varies, the two rays rotate in opposite directions. They form
one side of LC;; for the value of d where they coincide; this
value is neither maximal, nor minimal. More generally, let
the parameters in L vary linearly. The vertices of P; © P;
then move along straight-line segments (some may remain
fixed, however), but these segments may have different orien-
tations and different lengths. Consequently, the rays erected
from p; and passing through the vertices of P; © P; rotate
in different directions at different rates. Each side of LCj;
may be obtained when two rays coincide.

In the rest of this section we present an algorithm to com-
pute LC5;. Since dealing with the parameters in J and K is
relatively easy, we first consider the parameters in L.

Shape-position parameters (L): We assume here that
the parameters in J and K are fixed to some arbitrary value.
Let UL Ci; be the union of all cones C;; when the parameters
in L span their domain (which we will designate by Vi).
Without loss of generality, we assume that the parameters
in L are dy,...,ds (though there may be less than 6).

We denote the edges of P; and P; by fF (k=1,2,...) and
f]l (I=1,2,...), respectively. Let Cik]l be the cone of feasible
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cone and extreme rays
translations of p; relative to ¥*' = f]l & f¥. For any value

of the variational parameters, we have: C;; = ﬂk,l Cik]l. We
call a ray erected from p; and passing through a vertex v of
a region * a vertez ray and we denote it by p(v). We refer
to v as the defining vertez of p(v). When the parameters in
L span Vi, every ¢ keeps the “same” edges with the same
orientations, and the coordinates of its vertices are linear
functions of d1, ..., ds.

Our goal is to select a finite set of points in Vy, such that
each of the two sides of UL Ci; 1s a side of the cone Cj;
computed at one of these points. We generate this set as
the union of two sets, H1 and Hz. H; is the set of all points
where a vertex ray achieves an extreme orientation. We ini-
tially define H> as the set of all points where two or more
coinciding vertex rays achieve an extreme orientation (we
will trim this conservative definition later). Note that H> is
not a subset of H1: An extreme orientation for one ray, while
it coincides with other rays, is usually not an extreme ori-
entation for that same ray, when no coincidence is required.
No point in Vz\(H; U Hz) can contribute a side of UL C;
that is not already contributed by the points in H; U Ha.

Since the coordinates of the vertices of the regions ¢* are
linear functions of di, ..., ds, the extreme orientations of ev-
ery vertex ray are obtained at vertices of Vi. These vertices
are all the points of H;. They are constant in number.

The construction of Hz is more involved. Consider any
two vertices v; and v2. The vertex rays p(v1) and p(vz) are
aligned (i.e., either coincide or points in exactly opposite
directions) when the coordinates (z1,y1) of v1 and (z2,y2)
of vy satisfy the equation:

T1Y2 — T2Y1 = 0. (1)

Let us pose:

J=6 j=6
T, = Zawdj—l-aio and y; = Zﬁijdj+6io, for 1=1,2,

j=1 j=1

where all coefficients a;; and f;; are constants. Equation (1)
becomes:

F(di,...,ds) =0, (2)



where F'is a second-degree multivariate polynomial. Equa-
tion (2) describes a hyper-surface S.

The extreme orientations of p(v;), while it coincides with
p(v2), can be attained in the interior or the boundary of Vr:
- In the interior of Vy,, they are obtained when:

Ny /1)

=0, k=1,...
adk ’ ’

b 5’ (3)
where dg is an implicit function of di,...,ds defined by
Equation (2). Thus, we must solve a system of six polyno-
mial equations in dy, ..., ds: Equation (2), which has degree
2, and the five Equations (3), which have degree 4 each. This
takes time exponential in the number of variables and poly-
nomial in the maximal degree of the polynomials [5]. Here,
this time is O(1).

- To get the extreme orientations of p(vl) when S intersects
a face of Vi of dimension p € [1,5], we must also solve a
system of six polynomial equations. This system consists
of: Equation (2), the 6 — p equations defining the face, and
p — 1 equations of the form of Equations (3), in which 6 — p
variational parameters are determined by the equations of
the face and one other parameter is an implicit function of
the remaining p—1 parameters through Equation (2). When
p = 1, the face is a one-dimensional edge and there is no
equation of this last type. Each of these systems also takes
time O(1) to solve.

In total, there is a constant number of systems to solve.
Hence, the computation of the points of Vi where p(v1)
achieves extreme orientations while coinciding with p(1)2) has
constant complexity.

Up to 6 vertex rays may coincide simultaneously. The
alignment of m rays (m € [2,6]) yields the intersection of
m hyper-surfaces such as S. The extremal orientations of
these rays while they coincide are still solutions of systems
each having 6 polynomial equations of constant degree in
di,...,ds. Again, such a system can be solved in constant
time.

By considering all combinations of m € [2,6] vertices
of the regions ¥*', we obtain a set Ha of size O((gigq;)°).
This size can be reduced as follows: We notice that, when
di,...,de vary, the supporting lines of at most 3 edges of
P; translate; hence, at most O(1) vertices move; we refer to
them as the special vertices of P;. Similarly, the supporting
lines of all edges in P;, except a maximum of 3, translate by
the same amount relative to P;; hence, all vertices, except
O(1) of them, to which we refer as the special vertices of P;,
move in the same way. Every vertex of a region 4 is of the
form v; © v;, where v; and v; are vertices of P; and Pj, re-
spectively. We divide the vertices of all the regions #*' into
two subsets: Omne contains all vertices v; © v; where neither
v; nor vj is special; its size is O(giq;). The other contains all
the other vertices; its size is O(q; 4 ¢;). All vertices in the
first subset move the same. So, if v and v’ are two vertices
of this subset and the rays p(v) and p(v') coincide, this coin-
cidence cannot create a side of L;;. Therefore, to construct
H>, it is sufficient to consider all combinations of m € [2, 6]
vertices such that at most one belongs to the first subset.
Posing ¢ = max{q;, q;}, this remark reduces the size of H>
and the time to compute it to O(g").
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We now have H; and H;. We can compute the union
UHl 7, Ci; of all the cones obtained at the points of H1 U

H>. If this union is a connected cone, it is UL Ci;. I,
instead, it consists of several disjoint cones (only connected
at their common apex), it remains to determine which are
the two sides of these cones that also bound UL Ci;. For
that purpose, we consider the complement of the union in
St and we slightly perturb the points of Hy U Hs within Vr,
along the axes of V;. Eventually, all cones in Sl\ UH17H2 Ci;

will shrink a bit, except one, which is Sl\UL Ci;. Hence,
U, Cij is computed in time O(¢”).

Shape parameters (J): Now, let the parameters in J vary.
Let P; (resp. P;) stand for P; (resp. P;) when all the param-
eters in J are minimal. For any value of the parametersin I,
P; is included in every other instance of P;. The same holds
for P;. Hence, when the parameters in both J and L vary,
we obtain the union UJ,L C;; of all cones C; by performing
the same computation as above, with P; and P; substituted
for P; and Py, respectively.

Position parameters (K): When the parameters in K
vary, the polygon P; & P; keeps a constant shape, but p,
spans the constant-shape polygon W (see previous section).
For any value of the parameters in J and L, the extreme
orientations of the vertex rays are obtained when p; is at
vertices of W. Hence, when all parameters in JU K U L
vary, we perform the above computation with p; successively
located at every vertex of W. Since W has size O(rs;), we
obtain O(r;;) cones UJ,L C;;. If their union consists of a
single cone, this cone is LC};; otherwise, we identify LC;;
by slightly perturbing the position of p; at each vertex of W
(within W). LCj; is thus obtained in total time O(ry; qg).

Computing the O(N?) large cones needed to construct
the weak NDBG of A takes time O(N2n(q9 +logn)). While
polynomial, this bound is too large for a practical imple-
mentation. Further effort is needed to reduce it, either by
a tighter count of H> (which we believe is possible), or by
finding a suitable approximation algorithm.

7 Polyhedral Assemblies

In this section we generalize the algorithms of Sections 4
and 5 to the cases where A is an assembly made of N poly-
hedral parts. The language of spatial relations between parts
is extended accordingly, but this raises no serious difficulty.
There are only more ways to express spatial relations. The
variational parameters of every part P; in A are the distances
between p; and the planes supporting the faces of P;. The
tolerance zones are small enough to guarantee that any two
instances of the same part have the same topology.

Let us first assume that A has a unique geometry.
3D, directions span the unit sphere S®. The cone Cjj of
feasible infinite translations of a part P; relative to a part
P; is still the cone of all translations erected from p; and
intersecting P; © P;. The region P; © P; is a polyhedron.
Hence, C;; is a polyhedral cone whose intersection with the
unit sphere centered at its apex is a “polygon” bounded by

In



arcs of great circles. The arcs obtained with all the cones C;;
create an arrangement of regions in S? such that the DBG
of A remains constant over each one. This arrangement
and the associated DBGs form the NDBG of A. A system
implementing this computation is presented in [36].

The computation does not require the explicit construc-
tion of the 3D region defined by P; & P;. We need only
project its edges into 52, as follows: first, we compute the
Minkowski difference of every pair of faces of P; and P; using
the algorithm given in [13]; next, we project the edges of all
computed differences into S?. We get more arcs than actu-
ally needed, but in the worst case their asymptotic number is
the same. Let ¢ be the maximal number of vertices in a part
of A. Each pair of parts contributes O(q4) arcs of the ar-
rangement on S°. The total arrangement has size O(N?¢*)
and is computed in time O(N?¢*log(Ng)). In every region
the DBG is computed in time O(N?). The total NDBG is
constructed in time O((Ng¢)* + N?¢*log(Ng)). Each DBG
has O(N?) arcs, so that finding its strong components takes
time O(N?). Hence, partition has complexity O((Ng¢)*).

If A is made of toleranced parts, all small cones SCj;
can be computed as suggested in Section 5: U(P] =) Pi) is
constructed by computing a finite number (more than 6,
however) of regions UJ,K(PJ © P;). None of these regions
need to be explicitly constructed in 3D. For each of them, we
decompose P; and P; into convex components PF and P]l and
we project the edges ofUJVK(PJZQPf) = VVGBP;@P;IC into S2.
Each pair of parts yields O(n2q4) arcs in the arrangement
on S?. The arrangement defining the strong NDBG has size
O((Nn)?¢*) and is computed in time O((Nn)?¢*log(Ng)).
The procedure partition has complexity O(N*n?¢*).

The computation of the large cones and therefore the weak
NDBG seems much more problematic, however.

8 Conclusion

Previous research has thoroughly investigated assembly se-
quencing under the assumption that parts and products have
unique geometry. It has produced useful algorithms to de-
tect undesirable geometric interferences among parts. But
these algorithms cannot help designers analyze the effect of
their tolerancing decisions on the assembly process. As prod-
uct quality and manufacturing automation increase, such
analysis becomes more critical. This paper is a first attempt
to fill this need. It describes algorithms to generate assem-
bly sequences for products made of toleranced parts. These
algorithms could be embedded in an interactive CAD envi-
ronment to assist designers in the selection of appropriate
tolerance values.

Our approach to assembly sequencing with toleranced
parts derives from the NDBG-based approach previously
proposed in [36]. Two non-directional blocking graphs,
the strong and the weak, are precomputed. They respec-
tively represent possible and necessary blocking interferences
among parts in an assembly. These NDBGs are then exploited
in a query phase to generate assembly sequences. Using the
strong NDBG we determine if a product accepts an assembly
sequence that is always feasible, independent of the values
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of the variational parameters in their tolerance zones. Using
the weak NDBG we determine if a product is never assem-
blable, or if it accepts non-guaranteed assembly sequences.
One may use Monte Carlo techniques to estimate the prob-
ability of success of non-guaranteed sequences.

At the core of this approach are two algorithms to com-
pute cones of feasible infinite translations of one part P;
relative to another P;, when both parts have toleranced ge-
ometry and their relative position varies due to the toler-
anced geometry of parts lying between them. The key fact
underlying these two algorithms is that the number of vari-
ational parameters that affect both the shapes of P; and P;
and their relative position is constant, i.e., independent of
the complexity of P;, P;, and the total assembly. This fact
is crucial because the time complexity of the algorithms de-
pends exponentially on this number, while it is polynomial
in all other measures of the size of the input data. It is pre-
served in several generalizations presented in Section 7 and
in [22].

The tolerance language used to describe assemblies is sim-
ple and falls short of modeling all imperfections of a manu-
facturing process. It nevertheless captures several important
features of the Y14.5 standard. Its main limitation is that it
assumes perfect angles between edges. Removing this lim-
itation would result in assembly instances where parts do
not have the same relative orientations.
ously complicate our algorithms. One ad hoc way to accept
toleranced angles is to discretize the corresponding tolerance
zones and treat each set of discrete values as perfect angles.
One could also perform some Monte-Carlo-based sensitiv-
ity analysis of a guaranteed assembly sequence around the
nominal orientations of the edges. However, we believe that
additional research should make it possible to provide an
exact solution (at least for planar assemblies).

This would seri-

Another topic for future research is to go beyond infi-
nite translations and allow motions made of several extended
translations, as well as motions combining translation and
rotation. The computation of large cones in 3D seems a
challenging issue as well.
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