
Constraint-Based Interactive Assembly Planning�

Rondall E. Jones Randall H. Wilson Terri L. Calton

Intelligent Systems and Robotics Center

Sandia National Laboratories

Albuquerque, NM 87185-1008

Abstract

Constraints on assembly plans vary depending on

product, assembly facility, assembly volume, and many

other factors. This paper describes the principles and
implementation of a framework that supports a wide

variety of user-speci�ed constraints for interactive as-

sembly planning. Constraints from many sources can
be expressed on a sequencing level, specifying orders

and conditions on part mating operations in a num-
ber of ways. All constraints are implemented as �lters

that either accept or reject assembly operations pro-

posed by the planner. For e�ciency, some constraints
are supplemented with special-purpose modi�cations

to the planner's algorithms. Fast replanning enables a
natural plan{view{constrain{replan cycle that aids in

constraint discovery and documentation. We describe

an implementation of the framework in a computer-
aided assembly planning system and experiments ap-

plying the system to several complex assemblies.

1 Introduction

Constraints on assembly plans come from a wide va-
riety of sources. Design requirements, part and tool ac-

cessibility, assembly line and workcell layout, require-
ments of special operations, and even supplier relation-

ships can drive the choice of a feasible or preferred as-

sembly sequence. Computer-aided assembly planning
systems promise to help product and assembly system

designers to manage this complexity and choose good
assembly sequences.

However, there are so many types of assembly con-

straints that it is impractical for a single program to

encode them all. In many cases, the constraints are
company- or product-speci�c. A practical assembly

planning system must have the ability to manage as-
sembly constraints in a general way to determine how

�This work was supported by the United States Department

of Energy under contract DE-AC04-94AL85000.

they impact the choice of assembly sequence.

In this paper we present a framework for represent-

ing and reasoning about assembly constraints of many
types. The user chooses constraints from a library of

standard constraint types, with a simple graphic inter-

face for de�ning the speci�cs of the constraint. Con-
straints are implemented as �lters that either accept

or reject assembly operations proposed by the plan-
ner. Any constraint that can be encoded as a �lter can

be added to the constraint library in a straightforward

way. Some constraints are supplemented with special-
purpose modi�cations to the planner's algorithms for

greater e�ciency.

This constraint framework has been implemented

and tested extensively in the Archimedes assembly
planning system [7]. In a typical interaction, the sys-

tem generates and animates a plan, the user adds con-

straints that need to be satis�ed by the plan, asks for a
new plan, and repeats the process until a satisfactory

plan is found. Our users have found this interactive
constraint discovery and planning process to be very

natural and productive.

In the next section we place our work in the context

of previous research on constraints and assembly plan-

ning. We then give an overview of our framework in
Section 3. Section 4 delves deeper into some of the is-

sues that arise in implementing the constraint system
e�ectively. Section 5 describes our experiences using

and testing the resulting planner. Finally, Section 6

concludes and give directions for future work.

2 Previous Work

Our assembly constraint �lters are an instance of

generate-and-test, a standard paradigm in arti�cial in-
telligence [8] as well as in assembly planning [3, 4].

Attaching special-purpose methods to some �lters is
also a well known e�ciency technique [8], although the

methods we use to accomplish this are novel.

Assembly planning systems that allow user-de�ned

constraints have generally been of two types. In the
�rst type (for example [2, 3]), users must specify all

constraints before the long process of plan generation
begins. In our experience, this is rarely possible: the

user �nds it very di�cult to list all constraints on as-

sembly ordering until some possible plans are consid-
ered. In the second type of system (e.g. [1]), a large

space of plans is �rst generated, and then undesirable

operations and states are pruned interactively by the
user. However, the space of plans quickly becomes too

large to edit or even generate as assemblies become
moderately complex. Our interactive approach to this

problem is foreshadowed in a more limited form by [9].

Previous e�orts to incorporate a comprehensive set
of user constraints in assembly planners were based on

liaison precedence relations (see e.g. [2, 12]). Prece-
dence relations specify logical combinations of part

connections that must be established before or after

others. We considered translating all constraints into
precedence relations, but chose �lters instead for rea-

sons of e�ciency and simplicity of implementation.

3 Approach

The constraint framework described here was re-
quired for the Archimedes assembly planning sys-

tem [7]. That system takes CAD data for a product

as input and automatically determines geometrically
feasible sequences of motions to assemble the product

from its parts. However, geometry is only a small part
of assembly sequencing. In [5] we surveyed constraints

that have appeared in the assembly planning litera-

ture, in hopes of adding many of those constraints to
the Archimedes system.

Our framework has the following qualities:

User Friendly Each constraint can be described sim-
ply in terms familiar to the user, has straightfor-

ward e�ects, and combines with others in a very

predictable way.

Maintainable Each constraint simply provides a �l-
tering function that disallows some assembly op-

erations. The �lters are completely independent,

allowing new constraint types to be added easily.

E�cient The �lters are coded as procedures, and
special-purpose methods can be attached to im-

prove e�ciency.

The result is an extensible library of simple but useful
constraints that enable a new, highly interactive mode

of assembly planning.

3.1 Constraints

We provide a library of constraint types, from which
the user can instantiate constraints on the assembly

plan. For instance, one type of constraint is called
REQ-SUBASSY; it requires that a particular set of

parts appear as a subassembly (with no other parts

present) at some point in the plan. To instantiate a
REQ-SUBASSY constraint, the user selects the parts

that must belong to the subassembly. Multiple REQ-

SUBASSY constraints can be instantiated, each with
a di�erent set of parts.

Constraints are implemented as �lters. During plan-
ning, each proposed assembly operation is passed to

the constraint's �lter function, which returns true or

false depending on whether the operation satis�es the
constraint or not. Only an operation that satis�es all

current constraints is feasible. For instance, consider
an operation placing subassembly S1 into subassem-

bly S2.
1 The �lter function of a REQ-SUBASSY con-

straint with part set P returns true if and only if

P � S1 _ P � S2 _ (S1 [S2) � P _ [(S1 [S2)\ P] = ;

In other words, the operation satis�es the constraint if

it keeps the parts in P together, if only parts in P are
involved, or if no parts in P are involved.

As a standard interface to all constraints, the �l-
ter function provides a number of bene�ts. First and

foremost, it makes the implementation of each con-

straint type independent. Interactions between con-
straints need not be considered, and each constraint

can be implemented in its most straightforward and
e�cient way. This becomes crucial as the number of

constraint types grows. In addition, constraints can

vary in the data associated with them, their instantia-
tion routines, various debugging outputs, and so on.

Filter functions are
exible enough that we have
been able to implement a large subset of the constraints

identi�ed in [5], plus additional ones that our users re-

quested. The
exibility is further demonstrated by the
REQ-TOOL constraint, which encodes tool accessibil-

ity constraints for various hand and robotic tools [10]

within the framework. Table 1 lists the constraint
types currently in the Archimedes system.

While �lter functions themselves are usually quite
fast, the generate-and-test abstraction can sometimes

lead to an ine�cient planning process overall. This is

particularly true when many dead-ends appear in the

1An operation will typically have other speci�cations, such

as a mating trajectory and perhaps an assembly orientation, but

these are not relevant to REQ-SUBASSY.

Constraint Name Scope

REQ-CONNECT* strategic
REQ-LINEAR* strategic

REQ-VERTICAL* strategic

PRH-STATE tactical
PRH-SUBASSY tactical

REQ-CLUSTER tactical
REQ-FASTENER* tactical

REQ-LINEAR-CLUSTER tactical

REQ-LINEAR-PARTS tactical
REQ-ORDER-FIRST tactical

REQ-ORDER-LAST* tactical

REQ-ORDER-LIAISON tactical
REQ-ORDER-PART tactical

REQ-PART-SPECIAL tactical
REQ-PATHS-AXIAL tactical

REQ-STACK tactical

REQ-SUBASSY* tactical
REQ-SUBASSY-WHOLE* tactical

REQ-SUBSEQUENCE tactical
REQ-SUCCESS-PART tactical

REQ-TOOL* tactical

Table 1: Constraint types in Archimedes. Those

marked by * have supplemental routines for e�ciency.

search space, or when a large number of assembly oper-
ations are generated but few satisfy the constraints. In

many cases, special purpose routines can increase e�-

ciency dramatically. The constraint types for which we
have implemented such methods are indicated with an

asterisk (*) in Table 1. Subsection 4.4 provides more
details of these methods.

3.2 Interaction

In experiments with product designers and assem-
bly process engineers, we have found that a high level

of interactivity is critical to successful application of

an assembly planner. Usually the designer cannot list
all the constraints on assembly order at the start of the

planning session. However, many of these constraints
become \obvious" when the system graphically illus-

trates a plan that violates them. Seeing a violation,

adding a constraint to remove it, and then replanning
becomes the main cycle of interaction. In this way, the

assembly planner aids constraint discovery and man-
agement as well as plan generation and optimization.

Note, however, that placing a new constraint is very
di�erent from ruling out a certain operation, as per-

formed in some previous systems such as [1]. While

a single operation demonstrates the need for a con-

straint, placing the constraint usually limits the allow-
able plans far more than prohibiting a single operation.

In the best case (and in many practical cases), the con-
straint encodes the manufacturing constraint exactly.

This plan{view{constrain{replan cycle requires that

replanning be performed at interactive speeds. In the

Archimedes system, a �rst assembly plan for a product
can usually be found in a few minutes [7]. However,

the most expensive part of planning is ensuring that
part insertions are collision-free. By saving collision-

detection information, replanning usually requires 10

or 20 seconds for assemblies of up to 100 parts.

There is of course no guarantee that all of the con-
straints the user has instantiated can be satis�ed by a

single plan. In this case, the planner fails and enters
a \debug" mode that helps the user to determine the

cause of the failure. If the constraints are all real, then

a problem with the product design may be indicated.
In most cases, some constraints can be adjusted to al-

low planning to succeed. When there are inaccuracies

or inconsistencies in the product CAD data, planning
can fail before the user has entered any constraints.

The debug mode also supports �nding such problems,
and certain problems can be �xed within Archimedes.

Subsection 4.3 provides more details.

After all known manufacturing constraints have

been entered, the user can then ask for an optimal
plan, according to user-speci�ed costs of certain stan-

dard operations. In some cases additional unstated
constraints will be violated and discovered as the plan-

ner looks through a large space of plans to �nd the

best. In this case the new constraints must be added
and the cycle repeats.

4 A Detailed View

4.1 Assembly Planning Approach

The approach taken to assembly planning is obvi-
ously critical to the design, implementation, and per-

formance of a user constraint system. It especially af-

fects special-purpose routines for e�ciency. Our con-
straint system was added to the Archimedes mechani-

cal assembly planner [7].

Archimedes generates two-handed monotone assem-
bly sequences in reverse, starting from the more highly

constrained, fully assembled state. This a standard

technique in assembly planning. The search space is an
AND/OR graph of subassembly states and operations

to construct them from smaller subassemblies. The
planner uses an NDBG of each subassembly [11] to ef-

�ciently determine assembly operations that might be

performed to construct that subassembly, then checks

these operations for geometric collisions, which is es-
sentially a built-in �lter. Operations are then checked

against the list of user constraints.
The search strategy is carefully tuned to generate

a �rst plan as quickly as possible in the domain of

mechanical assembly. This is critical to achieve the de-
sired view{constrain{replan cycle of interaction. Space

does not allow an adequate discussion of the search

algorithm used, but we sketch it here to give the
a-
vor. An AND/OR version of iterative sampling is per-

formed: during each pass of the algorithm, a single as-
sembly sequence is generated, making random choices

of operations to construct each subassembly. The �rst

time any subassembly is visited, only a single operation
is generated to construct it, and the known subassem-

blies of that operation are then visited. The strategy
spends minimal time reaching a �rst solution, like a

depth-�rst search, but avoids getting caught by bad

early decisions as a depth-�rst search would. The same
algorithm functions as an any-time algorithm to opti-

mize the assembly sequence when the user requests.

4.2 User Interface

The user interface is critical to e�ectiveness and user
acceptance of an interactive planning system. The

constraints must be easy to understand, de�ne, and
manage. In this subsection we describe features of the

Archimedes user interface that are important to the

success of the constraint system. See [6] for a better
understanding of the Archimedes constraint interface.

Figure 1 shows the main Archimedes user inter-
face. The upper left window shows the program's cur-

rent status, displays any diagnostic output, and allows

pausing or aborting any computation. The upper right
window provides graphic output and part/subassembly

selection. At bottom is the main control window.
After loading the CAD data for an assembly and

perhaps making some initial adjustments to it (see Sub-

section 4.3), the user selects \Plan", which brings up
the planning dialog shown in Figure 2. The top half of

this dialog concerns global choices for the planner, and

the bottom half provides management of the current
set of constraints.

Constraints are added by clicking on the \Add" but-
ton at the bottom, which brings up a sequence of menus

and questions that let the user pick a constraint type

and specify the particulars of the desired constraint.
Each constraint requires the user to select one or more

parts of a \controlled" set in the graphic window, such
as the parts making up a subassembly. For some con-

straints additional inputs must be provided, such as a

second set of parts required by the constraint or the

choice and placement of a tool to be used in assem-
bly. An auxiliary window provides a list of named sub-

assemblies to facilitate selection of larger sets of parts.
Each constraint can be given a name and descriptive

comment by the user.

Once de�ned, constraints are listed in the planning

dialog. They can be edited using a process very sim-

ilar to initial de�nition. They can also be deleted,
temporarily suspended, and re-activated. Constraint

suspension is a very useful feature that allows the user

to consider various scenarios for assembly. Constraints
often embody assumptions about product assembly; by

suspending some and replanning, the user can compare
the cost of removing the assumption to the possible

gains in assembly sequence e�ciency that result.

4.3 When Planning Fails

When the product cannot be assembled according

to the current set of constraints, the planner fails and
enters a \debug" mode that helps the user to determine

the cause of the failure. For example, one can request
that the planner try to remove a particular part or

subassembly (from the subset of parts remaining when

the planner failed) in a direction that appears possible.
Collisions or constraints that disallow the operation

are then posted in the status window. Other options
include trying to disassemble every pair of parts in the

o�ending subassembly, or trying to remove any parts

along a given trajectory.

Often, the planner has failed without any user-

de�ned constraints. This is sometimes due to limi-
tations in the planner's algorithms, such as an inabil-

ity to reason about
exible parts such as snap�ts and
springs. Other times, inaccuracies or inconsistencies

in the product CAD data cause the planner to fail.

Examples include press�t parts and threaded parts
that are modeled as cylinders too large for their holes.

Archimedes includes a set of model adjustment fea-

tures, or overrides, which can be used to correct such
problems. These include a function to e�ectively add

threads to cylindrical contacts between parts; to spec-
ify that certain part insertions are in fact possible, even

though collisions occur between the parts; and to delete

a part temporarily.

4.4 E�ciency

As mentioned above, the generate-and-test abstrac-
tion can sometimes lead to an ine�cient planning pro-

cess, in which case supplemental routines can improve
planning e�ciency greatly. These routines are very

dependent on the internal algorithms of the planner.

Figure 1: Archimedes user interface

Figure 2: Planning dialog

Because Archimedes plans backward from the assem-

bled state to individual parts, the supplemental rou-
tines must be implemented as if they were constraints

on disassembly, not assembly.

For instance, if the user has created a REQ-
SUBASSY constraint with part set P , and parts not in

P are present, then P cannot be \split" at that point
in the plan. To implement this constraint e�ciently, a

supplemental routine binds the parts of P together for

that stage, not considering any operations that split
them. This is accomplished by placing bidirectional

arcs between every pair of parts in P in every blocking
graph of the subassembly [11].

Supplemental routines must be considered carefully,

trading o� the added speed against the increase in
planner complexity. Three characteristics identify can-

didates for pre-processing:

1. the constraint either leads to many dead-ends in

the search space or rules out a very large propor-
tion of generated operations,

2. an e�cient method exists to implement the pre-
processing, and

3. the constraint is used often.

The REQ-FASTENER constraint type is another
instructive example. Fasteners are very common in me-

chanical assemblies. The REQ-FASTENER constraint

requires that as soon as one set of parts is joined (the
fastened parts), then a set of fastener parts must im-

mediately be placed. In reverse, this constraint means
that as soon as a single fastener part is removed, then

all other fasteners must be immediately removed, fol-

lowed by at least one of the fastened parts. If any of
the fasteners cannot be removed, a dead end appears

in the search space (in fact many can appear).2

The �lter function for REQ-FASTENER is straight-
forward, but its supplemental routines are the most

complex we have implemented. The fastener parts are
removed from the assembly representation and consid-

ered secondary parts, that implicitly must be added

when the fastened parts are mated. Before generat-
ing operations to construct a certain subassembly, the

planner determines which fasteners could be placed
into it; for those that cannot, the corresponding fas-

tened parts are bound together as for REQ-SUBASSY.

Fasteners are placed back in subassemblies for collision
checking and other calculations.

2A similar dead end would appear in a forward-planning

system.

Note that when a constraint has supplemental rou-

tines, the planner still calls the constraint's �lter func-
tion, which should never return false. This double

check is very useful to ensure correctness, because the
supplemental routines are complex and interact with

each other. A supplemental routine is conceivable that

would reduce the number of operations rejected by the
�lter function, but we have not found such a case.

In almost all cases, adding constraints reduces plan-

ning time. Though the computation of the �lter func-

tions obviously takes time, the time saved by not
searching states below an invalid branch outweighs the

cost. In fact, constraints can be used to guide the
planner to a correct plan for assemblies that would

otherwise be intractably large.

4.5 Implementation

Archimedes is implemented in C++, with Tcl/Tk
used for the graphic interface and OpenGL for 3D

graphics and animation. The constraints are imple-
mented as a hierarchy of C++ derived classes. Each

type of constraint simply overrides the �lter function

from a base class, along with methods to de�ne the
type, name, etc. of the constraint. Each constraint

type also has its own data members, such as part sets,
tool choices and points of application, and so on. Some

of the supplemental routines are implemented as con-

straint class methods; however, most cannot be sep-
arated from the planner's algorithms, and are woven

directly into the planner implementation.

In [5] we identi�ed two main types of constraints

on assembly plans. Strategic constraints apply to the
entire assembly and its plan, while tactical constraints

only apply to certain subsets of the parts. Archimedes
currently implements strategic constraints as
ags for

the planner. However, in theory there is no real dif-

ference, since tactical constraints can usually be ap-
plied to the entire assembly, and strategic constraints

can always be limited to a subset of the parts. For
instance, we found that the REQ-PATHS-AXIAL con-

straint, identi�ed in [5] as strategic, was also very use-

ful applied to a subset of the assembly. Implementing
it as a tactical constraint allowed both uses, was sim-

pler to implement, and caused no loss in e�ciency. We

plan to replace all strategic constraints in Archimedes
with tactical constraints.

5 Experiments

We have applied the Archimedes planner, extended
with the constraint system, to a number of actual as-

semblies from sources in government and industry. Ex-

Assembly Parts Overrides Constraints

Sprytron 18 0 5

Door latch 23 28 8

Discriminator 42 18 15

Hughes 472 26 144

Table 2: Example assemblies planned with Archimedes

amples are listed in Table 2.

The sprytron is an eighteen part diode-like device,

including a surrounding assembly �xture. Most of the
parts are symmetric or nearly symmetric about a cen-

tral axis. The CAD data required no overrides to pro-
duce a �rst plan. However, in the resulting plan some

parts that would more naturally be inserted along the

axis were inserted from other directions. Adding a
REQ-PATHS-AXIAL constraint removed all these un-

wanted directions, and adding a REQ-ORDER-FIRST

placing the �xture �rst made the plan even better.
Three REQ-ORDER-LIAISON constraints were then

added to satisfy speci�c manufacturing constraints.

The door latch mechanism involves 23 parts, some
of which are very complex. The presence of several

snap�t or riveted fasteners, plus many inaccuracies in

the CAD data, required 28 overrides. A good plan was
obtained after eight REQ-SUBASSY constraints were

added, and one REQ-ORDER-LAST was used.

The discriminator is a 42-part clockwork-like
mechanism used as a safety device. It is the object

partially shown in the animation window in Figure 1.

Several parts overlapped in the CAD data, including
12 screws which were modeled larger than their cor-

responding holes, resulting in 18 model overrides. A
plan for the resulting adjusted model was then found

with no need for constraints. Seven REQ-FASTENER

constraints required Archimedes to place all fasteners
in appropriate groups, and six REQ-SUBASSY con-

straints matched the subassemblies intended by the

designer. In addition, one REQ-LINEAR-CLUSTER
was used, and the chassis was requested to be placed

�rst with a REQ-ORDER-FIRST.

The Hughes assembly in Figure 3 is an ini-
tial design of the guidance section of a Hughes Air-

craft AIM-9X air-to-air missile. With 472 parts de-

scribed by 55Mb of ACIS data (translated from
Pro/ENGINEER) and over 800,000 facets, the

Hughes assembly is to our knowledge the largest as-
sembly that has been processed by any automated as-

sembly planning system. Since Archimedes plans only

Constraint Count

REQ-SUBASSY-WHOLE 70
REQ-ORDER-LIAISON 48

REQ-CLUSTER 11

REQ-SUBASSY 7
REQ-FASTENER 3

REQ-ORDER-FIRST 2
REQ-ORDER-LAST 2

REQ-PATHS-AXIAL 1

Table 3: Constraints for the Hughes Assembly

for straight line assembly motions, and this assembly

contained a number of
exible parts (such as cables)
that could not use straight line insertions, we overrode

22 part mating situations with speci�c matings. Four

other overrides clari�ed contacts between parts. A
large number of REQ-SUBASSY-WHOLE constraints

were used for subassemblies that our Hughes customer
was not interested in sequencing. A breakdown of all

the constraints used to produce a plan useful to the

customer is in Table 3. After loading and facetting all
the parts in the Hughes assembly, Archimedes requires

approximately 22 minutes to �nd all contacts and pro-
duce an assembly plan. After modifying constraints,

replanning is usually performed in a few minutes.

The reader may note an approximate 3:1 ratio of

parts to constraints in Table 2. While our data is insuf-

�cient to draw any conclusions, this may be indicative
of what we should expect for typical applications.

6 Conclusion

Constraint-based interaction has proven to be a
powerful and intuitive paradigm for interactive assem-

bly planning. In addition, we have been very pleased
with the concept and implementation of constraints as

�lters. It keeps the code simple, maintainable, and

e�cient, especially when supplemented with special-
purpose routines for certain constraints. A rich variety

of useful constraints can be so represented, and we have
easily added constraint types when required. The in-

teractive mode of planning that results from the system

has been very e�ective in our experience.

This paper has only considered the strategic and

tactical requirements from [5]. At present, we are
working to expand the scope of our algorithms to also

include optimization criteria and suggestions. These
allow the user to \guide" the planner toward a best

plan, or more quickly toward a good plan, respectively.

Figure 3: The guidance section of a Hughes Aircraft AIM-9X air-to-air missile. Figure used by permission of
Hughes Aircraft and the U.S. Naval Air Systems Command.

In addition, we are working on additional methods

to speed replanning. One approach is to save the cur-

rent best plan, and attempt to follow it when planning
for a new set of constraints. Since the previous plan is

often not feasible, methods must be developed to follow

it \as much as possible." In addition to the potential
speedup, the user might perceive smaller adjustments

in the plan to accommodate constraint changes (rather
than the often-radical changes that happen now).

References

[1] D. F. Baldwin, T. E. Abell, M.-C. M. Lui, T. L. De
Fazio, and D. E. Whitney. An integrated computer aid
for generating and evaluating assembly sequences for
mechanical products. IEEE Trans. on Robotics and

Automation, 7(1):78{94, 1991.

[2] T. L. De Fazio and D. E. Whitney. Simpli�ed gen-
eration of all mechanical assembly sequences. IEEE

Journal of Robotics and Automation, RA-3(6):640{
658, 1987. Errata in RA-4(6):705-708.

[3] J. M. Henrioud and A. Bourjault. LEGA: a computer-
aided generator of assembly plans. In L. S. Homem de
Mello and S. Lee, editors, Computer-Aided Mechanical

Assembly Planning, pages 191{215. Kluwer, 1991.

[4] L. S. Homem de Mello and A. C. Sanderson. A correct
and complete algorithm for the generation of mechan-
ical assembly sequences. IEEE Trans. on Robotics and

Automation, 7(2):228{240, 1991.

[5] R. E. Jones and R. H. Wilson. A survey of constraints
in assembly planning. In Proc. IEEE Intl. Conf. on

Robotics and Automation, pages 1525{32, 1996.

[6] R. E. Jones and R. H. Wilson. An interactive assembly
planning system. In Video Proc. IEEE Intl. Conf. on

Robotics and Automation, 1997.

[7] S. G. Kaufman, R. H. Wilson, R. E. Jones, T. L. Cal-
ton, and A. L. Ames. The Archimedes 2 mechanical
assembly planning system. In Proc. IEEE Intl. Conf.

on Robotics and Automation, pages 3361{8, 1996.

[8] N. J. Nilsson. Principles of Arti�cial Intelligence.
Springer-Verlag, 1980.

[9] R. H. Wilson. Minimizing user queries in interactive
assembly planning. IEEE Trans. on Robotics and Au-

tomation, 11(2):308{312, 1995.

[10] R. H. Wilson. A framework for geometric reasoning
about tools in assembly. In Proc. IEEE Intl. Conf. on

Robotics and Automation, pages 1837{44, 1996.

[11] R. H. Wilson and J.-C. Latombe. Geometric reason-
ing about mechanical assembly. Arti�cial Intelligence,
71(2):371{396, 1994.

[12] J. D. Wolter, S. Chakrabarty, and J. Tsao. Mating
constraint languages for assembly sequence planning.
IEEE Trans. on Robotics and Automation. To appear.

