IEEE Intl. Conf. on Robotics and Automation, 1995, pp. 1585-1592

Assembly Partitioning along Simple Paths:
the Case of Multiple Translations®

Dan Halperin
Robotics Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305

Abstract

We consider the following problem that arises in as-
sembly planning: given an assembly, identify a sub-
assembly that can be removed as a rigid object with-
out disturbing the rest of the assembly. This is the
assembly partitioning problem. Specifically, we con-
sider planar assemblies of simple polygons and sub-
assembly removal paths consisting of a single finite
translation followed by a translation to infinity. Such
paths are typical of the capabilities of simple actuators
in fixed automation and other high-volume assembly
machines. We present a polynomial-time algorithm to
identify such a subassembly and removal path. We
discuss extending the algorithm to 3D, other types of
motions typical in non-robotic automated assembly,
and motions consisting of more than two translations.

1 Introduction

Fixed automation or special-purpose assembly ma-
chines can achieve very high throughput, often down
to cycle times of one product per second for syn-
chronous assembly machines and similar systems, and
even faster for fixed automation. For this reason, they
are often chosen over general-purpose robots for as-
sembly of high-volume products. However, designing
such an assembly system for a given product is a com-
plex process, often requiring eight months or more
from the time prototype parts are available [3]. Reduc-
ing this lead time would allow faster time-to-market
with lower cost for many high-volume products.

*Work on this paper by the first author has been supported
by a grant from the Stanford Integrated Manufacturing Associ-
ation (SIMA), by NSF/ARPA Grant IRI-9306544, and by NSF
Grant CCR-9215219. This research was performed while the
second author was at Stanford University, and has been sup-
ported by the Stanford Integrated Manufacturing Association
(SIMA).

Randall H. Wilson

Intelligent Systems and Robotics Center

Sandia National Laboratories

Albuquerque, NM 87185

This paper generalizes assembly planning tech-
niques originally developed for robotic and general-
purpose assembly to apply to motions consisting of two
translations, which are typical of high-volume assem-
bly systems. Such systems use simple actuators and
mechanical drive systems to produce motions having a
few degrees of freedom. For instance, a standard mod-
ule for the Bodine Model 64 synchronous assembly ma-
chine produces motions that acquire a part, translate
it to an intermediate point, then insert it. Pick-and-
place machines composed of two linear actuators also
produce two-translation motions.

The assembly operations required by industrial
products are almost exclusively monotone two-handed,
meaning that each operation places a part or rigid
subassembly into its final position relative to another
subassembly. A sequence of assembly operations that
builds a product from its individual parts is an as-
sembly sequence. If such a sequence of monotone two-
handed operations exists for a product, then we say the
product is monotone two-handed. For example, the as-
sembly in Figure 1(a) can be assembled by a monotone
two-handed assembly sequence involving only transla-
tions (the two small parts are placed together then
inserted into the larger), while the assembly in Fig-
ure 1(b) cannot. In the rest of this paper, we only con-
sider monotone two-handed assembly sequences. We
also restrict our attention to assemblies of rigid parts.

Since the most constraints on assembly are present
in the assembled state, assembly sequences are often
generated in reverse. Then assembly sequencing is re-
duced to the partitioning problem: given an assembly,
determine a proper subset of the parts that can be re-
moved (as a single rigid object) without disturbing the
other parts. Recursing on the resulting two subassem-
blies generates an assembly sequence.

Past work has shown that when a disassembly mo-
tion may consist of any number of translations, the



== =

Figure 1: Assemblies requiring non-straight-line mo-
tions for disassembly. (a) is a monotone two-handed
assembly while (b) is not.

partitioning problem (and thus sequencing itself) is
NP-complete [7]. On the other hand, polynomial-
time partitioning is possible when the motions are lim-
ited to single translations to infinity: Arkin et al. [1]
present an algorithm for planar assemblies of polygons,
and [12, 13] consider assemblies of polyhedra.

This paper generalizes the non-directional blocking
graph (or NDBG) of [13] to motions consisting of mul-
tiple translations. We consider the following problem:
given a planar assembly of simple polygons, identify
a subassembly that can be removed as a rigid object
by a motion consisting of a finite translation followed
by a translation to infinity. We present an algorithm
that solves this problem in O(n*N°®) time, where n is
the number of parts in the assembly and N 1s the total
number of vertices of the polygons. We have extended
this algorithm to partitioning assemblies with a small
number & > 2 of translations. For lack of space, we do
not present the latter algorithm here; see [6] for more
detail.

The rest of the paper is organized as follows. In
Section 2 we describe the NDBG and give other back-
ground. Section 3 gives the algorithm to partition
an assembly of polygons with two translations, and
Section 4 analyzes its computational complexity. Sec-
tion b briefly considers paths of more than two transla-
tions. Finally, Section 6 discusses extending the algo-
rithm to three dimensions, and considers other simple
motions typical of high-volume assembly that would
yield to a similar approach.

2 Background

Consider an assembly A of non-overlapping objects.
The objects are the parts of the assembly, and any
subset of them is a subassembly. In general, we wish
to identify a proper subassembly S C A that can be
completely separated from A\ S (the rest of the assem-
bly) by a collision-free rigid motion along a continuous

path t.

Now consider which subassemblies of A could follow
a given rigid motion {. Since a subassembly occupies
space equal to the union of its parts, the motion ¢
causes a collision between a subassembly S and A\ S
if and only if ¢ causes a collision between some part in
S and some part in A4\ S.

Let S be a subassembly removable along ¢. If a
part @ moved along ¢ collides with another part P
(left stationary), then we say that P blocks @ along
t. If P blocks @, then either P must be in the moved
subassembly S or @) must not be in S. The set of
constraints on membership in S can be represented
with a blocking graph [13]. The blocking graph of A
for motion ¢, written G 4(t), is a directed graph with
a node for each part of A and an arc from node @
to node P exactly when @ 1s blocked by P along t.
A subassembly S can be removed with rigid motion ¢
if and only if no arcs in G 4(t) connect nodes in S to
nodes in A\ S. Such a subassembly exists exactly when
G 4(t) is not strongly connected.! When G 4(¢) is not
strongly connected, one of its strong components is a
subassembly that can follow ¢ without collision.

Figure 2 shows an assembly and the blocking graphs
for two motions, one a translation up to the right, and
the other a translation to the left then upward.? For
instance, part B collides with part ' when translated
up right, so the constraint B — (' is present in the
corresponding blocking graph. The blocking graph of
the up-right translation is strongly connected, and in
fact no subassembly can be removed along that path.
For the two-step motion, the blocking graph is not
strongly connected. Instead, there are no outgoing
arcs from {B, C'} to {A}, so B and C may be removed
rigidly in a motion to the left then upward.

For translational paths in two dimensions, a path
is a continuous mapping ¢ : [0,00) — (x,y), where
t(0) = (0,0) and each point (x,y) on the path is con-
sidered a relative offset from a part’s initial position in
the assembly. The set of offsets of a part ) that col-
lide with part P is given by the configuration-obstacle
(or C-obstacle) P& @Q, i.e., the Minkowski sum of P
and —@ [9]. Hence part P blocks @ along a path ¢
exactly when ¢ intersects P © (). To find the collisions
between all pairs of parts for a single motion, all pair-
wise C-obstacles P & ) can be computed. When the

YA strongly connected component (or strong component) of
a directed graph is a maximal subset of nodes such that for
any pair of nodes (n1,n2) in this subset, a path connects ny to
ny. A graph is strongly connected if it consists of one strong
component.

2The techniques of this paper apply equally well to more
“normal” assemblies, with parts in contact. To simplify the
presentation, however, we use examples such as those in figure 2.



| === ® (B
L7 Y
T 4

= s L

Figure 2: An assembly and its blocking graphs for two
translational motions

pairwise C-obstacles are superimposed, they partition
the plane into regions, within which the set of pairs
of parts colliding 1s fixed; this 1s called the interfer-
ence diagram for the assembly. A path ¢ causes the
subassembly to move through a sequence of regions,
collecting constraints on the blocking graph of ¢. For
further discussion see [10].

3 Partitioning with Two
Translations

Given an assembly A of simple polygons, we wish to
determine whether any subassembly S of A can be
completely separated from the subassembly A\ S by a
finite translation of S followed by an infinite transla-
tion of S. We describe a rigid motion consisting of two
translations by a triple t = (z,y, ¢), where (2, y) is the
displacement caused by the first translation, and ¢ is
the direction of the second (infinite) translation.

To solve the problem, we partition the (z,y,¢)-
space of possible motions into cells such that the block-
ing graph G 4(t) is fixed for all motions ¢ in a cell. Then
by checking the blocking graph for each cell for strong
connectedness, we can determine whether a subassem-
bly can be removed along motions in that cell. If all
blocking graphs are strongly connected, no subassem-
bly can be removed by a two-translation path.

The next subsection derives the constraints arising
from the first translation (z, y), and subsection 3.2 de-
rives the constraints arising from a second translation
given by ¢. Then in subsection 3.3 we combine these
sets of constraints to obtain the final three-dimensional
arrangement, i.e., the subdivision of the (x, y, ¢)-space.

3.1 The First Translation

Consider first the constraints on subassemblies that
can follow the first translation (z,y) without collision,
as ¢ and y vary. The origin of the plane represents the

null translation (0,0), and we wish to calculate the
critical curves in the space of motions (x,y) at which
the blocking graph for the first translation changes.

As mentioned above, for any two parts P and @,
the set of placements of () for which ) intersects P is
the polygonal C-obstacle C'= P& Q. Part P blocks
for translations (#, y) that intersect C'. Let the central
shadow of a region R, written S¢(R), be the set of
points (z,y) such that the line segment from (0, 0) to
(z,y) intersects R. Fach edge on the boundary of a
central shadow S¢(R) is either a portion of an edge of
R or a ray extended from a vertex of R. The edges
of the central shadow Sc(P © @) are critical curves
for the first translation: the arc ) — P is present
in blocking graphs for exactly those motions (z,y) €
int(Sc (P & @)) ending inside the shadow.

Figure 3b shows the C-obstacle and resulting central
shadow of the two polygons in figure 3a.

We now superimpose the central shadows S¢(P; &
P;) for all pairs of parts (P;, P;). The boundary edges
of the shadows determine a subdivision of the plane
into regions (an arrangement of segments), such that
for all points (x,y) inside each region, the blocking
graph G4((z,y)) is fixed. We denote the set of line
segments making up this arrangement by 5.

Figure 4 shows the C-obstacles (dashed lines) and
the boundaries of the corresponding central shadows
(solid) for each pair of parts of the assembly in Fig-
ure 2. B/C is the obstacle for moving part B and
stationary part C'; the obstacle C/B is identical to
B/C, rotated 180 degrees around the origin. The full
arrangement for the first translation is shown at the
bottom of Figure 4.

3.2 The Second Translation

We now concentrate on the second, infinite translation.
Such a translation is in fact a translation along a ray,
and it can be specified by three parameters (z,y, ¢),
where (z,y) is the starting point of the ray and ¢ is
its direction. We wish to partition the (z,y, ¢)-space
into cells such that the blocking graph for a motion
along a ray is fixed for all the rays represented by the
points in a cell. Note that, for the moment, we ignore
the effect of the first translation on this subdivision.
We will define a collection of critical surfaces that
induce the desired subdivision. We start by fixing a
direction ¢y and considering a two-dimensional cross-
section of the three-dimensional space (z,y, ¢), at ¢o.
At the fixed ¢g, the critical curves are defined similar
to the subdivision of the first translation. Let the ¢-
shadow of a region R, written Sy(R), be the set of
points (#, y) such that the ray (z, y, ¢) intersects R. As



@

Figure 3: (a) Two polygons P and @,
and (c) the ¢-shadow Sgpe (P © Q)

(

with central shadows, each edge on the boundary of a
¢-shadow S4(R) is either a portion of an edge of R or
a ray extended from a vertex of R. Then the blocking
graph for a ray (z,y,¢o) contains the edge Q — P
exactly when (z,y) € int(Sy(P & @)). The collection
of critical curves that determine the subdivision of the
¢o-cross-section are the boundaries of the ¢g-shadows
of the C-obstacles.

Figure 3¢ shows the C-obstacle and resulting ¢-
shadow of the two polygons in figure 3a for the di-
rection of motion ¢g = 90°.

To get the three-dimensional critical surfaces, we
let ¢ vary, and let the boundaries of the ¢-shadows
vary accordingly. The collection of critical surfaces is
defined to be the union of the ¢-shadow boundaries
for all ¢ € [0,27). We denote this set of critical sur-
faces by 8s. The surfaces in S» partition the space
(z,y,¢) into non-critical cells such that for all infi-
nite translations (x, y, ¢) inside each cell, the blocking
graph Ga((z,y, ¢)) is fixed.

Figure 5 shows the boundaries of the ¢-shadows for
the assembly of Figure 2, and the resulting arrange-
ment, for the upward translation ¢ = 90°.

3.3 Combining the Two Translations

As stated in the beginning of this section, the triple
(x,y,¢) can represent not only the second infinite
translation, but in fact the two translations. A point
(0, Yo, @o) represents a path of a subassembly that
starts at the origin, moves to the point (xg, yo) along
a straight line segment, and then moves to infinity
along a ray in the ¢ direction. We already have the
set Sy of constraint surfaces that subdivides the space
(z,y,¢) into non-critical cells, and we now refine this

b) the boundary of P © @ (dashed) and the central shadow Sc(P & @),

subdivision according to the constraints induced by
the first translation. Since the first translation is un-
affected by the value of ¢, we extend each segment in
the first arrangement S; into a vertical “wall” (in the
¢ direction) in the (z,y, ¢)-space. We will denote this
collection of vertical walls, extended from Si, by &;.
Thus we have completed the subdivision of the space
(z,y, ¢) into non-critical cells, such that for any two-
translation path ¢ = (z,y,¢) in each cell the set of
blocking constraints G 4(t) is fixed.

Finally, to find a subassembly that can be parti-
tioned with two translations (if one exists), we pro-
ceed as follows. We compute the subdivision of the
(z,y, ¢)-space by the surfaces in S USs. For each cell
produced by the algorithm, we compute the blocking
graph G 4(t) corresponding to a representative path
t for that cell. We check each blocking graph for
strong connectedness: if G4(t) is not strongly con-
nected, then we output one of its strong components
and the motion ¢ as a solution. If all blocking graphs
are strongly connected, then the assembly cannot be
partitioned with two translations.

The blocking graphs for all cells in the arrangement
can be computed incrementally in the following way.
We begin by choosing a point ¢y = (2o, yo, ¢o) in some
cell ¢g of the arrangement; the blocking graph G (o)
can be easily computed by checking for inclusion of
(0, yo) in the central shadows and ¢g-shadows of the
pairwise C-obstacles. We then perform a systematic
traversal of the arrangement, at each step moving from
a cell to one of its neighbors. When we step through a
critical surface, we either add or remove the constraint
corresponding to that surface, depending on whether
we are entering a shadow or leaving it.



c/B

B/A

CIA

B/C

A/C

A/B

Figure 4: An assembly, C-obstacles for all pairs of parts (dashed lines), boundaries of the corresponding central
shadows (solid), and the arrangement for the first translation

4 Computational Complexity

What 1s the time complexity of this algorithm? We
present here a summary of the analysis; see [6] for a
more detailed discussion. To simplify the presentation,
we first assume that each part has at most some fixed
number of vertices. We then give a refined analysis
below.

4.1 Initial Analysis

Let the assembly A have n polygonal parts, each of
constant maximum complexity. To determine the com-
plexity (number of cells) in the arrangement of surfaces
in (z,y, ¢)-space, consider first the number of surfaces
in the set &1 (generated by the first translation). Since
each part has a constant number of vertices, the C-



A/B

Figure 5: An assembly, ¢-shadows for pairs of parts when ¢ = 90°, and a 2D slice of the arrangement for the

second translation at ¢ = 90°

obstacle for two parts is also of complexity O(1), and
the same holds for the boundary of the central shadow
of such a polygon. Each pair of parts creates one C-
obstacle; so the number of surfaces in the set &; is

O(n?).

Now consider the surfaces in the set Sy generated
by the second translation. To simplify the analysis,
we will consider a superset of this collection. Namely,

for every C-obstacle C, we will consider the surfaces
traced by the set of all the segments underlying the C-
obstacle C' as ¢ varies, together with the ruled surfaces
traced by rays in the ¢ + 180° direction extended from
vertices of C'. This set is clearly a superset of the
surfaces 1n Ss.

Again, the number of surfaces induced by each C-
obstacle is bounded by a constant. Since there are



O(n?) C-obstacles (one for every pair of original parts),
we conclude that S, consists of O(nz) critical surfaces.

The surfaces (or more precisely, surface patches) in
&1 and 8o are clearly algebraic of bounded degree. It
is well known that the maximum number of cells in a
3D arrangement induced by m such surfaces is O(m?)
(see, e.g., [4, 5, 11]). Since there are O(n?) surfaces
in each of §; and 8y, the maximum number of cells in
the subdivision of (z,y, ¢)-space is O(n°).

The algorithm requires that we visit all cells in the
arrangement, at each step moving from a cell to one of
its neighbors. This can be done in time very close to
linear in the number of cells in the arrangement, i.e.
roughly O(n®) time, with a simple spatial sweep algo-
rithm [2] (the algorithm in [2] incurs an extra polylog-
arithmic factor, which is negligible here due to other
steps of our algorithm).

The blocking graph for the initial cell in the
traversal can be computed by comparing the point
(%0, Y0, ¢0) to each shadow, that is in time O(n?).
Then as each cell boundary is traversed to generate
the next blocking graph, at most a constant number
of constraints is added or removed at each step,® so
all the blocking graphs can be computed in time pro-
portional to the size of the arrangement, i.e.; in time
O(n®). Strong connectedness can be checked in time
linear in the size of the graph, which in this case is
bounded by n?. Since O(n®) blocking graphs must be
checked, this last step dominates the running time of
the algorithm. We now have the following theorem.

Theorem 4.1 Given a planar assembly consisting of
n disjoint simple polygons, each having at most some
constant number of vertices, it can be determined in
O(n®) time whether there is a subassembly that can
be removed along a path consisting of a single finite
translation followed by a translation to infinity. The
algorithm outputs both the labels of the parts in the re-
movable subassembly and the specifications of the path.

4.2 Refined Analysis

In this subsection we introduce another parameter into
the analysis of the running time of our algorithm, and
also indicate several points where the algorithm may
be improved.

Let the assembly A we wish to partition consist
of n parts (as before) and let N be the total num-
ber of vertices of all the parts together. Denote the
number of vertices of part P; € A, by n;. While the

3We are assuming here general position of the parts in the
assembly. Certain technical modifications to the algorithm will
be necessary to handle “degenerate” assemblies, but will not
increase its asymptotic running time.

Minkowski sum of two polygons P; & P; may have com-
plexity O(nfn]z), the collection of segments underlying
all these edges may have at most O(n;n;) segments—
one for every vertex of one part and edge of the other?.
Hence in both sets & and Ss of the analysis in this
section, the overall number of surfaces is

> O(ning) = O(N?) .

i#j

Therefore the number of cells in the arrangement of
(z,y, d)-space is O(N°®), and the time to compute it is
roughly the same. The blocking graph for each cell in
the arrangement must be checked for strong connect-
edness, giving us the following theorem.

Theorem 4.2 Given a planar assembly consisting of
n disjoint simple polygons, having a total of N wver-
tices, it can be determined in O(n?N°®) time whether
there 1s a subassembly that can be removed along a path
consisting of a single finite translation followed by a
translation to infinity. The algorithm outputs both the
removable subassembly and the path.

Finally, in related work Khanna, Motwani, and Wil-
son have shown the following: given a directed graph
with n nodes, and a “long” (compared to n) sequence
of edge insertions and deletions to that graph, the
strong connectedness of all resulting graphs can be
determined in amortized time O(n!-3®) per graph [8].
They group the sequence of graphs into phases and
pre-process the common sub-graph for each phase.
The method applies directly to checking the long se-
quence of blocking graphs in the above algorithm, thus
reducing the running time to O(n!-38N°%).

5 Multiple Translations

In [6] we consider partitioning an assembly along a
path consisting of a small number & of translations
my, ma, ..., mg. There are 2k — 1 degrees of freedom
in specifying the path ¢. Two parameters (z;, y;) spec-
ify the endpoint of each of the first £ — 1 moves, and
one parameter ¢ specifies the direction of the last (infi-
nite) move. Hence we examine the k-translation prob-
lem in a (2k — 1)-dimensional space with coordinates
(1,¥1, -+, Tk-1,Yr—-1,¢). The resulting partitioning
algorithm is polynomial in the complexity of the as-
sembly, but exponential in the number of translations
k allowed. We refer the reader to [6] for details.

4For practical use, one may gain a lot from computing only
the boundary rather than using all the segments. This may
affect the constant factor in our analysis.



6 Discussion

The above result builds on two existing concepts: the
concept of the NDBG [13] and the “interference di-
agram” [10]. Previously, NDBGs were studied only
for simple types of motions, and thus yielded either a
subset or superset of the possible assembly operations,
while it was not clear how to use the interference dia-
gram efficiently in order to solve the partitioning prob-
lem. Notably, the algorithm above encodes exactly the
type of motions executed by 2-axis linear actuators
and some other common types of assembly automa-
tion. Hence this paper is a step in showing the full
generality of the NDBG approach.

The major open problem that this paper raises is to
improve the running time of the algorithms presented
in it. Some possible directions for improvement are
suggested in [6]. A related question, which applies to
other instances of the NDBG framework as well, is
the following: We compute a collection of n(n — 1)
C-obstacles. However, this collection of C-obstacles
i1s induced by only n parts. Can we exploit this fact
to improve the running time of our algorithm, or of
other algorithms that deal with the NDBG? We are
currently investigating this question.

Of practical importance is the extension of our al-
gorithm to polyhedral assemblies and motions in three
dimensions. In 3D, the first finite translation (z,y, )
would be followed by an infinite translation in a di-
rection given by two angles (¢,¢). The C-obstacle
P; & P; is a polyhedron with O(n;n;) planes support-
ing its faces, and central shadows and (¢, ¢)-shadows
can be defined as in the 2D case. Thus the 5D space
of motions will be divided into cells by a number of
surfaces generated by these C-obstacles as ¢ and ¢
vary, with a blocking graph for each cell, and so on.
While polynomial, the running time of such an algo-
rithm may be rather high in the worst case.

A similar methodology might be applied to other
simple motions performed by high-speed assembly ma-
chines. For instance, many such machines only per-
form horizontal and vertical motions. In this case (in
3D, with the orientation of the assembly given), a hor-
izontal staging motion at angle ¢ is followed by a ver-
tical insertion of length z, resulting in a 2D space of
motions.

Another common assembly mechanism rotates a
part from its feeding position to an intermediate point,
then inserts the part vertically. The important pa-
rameters defining such a motion are the length z of
the vertical insertion and the center (z,y) of planar
rotation. One additional point must be addressed,
however: only rotation centers (z,y) that completely

remove the subassembly are valid, and the valid rota-
tion centers might vary depending on the subassembly.
This deserves further investigation.

References

[1] E. M. Arkin, R. Connelly, and J. S. B. Mitchell. On
monotone paths among obstacles, with applications to
planning assemblies. In Proc. of the 5th ACM Symp.
on Computational Geometry, pages 334-343, 1989.

[2] M. de Berg, L. J. Guibas, and D. Halperin. Vertical
decompositions for triangles in 3-space (the full ver-
sion). Technical Report RUU-CS-94-29, Utrecht Uni-
versity, 1994. Also in Proc. of the 10th ACM Symp.
on Computational Geometry, 1994, pp. 1-10.

[3] E. Dunn, Sales Engineer, Bodine Assembly and Test
Systems. Personal communication, April 1994.

[4] L. Guibas and M. Sharir. Combinatorics and algo-
rithms of arrangements. In J. Pach, editor, New
Trends wn Discrete and Computational Geometry,
pages 9-36. Springer, 1993.

[5] D. Halperin. Algorithmic motion planning via ar-
rangements of curves and of surfaces. PhD thesis,
Dept. of Computer Science, Tel-Aviv Univ., July 1992.

[6] D. Halperin and R. H. Wilson. Assembly partition-
ing with a constant number of translations. Technical
Report SAND94-1819, Sandia National Labs, 1994.

[7] L. Kavraki, J.-C. Latombe, and R. H. Wilson. On
the complexity of assembly partitioning. Information
Processing Letters, 48(5):229-235, 1993.

[8] S. Khanna, R. Motwani, and R. H. Wilson. Graph
Certificates, Lookahead in Dynamic Graph Problems,
and Assembly Planning in Robotics. In preparation,
1994.

[9] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, 1991.

[10] T. Lozano-Pérez and R. H. Wilson. Assembly sequenc-
ing for arbitrary motions. In Proc. of the IFEFE Intl.
Conf. on Robotics and Automation, volume 2, pages
527-532, 1993.

[11] R. Pollack and M. Roy. On the number of cells defined
by a set of polynomials. C.R. Acad. Sci. Paris, (t. 316,
Série 1):573-577, 1993.

[12] A. Schweikard and R. H. Wilson. Assembly Sequences
for Polyhedra. To appear in Algorithmica.

[13] R. H. Wilson and J.-C. Latombe. Geometric reason-
ing about mechanical assembly. Artificial Intelligence,
71(2), 1994.



